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Abstract. Pre-training and transfer learning are an important build-
ing block of current computer vision systems. While pre-training is usu-
ally performed on large real-world image datasets, in this paper we ask
whether this is truly necessary. To this end, we search for a minimal,
purely synthetic pre-training dataset that allows us to achieve perfor-
mance similar to the 1 million images of ImageNet-1k. We construct
such a dataset from a single fractal with perturbations. With this, we
contribute three main findings. (i) We show that pre-training is effective
even with minimal synthetic images, with performance on par with large-
scale pre-training datasets like ImageNet-1k for full fine-tuning. (ii) We
investigate the single parameter with which we construct artificial cat-
egories for our dataset. We find that while the shape differences can be
indistinguishable to humans, they are crucial for obtaining strong per-
formances. (iii) Finally, we investigate the minimal requirements for suc-
cessful pre-training. Surprisingly, we find that a substantial reduction of
synthetic images from 1k to 1 can even lead to an increase in pre-training
performance, a motivation to further investigate “scaling backwards”. Fi-
nally, we extend our method from synthetic images to real images to
see if a single real image can show similar pre-training effect through
shape augmentation. We find that the use of grayscale images and affine
transformations allows even real images to “scale backwards”. The code
is available at https://github.com/SUPER-TADORY/1p-frac.

Keywords: Synthetic pre-training · Limited data · Vision transformers

1 Introduction

In image recognition, pre-training allows discovering fundamental visual repre-
sentations for downstream task applications. Pre-training enhances the perfor-
mance of visual tasks and enables the use of small-scale task-specific datasets.
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Fig. 1: Comparison of ImageNet-1k, FractalDB and 1p-frac (ours). 1p-frac consists
of only a single fractal for pre-training. With 1p-frac, neural networks learn to clas-
sify perturbations applied to the fractal. In our study “single” means a very narrow
distribution over parameters that leads to images that are roughly equivalent from
a human visual perspective. While the shape differences of perturbed images can be
indistinguishable to humans, models pre-trained on 1p-frac achieve comparable per-
formance with those pre-trained on ImageNet-1k or FractalDB.

Recently, pre-training has been used as a key technology to construct founda-
tion models trained on massive datasets with over hundreds of millions of images.
In some cases, a foundation model enables adaptation of zero-shot recognition
without the need for additional data.

Pre-training is often interpreted as discovering universal structures in large-
scale datasets that later facilitate adaptation to down-stream tasks. In this paper,
we challenge this interpretation by providing a minimal pre-training dataset,
generated from a single fractal, that achieves similar downstream performance.
At the heart of this investigation is the question of whether pre-training might
simply be a better weight initialization rather than the discovery of useful visual
concepts. If true, performing expensive pre-training with hundreds of millions
of images might not be necessary. This additionally frees pre-training from
licensing or ethical issues.

Since the rise of deep neural networks, the ImageNet dataset [16] has been
one of the most commonly used pre-training datasets. Originally, pre-training has
been conducted through supervised learning (SL) with human-provided teacher
labels. However, it has become clear that pre-training can also be achieved with-
out human-provided labels, through self-supervised learning (SSL) [7, 9–12, 17,
21–23,37,38,56].

In this context, Asano et al. [3] successfully acquired visual representations
while dramatically reducing the number of required images. They concluded
that SSL can yield sufficient image representations even with a single training
example, but only for earlier layers of a recognition model. However, it is unclear
how these findings translate to modern architectures and representation learning
methods. Based on this, vision transformers (ViT) [18] have been pre-trained
with only 2,040 real images [52] through an instance discrimination learning
signal.

More recently, it has been shown that basic visual representations can be
acquired without using real images and human-provided labels. The trend of
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artificially generated labeled images is on the rise for synthetic pre-training [5,
28, 30, 46]. Formula-driven supervised learning (FDSL) generates images from
generative formulas, and labels from their parameters [30]. Under the FDSL
framework, one can adapt the synthetic pre-training image dataset by altering
formulas [24, 27, 29, 44]. While a million-order image dataset was constructed in
FractalDB [30], our findings suggest that synthetic pre-training can be reduced
to significantly fewer fractal images.

Motivated by these findings, we believe it is possible to find the key essence of
pre-training for image recognition. ViT training can be done with as few as 1,000
artificially generated images [35]. Here, we believe that equivalent performance
can be achieved with even fewer images. This consideration is undoubtedly im-
portant as we approach a minimal synthetic pre-training dataset in image recog-
nition, which goes against the trend of foundation models toward increasing the
dataset scale.

In the present paper, we thus introduce a minimal synthetic dataset, namely
1-parameter Fractal as Data (1p-frac), which consists of a single fractal as
shown in Figure 1, as well as a loss function for pre-training with it. Our contri-
butions regarding minimal synthetic pre-training are as follows:
Ordinal minimalism: We introduce the locally perturbed cross entropy (LPCE)
loss for pre-training with a single fractal. It utilizes perturbed fractal images for
training, where neural networks learn to classify small perturbations. In exper-
iments, we demonstrate that pre-training can be performed even with a single
fractal. The pre-training effect of 1p-frac is comparable to that of a million-scale
labeled image dataset.
Distributional minimalism: We introduce the locally integrated empirical
(LIEP) distribution p∆ that has a controllable perturbation degree ∆ to investi-
gate the minimal support of the probability density distribution of synthesized
images. We observed positive pre-training effects even with a small ∆ produc-
ing shape differences that cannot be distinguished by humans. We also show
that if ∆ is too small the visual pre-training collapses. From these observations,
we establish the general bounds for generating good pre-training images from a
mathematical formula.

Table 1: Scaling backwards in
synthetic pre-training (Accuracies
on CIFAR-100, Real: ImageNet,
Synth: Fractal images).

Type\#Img 1 1k 1M

Real N/A 76.9 85.5
Synth 84.2 84.0 81.6

Instance minimalism: Based on the exper-
imental results, the synthetic images should
not simply contain complex shapes. The use
of recursive image patterns, similar to objects
in nature, should be applied in visual pre-
training. Experiments with augmented cat-
egories from a real image have shown that
good pre-training effects can be achieved by
performing “affine transformations on edge-
emphasized objects in grayscale”. These operations are found to be almost syn-
onymous with the configuration of the proposed 1p-frac.

In summary, we significantly reduce the size of the pre-training dataset from
1M images (fractal database (FractalDB) [30]) or 1k images (one-instance fractal
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database (OFDB) [35]) down to 1 and show that this even improves the pre-
training effect (Table 1), which motivates “scaling backwards”.

2 Related Work

The present study focuses primarily on finding the minimal pre-training dataset
with artificially generated images.

Pre-training in image recognition. Pre-training in image recognition has demon-
strated significant success with vast amounts of labeled images. Pre-training
helps neural networks to acquire fundamental visual representations which are
essential for improving the performance of diverse downstream tasks in im-
age recognition. In particular, researchers have used larger-scale image datasets
for supervised learning (SL), starting from million-scale datasets (e.g., Ima-
geNet [16], Places [59]). More recently, the largest datasets used are reaching
billion-scale (e.g., IG-3.5B [34], JFT-300M/3B/4B [15,42,53]).

Pre-training can be also achieved without any human intervention. One of the
most effective approaches is self-supervised learning (SSL [7, 9–12, 17, 21–23, 37,
38, 56]), which has been developed in order to alleviate the manual annotations
on large-amount of images. SSL has been studied as an expected alternative to
supervised pre-training and has sometimes been shown to surpass supervised
pre-training.

Despite the development of supervised and self-supervised pre-training, the
number of real images used in visual pre-training continues to increase. Ex-
ploratory research questions such as “what is a minimal synthetic pre-training
dataset?” have received less attention. However, they could give us more insights
on what is learned during pre-training and how it could be improved.

Pre-training with limited data. In order to address ethical issues such as pri-
vacy and fairness associated with real images, a pre-training with a very limited
number of real images and synthetic pre-training without any real images have
been on the rise. In this context, synthetic pre-training with copy-and-paste
learning [19,39], domain randomization from 3D graphics [43,46], learning from
primitive patterns [4, 5, 41], and dataset distillation [8, 50, 57] have been recog-
nized as promising approaches to acquiring visual representations. More recently,
a sophisticated approach, formula-driven supervised learning (FDSL) [28,30], en-
abled automatic construction of a labeled image dataset without any real images
or human annotations. FDSL can generate images and their corresponding la-
bels using a mathematical formula. Along these lines, One-instance FractalDB
(OFDB) has successfully pre-trained a ViT using only 1,000 synthetic images
generated from a mathematical formula, without using real images [35]. More-
over, several studies have been reported in the context of extremely limited
data [3,49,52]. In particular, Asano et al. have shown that learning visual repre-
sentations is possible using a single image for self-supervised learning. Venkatara-
manan et al. achieved a comparable method to ImageNet pre-training with only
10 walking videos and their cropped images.
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By analyzing the acquisition of visual representations through the use of min-
imal synthetic pre-training datasets, we believe that the FDSL framework will be
key to discovering the essence of pre-training mechanisms in image recognition.

3 Scaling Backwards with a Single Fractal

This section presents the proposed methodology to explore the minimal require-
ments for successful pre-training by utilizing purely synthetic images of fractals.
Specifically, we introduce the 1 parameter Fractal as Data (1p-frac), which
consists of only a single fractal, with a method to pre-train neural networks on
it. Our key idea is to introduce the locally integrated empirical (LIEP) distribu-
tion p∆ over perturbed fractal images, enabling pre-training even with a single
fractal image. Since the LIEP distribution is designed so that it converges to
the empirical distribution pdata(x) = δ(x− I) of a single image I when the per-
turbation degree ∆ ∈ R≥0 goes to zero, we can narrow down the support of
the distribution by decreasing ∆ as shown in Figure 2a. Below, we begin with
a preliminary for defining the empirical distributions of two fractal databases,
namely FractalDB [30] and OFDB [35]. We then introduce 1p-frac with the
LIEP distribution.

3.1 Preliminary

FractalDB [30]. Kataoka et al. have introduced a method for effectively pre-
training neural networks with FractalDB, a set of fractal images generated by
the iterated function systems (IFSs). Specifically, FractalDB F consists of one
million synthesized images: F = {(Ωc, {Ici }

M−1
i=0 )}C−1

c=0 , where Ωc is an IFS, Ici is
a fractal image generated by Ωc, C = 1,000 is the number of fractal categories,
and M = 1,000 is the number of images per category. Each IFS characterizes
each fractal category c and is defined as follows:

Ωc = {R2;w1, w2, . . . , wNc
; p1, p2, . . . , pNc

}, (1)

where wj : R2 → R2 is a 2D affine transformation given by

wj (v) =

[
aj bj
cj dj

]
v +

[
ej
fj

]
(v ∈ R2), (2)

and pj is a probability mass distribution. Each fractal image Ici renders a fractal
F = {vt}Tt=0 ⊂ R2 into a 2D image, where points vt are determined by a
recurrence relation that applies affine transformations as vt+1 = wσt(vt) for
t = 0, 1, 2, · · · , T − 1. Here, the initial point is set as v0 = (0, 0)⊤, and the index
σt is sampled at each t independently from the probability mass distribution
p(σt = j) = pj . Pre-training with FractalDB utilizes the cross-entropy loss
function:

L = −Ex,y∼pdata [log pθ(y|x)], (3)
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Fig. 2: Scaling backwards from many images to a single synthetic image. (a) Empirical
distribution pdata. Colors indicate classes. With a single image, the distribution is
given by a single Dirac’s delta function. (b) LIEP distribution p∆. The support of
the distribution narrows as the degree of perturbation ∆ decreases. (c) σ-factor for
investigating fractal shapes. A small σ produces complex fractals.

where pθ is the category distribution predicted by a neural network and θ is a
set of learnable parameters. The joint empirical distribution pdata is defined over
the dataset as follows:

pdata(x, y;F) =
1

MC

M−1∑
i=0

C−1∑
c=0

δ(x− Ici )δ(y − c) (4)

where δ is the Dirac’s delta function. Models pre-trained on this dataset perform
comparable to those pre-trained on real-world image datasets, such as ImageNet-
1k and Places365, in some downstream tasks.
OFDB [35]. This dataset consists of 1,000 fractal images. Specifically, OFDB
FOF involves only one representative image per category, i.e., FOF = {Ωc, Ic}C−1

c=0 .
Therefore, the joint empirical distribution reduces to

pdata(x, y;FOF) =
1

C

C−1∑
c=0

δ(x− Ic)δ(y − c). (5)

Models pre-trained on this dataset perform comparable to or even better than
those pre-trained on FractalDB. This work has shown that there exists a small
but essential set of images for visual pre-training. However, reducing the number
of fractals C to less than 1,000 degrades the performance.

3.2 Pre-training with a Single Fractal

Scaling backwards. To further facilitate the analysis of what images are min-
imally required for successful visual pre-training, we introduce 1p-frac, which
ultimately reduces the number of IFSs and images to one each as FOP = (Ω, I).
With this dataset, the empirical distribution is given by

pdata(x, y;FOP) = δ(x− I)δ(y). (6)
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However, we notice that with this distribution, training neural networks using
cross-entropy loss is not straightforward because pθ(y = 0|x) ≡ 1 (∀x) gives a
trivial solution to the loss minimization problem. To address this, we introduce
locally perturbed cross entropy (LPCE) loss L∆, a variant of the cross entropy
loss defined with the LIEP distribution.
Definition 1. Let Iϵ ∈ X be a perturbed image, where X is a set of images,
ϵ ∈ Rd is a small perturbation with d ∈ N>0 and I0 = I is the original image.
We define the LIEP distribution by

p∆(x, y) =
1

|R∆|

∫
R∆

δ(x− Iϵ)δ(y − ϵ)dϵ (7)

where R∆ ⊂ Rd is a compact set containing the origin and |R∆| is its volume
with order O(|∆|d).
Definition 2. We define the LPCE loss by

L∆ = −Ex,y∼p∆
[log pθ(y|x)] , (8)

where p∆ is the LIEP distribution.
If R∆ is a small hypercube or hypersphere, it is straightforward to see that
p∆ approaches to the empirical distribution of Eq. (6) when ∆ goes to zero.
Therefore, this loss allows us to analyze visual pre-training effects by narrowing
the support of the distribution around a single image.

With 1p-frac, we apply perturbation to the affine transformations. As such,
the perturbation ϵ is in R6∗j . A perturbed image Iϵ is obtained by the noisy
affine transformations:

wj (v; ϵj) =

([
aj bj ej
cj dj fj

]
+ ϵj

)[
v
1

]
(9)

where ϵj ∈ R∆ = [−∆/2, ∆/2]6∗j ⊂ R6∗j is a hypercube with a side length
∆, and |R∆| = ∆6∗j . Note that the numerical integration of Eq. (7) is used in
practice, which is an approximation obtained by uniformly sampling L points in
R∆, where we set L = 1,000 by default.
Visualization. Figure 2b shows examples of perturbed images to compute the
LPCE loss. While most of shape differences are indistinguishable to humans,
a neural network learns to distinguish the perturbations applied to the single
image by minimizing the LPCE loss.
Complexity of Ω. We use the σ-factor proposed by Anderson et al. [1] to
evaluate the complexity of IFSs. As shown in Figure 2c, small values of σ produce
complex fractal shapes.

4 Experiments

Experimental setup. What is minimal visual pre-training, and what properties
of images lend themselves to reducing their count? In order to clarify these
questions, we conduct experiments following these steps:
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– Exploration study (Tables 2-4): We verify whether a single fractal is suf-
ficient for pre-training. Moreover, we compare the extent to which the shapes
used in pre-training can be simplified, using object contours, Gaussian, and
uniform distributions.

– Hyperparameter study (Tables 5-7): We investigate the effects of three
hyperparameters ∆, σ and L.

– Scaling study (Table 8): We compare 1p-frac with other large-scale
datasets in terms of fine-tuning accuracy on ImageNet-1k.

– Analysis and discussion (Tables 9-12): We discuss data augmentation,
computational cost for synthesizing images, and pre-training using a single
real-world image.

– Applications (Tables 13 and 14): We conduct comparisons in various
fine-tuning datasets.

Implementation details. In order to verify the effects of pre-training, we mea-
sure the accuracy of downstream tasks through fine-tuning. We use ViT [18] for
all experiments. Specifically, we employ ViT-Tiny (ViT-T) in the the exploration
and hyperparameter studies, and employ ViT-Base (ViT-B) for the scaling study.
The pre-training parameters and data augmentation methods for pre-training
and fine-tuning follow conventional methods in OFDB. In OFDB, data augmen-
tation is based on DeiT. For exploration studies, CIFAR-100 (C100) [32] and/or
ImageNet-100 (IN100) [40] are used as fine-tuning datasets. In the comparisons,
we assign seven representative datasets used in OFDB paper, namely C10/C100,
Cars [31], Flowers [36], Pascal VOC 2012 (VOC12) [20], Places-30 (P30) [59],
IN100. See supplementary material for more detailed experimental settings.

4.1 Exploration Study

Pre-training with 1p-frac. Table 2 compares 1p-frac with FracdalDB (1M
images, 1k categories) and OFDB (1k images, 1k categories). As can be seen, the
pre-training effect of 1p-frac is comparable to that of FractalDB and OFDB.
The number of fractal categories is significantly reduced from C = 1,000 to only
1. This shows the effectiveness and efficiency of 1p-frac and the LPCE loss.
Comparison with SOTA FDSL datasets. Table 3 compares 1p-frac with
two SOTA FDSL datasets: (1) Radial Contour Database (RCDB) [28], which
consists of 1 million images of synthetic polygons, and (2) Visual Atoms (VA) [45],
which consists of 1 million images of parameterized wave functions. The “1K”
counterparts in the table reduce the number of images per category to one. We
also applied the LPCE loss to these two datasets by applying perturbations to
the radios of a polygon or wave. As can be seen, 1p-frac performs the best when
a single image is used for pre-training and outperforms the 1K FDSL datasets.
Pre-training with a noisy image. To validate the necessity of a complex
shape when pre-training with a single image, we applied the LPCE loss to two
noisy images: an image of Gaussian noise and an image of uniform noise. Since
these two noise images are generated by determining the parameters of the para-
metric distributions, Gaussian and uniform, the LPCE loss can be computed by
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Table 2: Comparison
of 1p-frac with Frac-
talDB [30] and OFDB [35].
⋄ indicates the use of LPCE
loss. We report top-1 accu-
racies (%).

Method #Img C100 IN100

Scratch - 64.2 74.9
FractalDB 1M 81.6 88.5
OFDB 1k 84.0 88.6
1p-frac⋄ 1 84.2 89.0

Table 3: Comparison with
SOTA FDSL datasets. ⋄ in-
dicates the use of LPCE
loss.

Method #Img C100 IN100

RCDB 1M 81.6 88.5
RCDB 1K 80.4 87.5
RCDB⋄ 1 82.5 87.9

VA 1M 84.9 90.3
VA 1K 82.1 88.5
VA⋄ 1 82.6 88.0

1p-frac⋄ 1 84.2 89.0

Table 4: Comparison
with pre-training with a
single noise image.

Method C100 IN100

Gaussian⋄ 1.1 5.7
Uniform⋄ 2.0 71.1
1p-frac⋄ 84.2 89.0

Table 5: Effects of pertur-
bation degree ∆ (σ = 3.5).

∆ C100 IN100

0.001 1.2 1.9
0.01 19.9 61.8
0.05 83.0 88.2
0.1 84.2 89.0
0.2 83.4 88.5
1.0 82.6 88.1

Table 6: Effects of σ.
(∆ = 0.1).

σ C100 IN100

6.0 81.3 86.3
5.0 82.2 87.1
4.5 81.9 86.9
3.5 84.2 89.0
4.0 82.8 87.9

Table 7: Effects of number
of sampling points L for nu-
merical integration.

L C100 IN100

16 78.7 85.3
64 82.3 88.0
512 82.4 88.0
1000 84.2 89.0

giving small perturbations to the parameters. Table 4 shows these images and
fine-tuning results. For example, here the ϵ is added to the mean vector and
covariance matrix of the Gaussian distribution. The results revealed that noise
images fail in visual pre-training, performing worse than training from scratch.
This suggests that acquiring fundamental visual representations through pre-
training requires an image of a certain structured object, such as a fractal.

4.2 Hyperparameter Study

Perturbation degree. Table 5 shows the results obtained by different pertur-
bation degrees ∆ for the LIEP distribution. The results indicate that setting
the value to 0.1 yields the highest performance. Interestingly, the performance
significantly improved when ∆ was increased from 0.01 to 0.05. This suggests
that the support of the empirical distribution must have a certain size to obtain
positive pre-training effects.
σ-factor. Table 6 investigates the effects of the σ-factor, which measures the
complexity of fractal shapes. As can be seen, the most complex shape yields the
highest performance. It is worth noting that, even with a fractal of σ = 6.0,
which looks like Gaussian noise, we observed positive pre-training effects. This
suggests that the shapes obtained from IFS are crucial for pre-training.
Numerical integration. Tables 7 reduces the number of sampling points L
of the numerical integration when approximately computing loss with Eq. (7).
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Table 8: Comparison of pre-training datasets
on ImageNet-1k fine-tuning. Fine-tuning accu-
racies calculated by using ViT-Base (B) are
listed in the table. 21k indicates the number
of categories in each pre-training dataset.

Pre-training #Img Type ViT-B

Scratch – – 79.8
ImageNet-21k 14M SL 81.8
FractalDB-21k 21M FDSL 81.8
ExFractalDB-21k 21M FDSL 82.7
RCDB-21k 21M FDSL 82.4
VA-21k 21M FDSL 82.7
OFDB-21k 21k FDSL 82.2
3D-OFDB-21k 21k FDSL 82.7
1p-frac (ours) 1 FDSL 82.1

Table 9: Ablation study on data
augmentation methods. The DeiT
augmentation [47] is used as a
baseline.

Method C100

Baseline 84.2

w/o Random Aug. [14] 83.4
w/o Random Crop 80.1
w/o Rand Aspect 83.6
w/o Rand Erasing [58] 84.0
w/o Mixup [55] 83.6
w/o Cutmix [51] 83.3
w/o Mixup/Cutmix 80.4
w/o Flipping 84.3
w/o Color Jittering 84.2

We see that larger numbers result in high performance. Interestingly, even with
L = 16, the pre-training effect was positive (better than training from scratch).

4.3 Scaling Study

ImageNet-1k fine-tuning (Table 8). While this work discusses minimal re-
quirements for visual pre-training, increasing the approximation precision of the
numerical integration could further improve the performance and benefit train-
ing of large models. In Table 8, we applied the LPCE loss with L = 21,000 to the
ViT-B model and compare fine-tuning accuracy on ImageNet-1k. Surprisingly,
and despite using a single fractal as data, our ViT-B pre-trained on 1p-frac
outperforms pre-training on ImageNet-21k. This shows the strength of our ap-
proach in particular because we simply keep the same fine-tuning protocols as
used for the original Imagenet-21k to ImageNet-1k transfer proposed in [18],
putting us at a potential disadvantage.

4.4 Analysis and Discussion

Relationship with data augmentation (Table 9). We consider that the vari-
ation in image patterns also depends on data augmentation. While traditional
methods primarily rely on the data augmentation techniques described in the
DeiT paper [47], we investigated which data augmentation methods contribute
significantly by excluding one or two techniques from the base data augmentation
methods and observing the changes in fine-tuning accuracy on C100 dataset. The
experimental results in Table 9 reveal that excluding Random Cropping (Ran-
domCrop) significantly deteriorates accuracy, suggesting that omitting parts of
the image region and causing partial loss facilitates the acquisition of the ability
to focus on any part without relying on grasping the overall shape, greatly re-
ducing the pre-training effect. Furthermore, when both Mixup and Cutmix are
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Table 10: Dataset construction
time (hours). FractalDB (1M im-
ages), OFDB (1k images) and
1p-frac (1k perturbations for one
image) are compared. The process-
ing time is shown separately for
fractal category search (Search),
image rendering (Render), and to-
tal time (Total).

Dataset Search Render Total

FractalDB 2.37 16.86 19.23
OFDB 2.37 0.41 2.78
1p-frac 0.0022 0.036 0.0382

Fig. 3: Linear probing following the experi-
ments from [3]. We verified the performance
with {1, 2, 3, 4, 6} layers in the ViT-Tiny model
on C100 dataset. Here, 2 and 4 show the use of
up to 1–2 and 1–4 layers.

excluded, a degradation in accuracy is observed, indicating that mixing images
and categories enables better feature recognition.
Dataset construction times (Table 10). We calculated the processing times
in fractal category search and image rendering. By comparing to the conventional
approaches, our 1p-frac recorded much faster category search (0.0022 hours
nearly equals to 8 seconds) and image rendering (0.036 hours nearly equals to
129 seconds). 1p-frac requires only one category with a parameter set. This
very simple procedure leads to efficiently construct a minimum requirement for
pre-training in image recognition.
Linear probing (Figure 3). To compare supervised ImageNet-1k pre-training
with our 1p-frac pre-training in the context of early layer visual representations,
we executed a linear probing experiment on the C100 dataset. In the ViT-T
model with {1, 2, 3} layers, the 1p-frac pre-trained model outperformed the
model pre-trained on ImageNet-1k. This demonstrates the superior quality of
early, low-level representations learned from our dataset compared to ImageNet.
In effect, layers up to layer 3 in ViT-T can be sufficiently pre-trained and frozen
using our 1p-frac.
Pre-training with a single real image and shape augmentation.

Original image Affine T Elastic T Polynomial T

Fig. 4: Shape augmentation with three geometry
transformations from a single real image.

It was found that pre-
training effects comparable to
a dataset of one million real-
world images can be achieved
with 1p-frac, but is it pos-
sible to perform pre-training
similarly with a real image? In
this section, we verify whether
visual features can be acquired through pre-training using a single real image
(each image in Figure 5) with the LPCE loss using image representations simi-
lar to FDSL (Canny [6] images) and geometric transformations for perturbation
({affine, elastic, polynomial} transformations in Figure 4). The results of pre-
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Real Img 1 Real Img 2 Real Img 3 Real Img 4 Real Img 5

Fig. 5: The five different images used in the pre-training with a single real image and
shape augmentation.

Table 11: Comparison of pre-training
effect between RGB and Canny images
when shape augmentation is applied. The
shape augmentation uses affine transfor-
mations.

Image Mean Accuracy

RGB image 81.6
Canny image 82.2

Table 12: Comparison of pre-training ef-
fects of affine, elastic, and polynomial im-
age transformations. Real Img type with
Canny applied to the images.

Transformation Mean Accuracy

Affine trans. 81.9
Elastic trans. 37.0

Polynomial trans. 81.3

training effects with L = 1, 000 are shown in Tables 11 and 12. Note that the
results in these tables represent the average score on C100 over the five real
images in Figure 5. See the supplementary material for results for each of im-
age. According to the results, we find that contour-emphasized Canny images
omitting color information and affine transformation perturbation yield better
pre-training, as measured by the fine-tuning accuracies. The operations are sim-
ilar to the classification of labeled fractal images via IFS.

4.5 Applications

Fine-tuning on commonly used datasets (Table 13). We compare fine-
tuning accuracies in three types of dataset configurations. For supervised learn-
ing (SL) we compare pretraining on ImageNet-1k [16] and Places-365 [59], for
self-supervised learning (SSL) we compare DINO [7] and masked auto-encoder
(MAE) [22] pre-trained on ImageNet and PASS, and models trained on the
fractal datasets FDSL on FractalDB-1k and RCDB-1k. Following the setting of
one-instance per category [35], we also evaluate using random patch augmenta-
tion (“w/ Aug.”). We compare our 1p-frac with 1-image SSL [3] with DINO and
MAE (we use Real Img #1 of Figure 5). The results show that our 1p-frac pre-
training with one single image demonstrated high fine-tuning accuracies (87.5%
and 88.2% with and without random patch augmentation) which are close to the
performance of self-supervised ImageNet-1k pre-training with MAE that utilizes
1.28M images and yields 88.5%. Surprisingly, despite using only one fractal im-
age with perturbations, our 1p-frac without random patch augmentation has
demonstrated fine-tuning accuracies that are equal to or even higher than that
of conventional OFDB-1k/FractalDB-1k, which uses 1,000 parameter sets with
fractal categories and 1,000/1,000,000 images: 1p-frac obtains mean perfor-
mances of 87.5% vs OFDB-1k 87.2% vs FractalDB-1k 87.1%.
Fine-tuning on specialized and structured datasets in VTAB [54] (Ta-
ble 14). We also verify performance on a couple of specialized and structured
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Table 13: Comparison among pre-training methods in fine-tuning accuracies. Best
values at each dataset scale are in bold. ViT-T is used for all experiments. #OrgImg
indicates number of collected images in real-image datasets or number of original images
used in synthetic datasets. Type shows supervised types within supervised learning
using cross-entropy loss (SL), self-supervised learning using DINO [7] or MAE [22]
(SSL:D/SSL:M), and formula-supervised learning (FDSL).

Pre-training #OrgImg Type C10 C100 Cars Flowers VOC12 P30 IN100 Mean

Scratch – – 80.3 62.1 13.7 71.4 56.2 76.2 74.8 62.1

Places-365 [59] 1.80M SL 97.6 83.9 89.2 99.3 84.6 – 89.4 –
ImageNet-1k [16] 1.28M SL 98.0 85.5 89.9 99.4 88.7 80.0 – –
ImageNet-1k [16] 1.28M SSL:D 97.7 82.4 88.0 98.5 74.7 78.4 89.0 86.9
ImageNet-1k [16] 1.28M SSL:M 97.4 85.8 86.6 96.3 83.3 80.2 90.0 88.5
PASS [2] 1.43M SSL:D 97.5 84.0 86.4 98.6 82.9 79.0 82.9 87.8
FractalDB-1k [30] 1.00M FDSL 96.8 81.6 86.0 98.3 80.6 78.4 88.3 87.1
RCDB-1k [28] 1.00M FDSL 97.0 82.2 86.5 98.9 80.9 79.7 88.5 87.6

ImageNet-1k [35] 1,000 SL 94.3 76.9 57.3 94.8 73.8 78.2 84.3 79.9
ImageNet-1k [35] 1,000 SSL:D 94.9 78.0 71.2 94.6 75.5 78.6 84.9 82.5
OFDB-1k [35] 1,000 FDSL 96.9 84.0 84.5 97.1 79.9 79.9 88.0 87.2
3D-OFDB-1k [35] 1,000 FDSL 97.1 83.8 85.5 98.4 80.8 80.0 89.1 87.8
OFDB-1k w/ Aug. [35] 1,000 FDSL 97.2 85.3 87.6 98.3 81.4 80.4 89.5 88.5
3D-OFDB-1k w/ Aug. [35] 1,000 FDSL 97.0 84.7 85.6 98.3 81.2 79.8 88.9 87.9

1-image SSL [3] 1 SSL:D 95.7 79.5 73.1 93.8 69.0 80.4 88.7 82.8
1-image SSL [3] 1 SSL:M 97.2 84.7 82.1 94.6 78.5 80.3 89.0 86.6
1p-frac (ours) 1 FDSL 96.9 84.2 84.5 97.4 80.5 80.6 89.0 87.5
1p-frac w/ Aug. (ours) 1 FDSL 96.5 84.7 87.0 98.1 80.9 80.5 88.9 88.2

datasets in VTAB (visual task adaptation benchmark; Retinopathy [26], Re-
sisc45 [13], Camelyon [48], CLEVR-Count [25], and sNORB-Azim [33]). The
experiment is more suitable to evaluate and compare the pre-training methods
since the image domains and their labels are distinct from both real and fractal
images on ImageNet and 1p-frac. According to Table 14, our 1p-frac pre-
trained model performed relatively similar fine-tuning accuracies on all listed
datasets in the table. By comparing to self-supervised ImageNet-1k with MAE,
our 1p-frac surpassed the fine-tuning accuracies on three (Retinopathy, Re-
sisc45, and sNORB-Azim) out of the five datasets.

5 Conclusion and Discussion

This paper examined what a minimal dataset for synthetic pre-training might
look like. We proposed the 1-parameter Fractal as Data (1p-frac) dataset that
succeeds in pre-training even with a single fractal by utilizing the locally per-
turbed cross entropy (LPCE) loss. The following findings were presented:
What is a minimal synthetic pre-training dataset? In this paper, we ap-
plied IFS to generate labeled images. In this context, preparing a single set of
parameters a − f in IFS is the least informative. It recorded fine-tuning accu-
racy nearly equivalent to conventional methods such as FractalDB and OFDB
(Tables 1 and 2), succeeding in pre-training with minimal image pattern utiliza-
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Table 14: Performance comparisons on five fine-tuning datasets: Retinopathy
(Retino) [26], Resisc45 [13], Camelyon [48], CLEVR-Count (CLEVR-C) [25], and
sNORB-Azim (sNORB-A) [33]. Best and second-best values are in bold and under-
lined, respectively.

#OrgImg Type Retino Resisc45 Camelyon CLEVR-C sNORB-A

Scratch – – 66.9 89.2 74.4 46.4 11.5
ImageNet-1k [16] 1.28M SL 79.1 97.0 82.7 89.3 29.2
ImageNet-1k [16] 1.28M SSL:M 76.7 95.6 83.9 89.5 26.3
1p-frac (ours) 1 FDSL 77.9 95.8 82.7 86.2 28.9

tion. Moreover, it is not that any perturbation in image space is acceptable, as
Gaussian/uniform distributions failed in pre-training (Table 4). It clarified the
importance of geometric transformations with certain regularities like fractal
geometry or contour shapes (Table 3).
What properties of images lead to image reduction? In 1p-frac, we
investigated shape changes and pre-training effects by adopting the LPCE loss
and the σ-factor that contribute to fractal shape variation. It was revealed that
pre-training efficacy varies with shape variation (Tables 5, 6). For real images,
it is not just about including more edge components, but about including affine
transformations, which closely resembles the classification of labeled fractal im-
ages through IFS (Tables 11 and 12). By extensively ablating data augmentation
showed, we demonstrated the essential role of random cropping and MixUp.
Pre-training effects with the proposed method. Supervised pre-training on
ImageNet was more accurate for datasets where object labels are assigned to real
images (Table 13), but in VTAB’s Specialized/Structured datasets (Table 14),
performances were relatively close. On the other hand, our 1p-frac pre-trained
ViT performed a similar mean accuracy by comparing to MAE self-supervised
ImageNet pre-training (MAE 88.5 vs. our 1p-frac w/ Aug. 88.2). Furthermore,
increasing the number of sampling points L showed performance improvement
even with 21k categories and demonstrated good performance in ImageNet-1k
fine-tuning (Table 8), indicating the potential for building large models with
limited data resources.
Broader impact. Our proposed dataset 1p-frac does not suffer from licensing
or ethical issues such as biases and has a large potential to serve as a clean
pretraining dataset. While not investigated in this paper, this approach also
opens the possibility for significant gains in training speed by keeping the data on
the GPU and applying transformations there, removing the GPU-CPU transfer
bottleneck.
Limitation. In this paper, we have explored achieving a minimal synthetic
pre-training in image recognition based on fractal geometry with IFS (a single
fractal, and their perturbations). Despite this, we believe it is also necessary
to find a similarly minimal pre-training dataset containing real images – for
some applications and increased interpretability. This might allow for quick and
clear calibration of pre-training, similar to how calibration images are used in
photography. We did not investigate this direction in this paper but leave this
for future work.
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