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Fig. 1: We showcase Lego’s ability to invert concepts of “frozen in ice”, “burnt and
melted”, and “closed eyes” using as few as just four example images (two with and two
without the concept). Our results cover text-to-image models, including LDM, Stable
Diffusion 2.1, Attend and Excite, and closed-source DALL.E 2. Notably, Lego faithfully
represents intended personalized concepts, even with a less capable backbone (LDM),
while more powerful models such as DALL.E, though artistically impressive, do not
consistently capture the same.

Abstract. Text-to-Image (T2I) models excel at synthesizing concepts
such as nouns, appearances, and styles. To enable customized content
creation based on a few example images of a concept, methods such as
Textual Inversion and DreamBooth invert the desired concept and en-
able synthesizing it in new scenes. However, inverting personalized3 con-
cepts that go beyond object appearance and style (adjectives and verbs)
through natural language, remains a challenge. Two key characteristics
of these concepts contribute to the limitations of current inversion meth-
ods. 1) Adjectives and verbs are entangled with nouns (subject) and can

3 Please refer to Figure 2 for our definition of personalized.
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hinder appearance-based inversion methods, where the subject appear-
ance leaks into the concept embedding and 2) describing such concepts
often extends beyond single word embeddings.
In this study, we introduce Lego, a textual inversion method designed
to invert subject entangled concepts from a few example images. Lego
disentangles concepts from their associated subjects using a simple yet
effective Subject Separation step and employs a Context Loss that
guides the inversion of single/multi-embedding concepts. In a thorough
user study, Lego-generated concepts were preferred over 70% of the time
when compared to the baseline in terms of authentically generating con-
cepts according to a reference. Additionally, visual question answering
using an LLM suggested Lego-generated concepts are better aligned with
the text description of the concept.

Keywords: Diffusion Models · Concept Inversion · Image Generation

1 Introduction

If you saw a Lego figurine frozen in a block of ice or a Rubik’s cube melt and
deform, how confident would you be in your ability to describe the fine details
of the scene by using natural language descriptions alone? And even then, can
text-to-image models generate images that accurately follow such text descrip-
tions? (see Figure 1). As Mark Twain said; “Actions speak louder than words”
and describing the fine details of any scene is often more difficult than showing
someone / something an example of a similar scene [1, 3, 12,24,27,44].

Recently, large text-to-image Diffusion models [4, 34, 42, 45, 53] have shown
promising results in synthesizing high quality images. These models empower
users by enabling scene synthesis through natural language descriptions. The
ability to craft personalized content with these models, e.g. a scene featuring
one’s pet dog as Superman, has spurred a research direction aimed at enhanc-
ing the user’s control for customized content creation [16, 17, 21, 23, 24, 26, 27,
31, 32, 44, 47, 51, 56]. Using a few example images of a concept, text-based in-
version methods identify an embedding within the textual embedding space of
a text-to-image model’s text-encoder that can synthesize that specific concept.
This identified embedding can then be injected into various text descriptions,
allowing for the synthesis of the concept in diverse scenes. Inversion methods ca-
pable of inverting appearance-based concepts include Textual Inversion (TI) [16],
DreamBooth [44], Custom-Diffusion [27] and ELITE [51]. While TI and ELITE
kept the diffusion model frozen, DreamBooth and Custom-Diffusion tuned parts
of the model on the example images. Taking a different approach from those
works, ReVersion [24] inverts relations between subjects (e.g, under, in, etc.)
from a few example images rather than concepts related to subject appearance.

With vision-language models having shown strong bias towards nouns / ob-
jects [20, 33, 37, 55] and existing inversion and personalization techniques being
predominantly centered around learning appearances, relations and styles, we
redirect our attention to object agnostic concepts, specifically, adjectives and
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Fig. 2: A) We showcase our definition for personalized concept inversion. While SD 2.1
and DALL.E 2 and 3 create their version of a “frozen Lego horse in ice”, we are are not
only interested in synthesizing the concept, but also doing so such that it follows the
example concept of the reference image (personalized) where the concept has unique
characteristics ( e.g. cracks and trapped bubbles in the ice). B) We visualize 4 concepts
when using LDM with text description of the concept (bottom row) compared to visu-
alizing the concepts after performing Lego inversion using reference images (visualized
at the bottom of each Lego generated image) of the concept (top row).

verbs. Thus, this paper takes a comprehensive approach to examine the capa-
bilities of text-to-image models in handling adjectives and verbs (see Figure 2)
and the ability of inversion methods in learning to synthesize such concepts. We
show that current inversion methods often fail to invert such concepts and our
experiments suggest this challenge is due to two key characteristics inherent to
these concepts. First, such concepts are entangled with a subject (noun). For
instance, the concept of melting gives different shapes and characteristics to dif-
ferent subjects it is applied to and current inversion methods are not able to
handle subject entangled concepts. Second, describing such concepts frequently
extends beyond single word embeddings. For instance being frozen in ice is ex-
pressed using multiple word embeddings whereas appearance based concepts can
have a single word embedding (e.g., some toy, a pet, etc.). We introduce Lego,
a textual inversion method that augments the TI framework [16] with two addi-
tional components; a Subject Separation step that disentangles a concept from
its associated subject by recovering an explicit embedding for the subject and a
contrastive Context Loss that helps guide multiple embeddings in the textual
embedding space, increasing editability and accuracy of the learned embeddings.
We show Lego’s capabilities to invert various concepts with comparisons to state
of the art T2I and inversion methods, and demonstrate that Lego is a reliable
and stand-alone inversion method for personalized concepts applicable to any
text-conditioned diffusion model.

Our major contributions are summarized below:

– We study a new problem, Personalized Concept Inversion of adjectives
and verbs. We show text-guided image synthesis models and current text
based inversion and personalization methods are unable to effectively syn-
thesize such concepts according to a given image of the concept.

– We propose two modifications to TI; Subject Separation and Context
Loss that allow our method to disentangle concepts from subjects and guide
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the concept’s embeddings in the textual embedding space. These modifica-
tions together lead to faithful inversion of concepts.

Table 1: A characteristics overview of some recent T2I personalization methods (in
order from left to right; Lego, Textual Inversion, ReVersion, Custom-Diffusion, ELITE,
ControlNet and Attend and Excite), with a reference to sample images of each method
when used for inverting/synthesizing adjective and verb concepts.

Lego TI [16] RV [24] C-Diff [27] ELITE [51] CNet [56] A+E [7]
Frozen Model ✓ ✓ ✓ ✗ ✓ ✓ ✓

Text Embedding Optimization ✓ ✓ ✓ ✓ ✗ ✗ ✗

Subject/Concept Disentangling ✓ ✗ ✗ ✗ ✗ ✗ ✗

Multi-Embedding Steering ✓ ✗ ✗ ✗ ✗ ✗ ✗

Sample Results Figs. 1, 7, 11 Fig. 9 - Sec. 15 Fig. 6 Fig. 15 Figs. 1, 7

2 Related Work

Diffusion Models [19, 22, 46, 48, 49] have become the go-to generative model
over their counterparts [5, 6, 11, 15, 18, 25] with their superior synthesis quality
and more stable training. Recently, text-to-image (T2I) diffusion models [35,
39, 40, 43, 45] have shown promise in enabling an intuitive interface for users to
control image generation, using natural language descriptions. However, gaining
granular control and customized content generation has proven difficult with
natural language descriptions alone [14,29,30,52]. Addressing this difficulty has
started a line of research for inverting desired concepts in these large models
and better tuning them for customized content creation. In Table 1 we describe
the characteristics of the most relevant personalization models and give further
detail on some of the recent works that attempt to solve this problem below.
Textual Inversion. Given a T2I model, Textual Inversion [16] is tasked with
finding a pseudo-word’s embedding that can represent a subject, given as few
as 3-4 exemplar images of that subject. Without fine-tuning any part of the
network, TI searches the textual embedding space of the diffusion model’s vision-
language encoder (BERT [9], CLIP [38], etc.) to find an embedding that can
synthesize the given object in the reference images. In Figures 3 and 9 and
Supplementary Section 15), we show that using multiple images of a concept and
performing TI is not enough for inverting concepts. TI uses a single embedding
that is forced to not only learn to represent the concept, but also the subject
appearance, leading to appearance leakage.
DreamBooth + Custom Diffusion. With similar objective as TI, Dream-
Booth [44] and Custom-Diff [27] not only perform optimization in the textual
embedding space, but also train parts of the T2I diffusion network with the ex-
emplar images in order to achieve a better representation of the given concept.
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Fig. 3: Textual Inversion is not able to learn the concept of “closed eyes” from mul-
tiple subjects without the appearance of the sample subjects leaking into the concept
embedding.

DreamBooth and Custom-Diff achieve better concept representation compared
to TI. Custom-Diff is similar to DreamBooth with a few differences; 1) allowing
multiple concepts being learned simultaneously, 2) light weight tuning by only
updating the cross-attention parameters of the diffusion network and 3) a regu-
larization step to stop language drift during tuning. Section 5.1 shows how these
models fail to invert subject entangled concepts.
Attend-and-Excite. Feeding long text descriptions to T2I models often leads
to catastrophic forgetting; where some words in the sentence fail to appear in
the generated image. Attend and Excite [7] enforces the cross-attention units of
the diffusion network to be activated for the user-selected tokens, encouraging
the model to generate all subjects described in the text prompt. In Figures 1 and
7, we show that selecting the concept tokens and using the Attend and Excite
method is not enough to generate the concepts.
ReVersion. Relation Inversion [24] is the only work besides ours that focuses
on inverting non-appearance concepts, namely relations between subjects. Re-
Version uses a contrastive loss based on InfoNCE [36] that steers the relation
embedding towards the embeddings of prepositions (preposition prior), with the
observation that in natural language, prepositions express the relation between
subjects. ReVersion also uses natural language descriptions of the subjects in the
exemplar images to separate the subjects from the relation embedding. Rela-
tions control the positioning of subjects with respect to one another and hence,
the subjects stand alone. This facilitates the use of natural language descrip-
tions alone for separating the relation embedding from subject appearance. In
contrast, our focus lies in studying concepts entangled with the subject. Our
ablation study (Section 5.5) shows that ReVersion’s framework fails to invert
subject-entangled concepts.

3 The Concept Inversion Problem

The goal of Lego is to learn embeddings CPT = {<cpt1>, ..., <cptn>} that
represent a concept C, from a few exemplar images. Let I = {I1, I2, ..., Im} be a
small set of such exemplar images involving a common subject Se. Lego requires
a clear separation between images of a subset with concepts, say IC , and the
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same without, say IC , such that I = IC∪IC . For the example shown in Figure 4
(right), the caption of all the images in IC is “photo of a Rubik’s cube”, whereas
the same in IC is “photo of a Rubik’s cube that is melted”, where the exemplar
subject Se is “Rubik’s cube” and the general concept of interest C is “melted”. In
this setting, we wish to learn the embeddings CPT corresponding to the concept
C such that the concept can be transferred to any novel target subject St– which
is “a teddy bear” in the very same example.

Fig. 4: Right figure is an overview of Lego’s objective and the Subject Separation
step. Learning an explicit embedding to represents the subject (Rubik’s cube) allows
the concept (“melted”) embedding to dissociate from the subject’s appearance features,
as visualized by <concept> embedding (highlighted in blue). The left figure depicts the
framework that uses concept only images (same setting as TI, DreamBooth, etc.). In
this setting, the subject’s features leak into the <concept> embedding, (highlighted in
orange and blue), as shown by the concept’s visualization which evinces both melting
effects and Rubik’s cube features.

Our experiments show the inherent difficulty in synthesizing accurate repre-
sentations of verb and adjective concepts using T2I models with natural language
guidance. The ability to learn embeddings capable of representing such concepts
using as few as four exemplar images allows the user to have greater control over
T2I models. In the context of T2I models, adjective and verb concept inversion,
where the concept is entangled with subjects, has not been previously explored.
We demonstrate that such entanglement poses challenges for inversion methods
that have previously aimed at subject/concept separation, as observed in other
concept types like relations [24].

4 Learning Concepts Beyond Appearance

4.1 Preliminaries

T2I Diffusion Models. Diffusion models [10,22,46] are a class of generative
models that learn to generate novel scenes by learning to gradually denoise sam-
ples from the Gaussian prior xT (trained by adding noise ϵ ∼ N (0, 1) to x0) back
to the image x0. In this work, we study T2I models, namely the Latent Diffusion
Model (LDM) [42]. Instead of directly adding noise and learning to denoise im-
ages, LDM operates on a pretrained autoencoder’s projection of images in some
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Fig. 5: An overview of Lego’s framework. From left to right, during embedding opti-
mization, Lego dedicates an embedding < subj > for inverting the subject Se in the
exemplar images IC and IC . This stops appearance leakage to the concept embeddings.
Each concept embedding ( <cpti/j >) is separately steered towards user defined words
(Pi/j) that correspond to the embedding’s semantic word and away from antonyms of
those words (Ni/j). After the inversion, the learned embeddings can together be applied
to different target subjects St (“Statue” and “Teddy bear”) to manifest the concept in
new scenes.

latent space. LDM enables T2I generation by conditioning the denoising network
ϵθ(.) on the encoding of text descriptions c using a text encoder τθ(.) such as
CLIP [38] or BERT [9]. To sample images using a trained latent diffusion model
ϵθ(.), we iteratively denoise a noise latent xt for t steps, using the predicted
noise ϵθ(xt, t, τθ(c)) to get x0. x0 is then mapped to the image space using some
pre-trained decoder. The LDM loss is: LLDM (θ) := Et,x0,ϵ[∥ϵ− ϵθ(xt, t, τθ(c))∥2].
Inversion in the Textual Embedding Space. Current textual inversion
methods focus on either appearance inversion of a subject [16, 27, 44, 50, 51] or
inverting a relation between subjects [24]. Given a few exemplar images of a
subject or relation, the aim is to find a text embedding <emb∗> in the output
space of ϵθ(.), such that injecting <emb∗> in any encoded text τθ(c) allows the
reconstruction of that concept in a new context defined by description c. The
embedding inversion loss is defined as:

Linversion = Et,x0,ϵ[∥ϵ− ϵθ(xt, t, τθ(c))∥2], (1)

such that: <emb∗>= arg min
<emb>

(Linversion), where <emb> is the concept embed-

ding being optimized, and is fed into the pretrained T2I model as part of the
text description c.

4.2 Method Overview

In this section, we present Lego, an inversion method for extracting person-
alized concepts (adjectives and verbs) from exemplar images. Lego augments
Textual Inversion with two modifications; Subject Separation and Context
Loss. Lego aims to invert concepts that move beyond objects’ relations, styles,
and appearances. These concepts are considered to be entangled with the subject
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of the exemplar images. For instance, The concept of “melting” is not standalone
and changes the features of the subject it is applied to, whereas in subject inver-
sion (TI [16], Custom-Diff [27], etc.), the subject’s appearance does not change
and stands alone. Similarly, in relation inversion (ReVersion [24]), the relation
defines how different subjects interact and does not change the subjects’ appear-
ance features.

4.3 Subject Separation

Appearance inversion focuses on low-level features in order to learn a single
style or subject appearance from a few sample images. For such subject-centric
inversions, a pixel level reconstruction loss (Equation 1) is often sufficient to find
an embedding that represents the subject. Inverting relations between subjects
(ReVersion) is a higher-level concept that requires more than a pixel level loss
which ReVersion addresses using a preposition prior (Section 2). Relations be-
tween subjects however, are not entangled with the subjects’ appearance, hence
ReVersion is able to detach the relation embedding from the subject embedding
by steering it away from the embedding of natural language words that describe
the subjects (e.g., while inverting the relation of Batman and Superman sitting
back to back, the relation embedding is steered away from embeddings of “Bat-
man” and “Superman”) . Our concepts however are entangled with subjects such
that the same approach as ReVersion leads to appearance leakage (see Figures
4 - left and 9) and does not allow concepts to be separated from the subjects.

In order to learn embeddings CPT representing the concept C disentangled
from the exemplar subject Se, we dedicate an additional embedding < subj >
to separately represent the subject Se. This embedding gets optimized twice us-
ing (i) IC and (ii) IC , separately. Learning <subj> from subject-only images IC
naturally enables the concept embeddings CPT to not have to learn the subject’s
appearance, while reconstructing IC using both <subj> and CPT embeddings
(see Figure 4). In other words, learning the subject embedding without concept
and using its embedding to generate the subject with concept during optimiza-
tion allows us to better perform the desired disentanglement. Our experiments
illustrate that the proposed learning setup prevents the subject-specific features
to leak into the concept embedding (see Figure 2 - B). In Figures 4 and 9 and in
the Supplementary Section 15, we show that the absence of the proposed Sub-
ject Separation leads to undesired outcomes. For instance, Figure 4 (left) shows
how not performing Subject Separation in learning the concept of melting from
Rubik’s cube images leads to the “<melted> toy bear” to have Rubik’s features
and learning the concept of closed eyes from multiple subjects in Figure 3 leads
to the appearance of those subjects leaking into new subjects. In contrast, learn-
ing an explicit embedding for the cube - Figure 4 (right) - keeps the Rubik’s
features disentangled from the concept embedding.
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4.4 Contrastive Context Guidance

Concepts of our interest (e.g., frozen in a block of ice) often require a multi-
word description. Hence in this work, we allow for learning multiple word em-
beddings per concept. More specifically, Lego enables learning multiple embed-
dings (CPT = {<cpt1>, ..., <cptn>}) for a single concept – such that combining
all n embeddings represents the concept,– unlike, TI [16] and Custom-Diff [27]
which learn concepts described by a single word embedding. Inspired by suc-
cess of contrastive losses for representation learning [24,28,36,54], we employ an
InfoNCE-based [36] loss to learn the embeddings CPT in a contrastive setting.

Learning concept embeddings in the contrastive setting however requires pos-
itive and negative embedding sets. Let Pi = {Pik} and Ni = {Nik} respectively
be the positive and negative embedding sets corresponding the concept embed-
ding < cpti >. Note that each embedding < cpti > corresponds to a semantic
word. We form the sets Pi and Ni by embedding the synonyms and antonyms,
respectively, of the semantic word corresponding to <cpti>. Please refer to Sec-
tion 11 for more detail on choosing Pi and Ni. In this manner, for the general
concept C, we obtain a set of triplets {(<cpti >,Pi,Ni)}ni=1. This triplets’ set
is then used to compute our modified InfoNCE loss, referred here as Lcontext,
which is given by,

Lcontext=−
n∑

i=1

log

|Pi|∑
k=1

e<cpti>
⊺·Pik

|Pi|∑
k=1

e<cpti>⊺·Pik+
|Ni|∑
k=1

e<cpti>⊺·Nik

. (2)

During the learning process, the context loss guides each concept embedding
< cpti > individually, towards the embeddings of the respective positive words
and away from the negative ones. Figure 5 shows an example where we want to
capture the concept of “frozen in ice” with two embeddings <cpti> and <cptj>,
one representing “frozen” and one representing “ice”. When combined together
in a sentence, they express the concept C in the exemplar images IC . In Section
5.5, we provide examples of concept inversion with and without the context loss.
Our objective of learning descriptive multi-word concepts, enabled by our context
loss, requires the embeddings to be steered towards their corresponding semantic
word, each in a different part of the text-embedding space. Furthermore, the
negative sets of words allow Lego’s embeddings to be steered away from words
that can disturb the concept inversion. By disturbing the inversion, we refer
to words that are in close distance to our concept embedding, yet associated
with a concept we do not want to represent. For instance, numbers are closely
embedded in the text embedding space. In order to accurately invert cardinality,
say number 3, we can construct a negative set of words comprised of {1, 2, 4, 5}.

4.5 Lego

Lego uses the inversion loss in Equation 1 to learn an embedding <subj∗>
that represents the subject of the exemplar images, by optimizing an embedding
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<subj>. While optimizing the concept embeddings, the weighted sum of the
inversion loss and our context loss is used to obtain the concept embeddings
<CPT ∗>. Below we show both the subject and concept inversion losses.

<subj∗> = arg min
<subj>

(Linversion),

<CPT ∗> = arg min
<cpt>

(Linversion + λ.Lcontext).
(3)

These two embeddings’ recoveries, corresponding to subject and concepts, can
be thought as two parallel processes, being optimized at the same time, acting on
the same image generator and the set of exemplar images. Such clear separation
in learning process enables us to achieve the desired disentanglement.

5 Experiments

5.1 DreamBooth and Custom Diffusion

Both DreamBooth [44] and Custom-Diff [27] pursue the same objective by tun-
ing parts of the diffusion model, while optimizing a word embedding in order
to achieve better accuracy in synthesizing personalized concepts compared to
methods like Textual Inversion that keep the model frozen. Since Custom-Diff
allows learning multiple embeddings at the same time, we carried out our ex-
periments using Custom-Diff. With the same exemplar images used in Lego, we
trained Custom-Diff to learn the embeddings of “Rubik’s cube” and “melting”
from Rubik’s IC and IC images and the concept of “cat” and “closed eyes” from
the cat images. Figure 6 shows that inverting concepts while training the network
does not allow for dissociation of concepts from subjects and leads to appear-
ance leakage. We show how Custom Diffusion’s learned embedding for “melting”,
when applied to a toy car and a toy cat, inserts the Rubik’s cube features in
those images and similarly, the learned concept for “closed eyes” from the cat
images, inserts the cat’s features into images of Batman and a doll.

Fig. 6: Custom-Diff is unable to separate the concept embedding from the subject
appearance. Learning “closed eyes” from cat images and “melted” from Rubik images
will carry the subject features when applied to new subjects (appearance leakage).
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5.2 Lego

We tested Lego’s capabilities in inverting 10 various concepts; from controlling
cardinality of subjects (3, 4, 5) to concepts that deform the subject (melting,
crumpling), to the subject performing an action (closed eyes, walking on a
rope, arms raised) and change of state and appearance of the subject (frozen
in ice and having a smiley emoji face). For each experiment, 4 example
images were used (2 with and 2 without the concept).

5.3 Results

In Figures 1 and 7, we show Lego’s results for a subset of the concepts and
provide comparisons with the latest SOTA methods for T2I generation. Should
certain results be selectively highlighted, it may skew the reader’s perception of
Lego’s effectiveness. We note that Lego can learn to authentically represent the
concept of the example images even where more recent models such as Stable
Diffusion 2.1 and DALL.E that can generate the concept, are not able to do
so faithful to the example image. Similar to TI, Lego is standalone and can be
applied to any T2I model. We will be releasing Stable Diffusion support under
Hugging Face’s Diffusers library [13]. For more examples of Lego with various
subjects, please see Figure 11 in Supplementary material.

We tested Lego’s concept inversion against natural language for 10 concepts,
generating 200 images per concept using Lego and LDM with language control.
Three concepts specified cardinality (3, 4, or 5 subjects). Participants counted
subjects in each image. Lego consistently outperformed natural language guid-
ance in producing correct subject counts (see Table 2). For the remaining seven
concepts, we performed two different studies. A Visual Question Answering
(VQA) large language model (Flan-T5 XL) [39] was used to answer questions
about 200 images generated using Lego, versus 200 images generated using nat-
ural language descriptions of each concept (2800 total images). Our experiments
showed that VQA models performed better when asked “Yes” or “No” questions
about specific concepts rather than asking more general questions such as “ What
is this image?”. For instance, we generated images of “toy bears frozen in ice”.
We then prompted the VQA model with the question: “ Is the toy bear frozen in
ice?”. Table 2 shows the number of images where the VQA model confirms the
concept is in the image. Consistent with the numerical concepts, Lego performs
better than natural language for all concepts. In Supplementary Section 11, we
give a detailed overview of the prompts used and the generated images.

While VQA suggests Lego outperforms LDM, a more comprehensive eval-
uation for generative models, especially concerning general concepts, involves
human preference metrics. To this end, we used Amazon Mechanical Turk [2]
and for each concept, paired the 200 images generated by Lego with the other
200 generated by LDM. We asked users to select the image they think best rep-
resents the concept for each pair of images. Each question was answered by 10
users (total of 14000 answers for all 7 concepts). The majority vote determined
the outcome, showing that Lego was preferred over LDM in over 70% of cases
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Fig. 7: Qualitative comparison of Lego with an LDM backbone and learned concepts
from exemplar images, compared to text-guided models such as LDM, SD 2.1, DALL.E
2 and Attend & Excite (highlighted words are the given token). Zoom in for details.

Fig. 8: This figure (left) shows Lego’s composition capability of combining different
concepts learned from different images and (right) learning more complex multi-word
embedding concepts from a single example.
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(Table 2). While we use Lego to invert concepts, in Section 9 we show that the
learned subject embedding is also able to perform similar to TI in inverting the
subject of the reference images.

Table 2: LLM metric reports the number (out of 200) of images, where Flan-T5
XL model confirms the image contains the concept. The Human metric reports the
number of images with correct subject cardinality for the numerical concepts, and the
percentage of time users preferred one method’s images compared to the other.

Concept LLM ↑ Human ↑

Lego LDM Lego LDM

3 - - 107 85
4 - - 63 18
5 - - 36 18

Frozen in ice 92 55 68.5% 31.5%
Burnt and melted 136 61 77% 23%

Closed eyes 111 75 74.5% 25.5%
Smiley Emoji Face 199 151 67.5% 32.5%

Crumpled and squeezed 147 64 60.5% 39.5%
Walking on a rope 133 4 84 % 16%

Arms raised 124 49 70% 30%

5.4 Concept Composition and Complexity

Lego’s learned concept embeddings can be combined, as demonstrated in Figure
8 (left). It seamlessly composes concepts like “closed eyes” from cat images and
“walking on a rope” from figure images. This enables creating scenes like a lion
walking on a rope with closed eyes. While we have showcased Lego’s ability with
mostly two-word-embedding concepts, the synthetic example in Figure 8 (right)
illustrates its capability to invert more complex scenarios, learning and applying
“walking on a rope with closed eyes” from a single example to the subject “lion”.

5.5 Ablation Study

We studied the effect of Subject Separation and Context Loss on inverting
three concepts; “burnt and melted”, “closed eyes” and “walking on rope”. TI re-
quires a few images of a subject or subjects in the same style (e.g., a few Monet
paintings), while ReVersion needs multi-subject images for relation inversion. For
the “burnt and melted” concept, we used both single and multi-subject reference
images to cover various settings. Our ablation study compares Lego, incorporat-
ing both Subject Separation and Context Loss, with three other combinations
that remove one or both of these steps. Note that single / multi-subject exper-
iments with neither Subject Separation nor Context Loss resemble performing
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a regular Textual Inversion [16]. Performing single / multi-subject experiments
by adding the Context Loss without Subject Separation resembles the ReVer-
sion framework [24]. Figure 9 shows the ablation results for “burnt and melted,”
highlighting the impact of Subject Separation and Context Loss for concept
inversion. Complete ablation results are shown in Supplementary Section 15.

Fig. 9: This figure shows examples of our ablation study for learning the concept
of “burnt and melted” from single subject (top row) and multi subject (bottom row)
example images and transferring it to a “Toy bear”. We synthesized 100 images for each
ablation category. You can find all 100 images for each category in the Supplementary
Section 15. Please zoom in to see the details in the images.

5.6 Example Image Size + Choice of Positive / Negative Words

In Section 8 of the supplementary, we show the effect of increasing reference
images on Lego’s performance. Our approach to selecting positive and negative
words involved choosing synonyms and antonyms of semantically meaningful
words for the concept (Figures 12 and 13), demonstrating robustness without
requiring adjustments. While studying word selection’s subjective impact on
inversion is challenging, it remains an interesting avenue to be explored

6 Conclusion

In this work, we took a first look at capabilities of T2I models in synthesizing
adjective and verb concepts by reference examples. We showed that entanglement
of such concepts with a subject and the need for using multiple word embeddings
in describing more complex concepts hinders current inversion methods. We
proposed Lego that effectively inverts such personalized concepts from as few
as 4 example images by disentangling concepts from subjects with a Subject
Separation step and further enables defining concepts with multiple embeddings
by using a Context Loss that guides each embedding towards a meaningful place
in the textual embedding space.
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