
Supplementary Materials for
“Scaling Backwards: Minimal Synthetic

Pre-training?"

This document is the supplementary materials for the paper titled “Scaling
Backwards: Minimal Synthetic Pre-training?". In Section A, we provide visual-
izations of our proposed 1p-frac. The following Section B offers a detailed de-
scription of the hyperparameters used in the experiments throughout the main
paper. Finally, Section C presents additional experimental results.

A Training data visualization

In this section, we provide visualizations of the 1p-frac and other data defined
in the main text to improve transparency.

A.1 The Effect of Perturbation Degree on Data Distributions

The following visualizations illustrate the effect of varying perturbation degrees
(∆) on the 1p-frac, with a fixed σ-factor of 3.5 and L = 1000. The perturbation
degrees explored are {0.001, 0.01, 0.05, 0.1, 0.2, 1.0}.

∆ = 0.001 was used as the noise level for the visualization shown in Figure A.
The main text reports that the pre-trained model using this setting achieved a
fine-tuning accuracy of 1.2 on CIFAR-100 and 1.9 on ImageNet-100.

Fig.A: 1p-frac for ∆ = 0.001

∆ = 0.01 was used as the noise level for the visualization shown in Figure B.
The main text reports that the pre-trained model using this setting achieved a
fine-tuning accuracy of 19.8 on CIFAR-100 and 61.8 on ImageNet-100.



2

Fig. B: 1p-frac data for ∆ = 0.01

∆ = 0.05 was used as the noise level for the visualization shown in Figure C.
The main text reports that the pre-trained model using this setting achieved a
fine-tuning accuracy of 83.0 on CIFAR-100 and 88.2 on ImageNet-100.

Fig. C: 1p-frac data for ∆ = 0.05

∆ = 0.1 was used as the noise level for the visualization shown in Figure D.
The main text reports that the pre-trained model using this setting achieved a
fine-tuning accuracy of 84.2 on CIFAR-100 and 89.0 on ImageNet-100.
∆ = 0.2 was used as the noise level for the visualization shown in Figure E.
The main text reports that the pre-trained model using this setting achieved a
fine-tuning accuracy of 83.4 on CIFAR-100 and 88.5 on ImageNet-100.
∆ = 1.0 was used as the noise level for the visualization shown in Figure F.
The main text reports that the pre-trained model using this setting achieved a
fine-tuning accuracy of 82.6 on CIFAR-100 and 88.1 on ImageNet-100.



Title Suppressed Due to Excessive Length 3

Fig.D: 1p-frac data for ∆ = 0.1

Fig. E: 1p-frac data for ∆ = 0.2

Fig. F: 1p-frac data for ∆ = 1.0



4

A.2 The Effect of σ-factor on Image Distributions

The following visualizations illustrate the effect of varying σ-factor on the 1p-
frac model, with a fixed ∆ of 0.1 and L = 1000. The σ-factors explored are
{4.0, 4.5, 4.0, 6.0}.
σ-factor = 4.0 was used for the 1p-frac data visualized in Figure G. The main
text reports that the pre-trained model using this 1p-frac data for σ-factor = 4.0
achieved a fine-tuning accuracy of 82.8 on CIFAR-100 and 87.9 on ImageNet-100.

Fig.G: 1p-frac data for σ-factor = 4.0

σ-factor = 4.5 was used for the 1p-frac data visualized in Figure H. The main
text reports that the pre-trained model using 1p-frac data for σ-factor = 4.5
achieved a fine-tuning accuracy of 81.9 on CIFAR-100 and 86.9 on ImageNet-
100.

Fig.H: 1p-frac data for σ-factor = 4.5



Title Suppressed Due to Excessive Length 5

σ-factor = 5.0 was used for the 1p-frac data visualized in Figure I. The main
text reports that the pre-trained model using this 1p-frac data for σ-factor = 5.0
achieved a fine-tuning accuracy of 82.2 on CIFAR-100 and 87.1 on ImageNet-100.

Fig. I: 1p-frac data for σ-factor = 5.0

σ-factor = 6.0 was used for the 1p-frac data visualized in Figure J. The main
text reports that the pre-trained model using this 1p-frac data for σ-factor = 6.0
achieved a fine-tuning accuracy of 81.3 on CIFAR-100 and 86.3 on ImageNet-100.

Fig. J: 1p-frac data for σ-factor = 6.0



6

A.3 Real image with shape augmenatation
For the single real image defined in Figure 5, we applied shape augmentations
such as Affine Transformation (Affine T), Elastic Transformation (Elastic T),
and Polynomial Transformation (Polynomial T), as shown in Figure 4 in the
main text, to perform 1p-frac-style pre-training using a single real image.

In this section, we focus on visualizing the Canny edge image of Real Img 1
from Figure 5, which yielded the highest fine-tuning accuracy.
Affine T applied to Real Img 1, generates the data shown in Figure K. We used
the module defined in PyTorch [2] for transformation. Table B reports that the
pre-trained model achieved a fine-tuning accuracy of 82.8 on CIFAR-100.

Fig.K: Data shape augmented by Affine T

Elastic T applied to Real Img 1, generates the data shown in Figure L. We
used the module defined in PyTorch [2] for transformation. Table B reports that
the pre-trained model achieved a fine-tuning accuracy of 0.8 on CIFAR-100.

Fig. L: Data shape augmented by Elastic T



Title Suppressed Due to Excessive Length 7

Polynomial T applied to Real Img 1, generates the data shown in Figure M.
We used the module defined in scikit-image [?] for transformation. Table B
reports that the pre-trained model achieved a fine-tuning accuracy of 81.9 on
CIFAR-100.

Fig.M: Data shape augmented by Polynomial T

A.4 Visualization for Other Locally perturbed Data

Here, we visualize the four data compared in Tables 3 and 4 of the main text,
focusing on the case where L = 1000.
RCDB’s locally perturbed data is visualized in Figure N. The main text reports
that the pre-trained model using this setting achieved a fine-tuning accuracy of
82.5 on CIFAR-100 and 87.9 on ImageNet-100.

Fig.N: Locally perturbed RCDB



8

VA’s locally perturbed data is visualized in Figure O. The main text reports
that the pre-trained model using this Locally perturbed VA data achieved a
fine-tuning accuracy of 82.6 on CIFAR-100 and 88.0 on ImageNet-100.

Fig.O: Locally perturbed VA

Gaussian dist.’s locally perturbed data is visualized in Figure P. For the Gaus-
sian distribution image, the following steps were performed to generate the im-
age: (1) Sample 100k points from a two-dimensional normal distribution with
mean 0 and standard deviation 44, which will be used for generating the fractal
image. (2) When rendering the points onto the image, instead of using points,
draw random 3×3 patches on the image, similar to the fractal image. (3) Repeat
this operation for the number of perturbations L. The main text reports that
the pre-trained model using this setting achieved a fine-tuning accuracy of 1.1
on CIFAR-100 and 5.7 on ImageNet-100.

Fig. P: Locally perturbed Gaussian dist.



Title Suppressed Due to Excessive Length 9

Uniform dist.’s locally perturbed data is visualized in Figure Q. To generate
the Uniform distribution image, the following steps were performed: (1) Sample
100k points from a two-dimensional uniform distribution with a range equal to
the image size, which will be used for generating the fractal image. (2) When
rendering the points onto the image, instead of using points, draw random 3× 3
patches on the image, similar to the fractal image. (3) Repeat this operation
for the number of perturbations L. The main text reports that the pre-trained
model using this setting achieved a fine-tuning accuracy of 2.0 on CIFAR-100
and 71.1 on ImageNet-100.

Fig.Q: Locally perturbed Uniform dist.



10

Table A: Hyper-parameters of pre-training and fine-tuning in 1p-frac experiments.
The basic configuration is essentially the same as that used by Nakamura et al. [1].

Training Step Pre-training Fine-tuning

Model ViT-T ViT-B ViT-T/B
Sampling points L 1 21k 21k Full Full

Epochs 80000 15238 15238 300 1000
Batch Size 256 1024 1024 1024 768
Optimizer AdamW AdamW AdamW AdamW SGD
LR 1.0e-3 5.0e-4∗ 5.0e-4∗ 1.0e-3 1.0e-2
Weight Decay 0.05 0.05 0.05 0.05 1.0e-4
LR Scheduler Cosine Cosine Cosine Cosine Cosine
Warmup Steps 15.238k 15.238k 15.238k 5 (epochs) 10 (epochs)
Resolution 224 224 224 224 224
Label Smoothing 0.1 0.1 0.1 0.1 0.1
Drop Path 0.1 0.1 0.1 0.1 0.1
Rand Augment (9,0.5) (9,0.5) (9,0.5) (9,0.5) (9,0.5)
Mixup 0.8 0.8 0.8 0.8 0.8
Cutmix 1.0 1.0 1.0 1.0 1.0
Erasing 0.25 0.25 0.25 0.25 0.25

B Hyper-parameters in our experiments

Table A shows the parameters used when training 1p-frac. The basic parameter
settings were kept consistent with those used by Nakamura et al. [1]. The number
of epochs used in training was adjusted to ensure that the number of iterations
(i.e., the number of back-propagation steps) was equivalent across experiments

C Additional Experiments

C.1 Pre-training with a single real image and shape augmentation

Table B presents the fine-tuning accuracy on CIFAR-100 when using data gen-
erated by applying shape augmentations to the Real/Canny images as shown
in Figure 5 of the main text. Here, we use common geometric transformations,
Affine T, Elastic T, and Polynomial T, as described in Section A.3. Across all
images, Affine T tends to yield the highest accuracy. When using Elastic T, the
pre-training results are mixed, with some cases showing moderate success and
others not performing well. This suggests that, in pre-training, discriminating
global shape differences, as seen in Affine T and Polynomial T, is more important
than distinguishing local shape variations, which are characteristic of Elastic T.

C.2 Performance comparison of pre-training models in object
detection / instance segmentation

Table C compares the performance of fine-tuning each pre-trained model to
object detection and instance segmentation using the COCO dataset [3]. In the



Title Suppressed Due to Excessive Length 11

Table B: Relationship between fine-tuning accuracy and pre-training effect from a
single real image.

Transformation Real Img 1 Real Img 2 Real Img 3 Real Img 4 Real Img 5

Affine T 81.8 / 82.8 81.9 / 82.5 81.5 / 82.3 81.7 / 81.5 81.2 / 82.1
Elastic T 1.9 / 0.8 78.8 / 68.3 55.7 / 18.2 73.5 / 20.0 32.8 / 20.5

Polynomial T 81.8 / 81.9 81.6 / 82.1 81.0 / 81.6 79.7 / 81.5 81.2 / 81.3

Table C: Object detection and instance segmentation performance

Pre-training COCO Det COCO Inst Seg
AP50 / AP / AP75 AP50 / AP / AP75

Scratch 63.7 / 42.2 / 46.1 60.7 / 38.5 / 41.3

ImageNet-1k 69.2 / 48.2 / 53.0 66.6 / 43.1 / 46.5
ImageNet-21k 70.7 / 48.8 / 53.2 67.7 / 43.6 / 47.0

2D-OFDB-21k [35] 67.6 / 46.4 / 51.0 64.6 / 41.6 / 44.7

1p-frac 68.1 / 47.3 / 51.9 65.3 / 42.0 / 45.2

result, our proposed 1p-frac achieves performance comparable to ImageNet. Ad-
ditionally, it outperforms OFDB, which includes broader distribution of shapes,
indicating that our findings hold on tasks beyond classification.

References

1. Nakamura, R., Kataoka, H., Takashima, S., Noriega, E.J.M., Yokota, R., Inoue, N.:
Pre-training vision transformers with very limited synthesized images. In: Proceed-
ings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV).
pp. 20303–20312. IEEE (2023)

2. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: Advances
in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates,
Inc. (2019), http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf

3. Tsung-Yi Lin, Michael Maire, S.B.L.B.R.G.J.H.P.P.D.R.C.L.Z.P.D.: Microsoft
COCO: Common Objects in Context. In: European Conference on Computer Vision
(ECCV). pp. 740–755 (2014)

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	 blackSupplementary Materials for ``Scaling Backwards: Minimal Synthetic Pre-training?" 

