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Abstract. Head pose estimation (HPE) is crucial for various appli-
cations, including human-computer interaction, augmented reality, and
driver monitoring. However, traditional RGB-based methods struggle in
challenging conditions like sudden movement and extreme lighting. Event
cameras, as a neuromorphic sensor, have the advantages of high tempo-
ral resolution and high dynamic range, offering a promising solution for
HPE. However, the lack of paired event and head pose data hinders the
full potential of event-based HPE. To address this, we introduce two
large-scale, diverse event-based head pose datasets encompassing 282 se-
quences across different resolutions and scenarios. Furthermore, we pro-
pose the event-based HPE network, featuring two novel modules: the
Event Spatial-Temporal Fusion (ESTF) module and the Event Motion
Perceptual Attention (EMPA) module. The ESTF module effectively
combines spatial and temporal information from the event streams, while
the EMPA module captures crucial motion details across the scene using
a large receptive field. We also propose a unified loss function to optimize
the network using both angle and rotation matrix information. Exten-
sive experiments demonstrate the superior performance of our network
on both datasets, showcasing its effectiveness in handling HPE across
various challenging scenarios. The datasets and code are available at
https://github.com/Jiahui-Yuan-1/EVHPE.
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1 Introduction

Head pose estimation (HPE) has established itself as a crucial task in computer
vision, tasked with determining the three-dimensional orientation of a person’s
head relative to a reference point, typically the camera. The ability to accurately
estimate head pose unlocks a plethora of applications across various domains,
such as human-computer interaction [39], driver monitoring systems [25] and
augmented reality [19].
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Fig. 1: Representative scenes from the Davis-HP dataset. The left column displays
RGB frames, while the right column shows the event flow between RGB frames with
annotations. The descriptions of the capturing setting are demonstrated above images.

Recent advancements in HPE have leveraged various strategies to improve
accuracy. Some methods utilize facial landmark information to assist HPE [3,18],
while others incorporate depth data to capture the three-dimensional nature of
head movements, improving accuracy [6, 22–24]. Additionally, diverse learning
strategies like stage-wise regression [44], multi-task learning [1, 41], and para-
metric orientation approaches [4,9,11,12,21] have further enhanced performance.
However, despite these advancements, current HPE methods often require high-
quality RGB input, which can still suffer limitations during rapid head move-
ments and extreme lighting conditions.

Recently, event cameras [7], inspired by biological vision, are currently gain-
ing increased attention from an expanding research community. Unlike RGB
cameras that capture frames at fixed intervals, event cameras asynchronously de-
tect changes in log intensity at the pixel level, capturing only the dynamic aspects
of visual scenes. Therefore, event cameras have significant advantages, includ-
ing high temporal resolution (< 10µs) and high dynamic range (> 120dB) [36].
These features give event cameras the potential to handle rapid head movements
and extreme lighting scenarios in the HPE task.

However, existing HPE tasks still lack datasets that include event camera
data. To fully leverage the advantages of event data in HPE, we have intro-
duced two real-world head pose datasets named Prophesee-HP and Davis-HP.
Unlike existing real-world datasets with low temporal resolution, our datasets
offer different resolutions and diverse scenarios, along with detailed temporal
annotations. These annotations are crucial for creating high temporal resolution
datasets for event-based HPE. Fig. 1 shows several representative scenes from
the Davis-HP dataset.

We present a novel event-based HPE (EV-HPE) network, which stands as
a substantial advancement in the field. Our network incorporates an Event
Spatial-Temporal Fusion (ESTF) module and Event Motion Perceptual Atten-
tion (EMPA) modules. The ESTF module is designed to enrich the spatial in-
formation across the temporal dimension. This module compresses the channels
in different ways, aiming to capture and amplify the spatial details that are
essential for accurate HPE. The EMPA module is applied to identify the crit-
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ical area of head movements across diverse and complex scenarios. This mod-
ule utilizes a large receptive field to guide the feature through attention map,
thereby enhancing the performance of HPE. Additionally, we propose a unified
loss that combines angle loss and geodesic loss to better optimize the network for
event-based HPE. To validate the effectiveness, we evaluate our method on the
Prophesee-HP and Davis-HP datasets. Experimental results show our significant
effectiveness, establishing new benchmarks for the Prophesee-HP and Davis-HP
datasets.

In brief, our contributions are summarized as follows:

– To the best of our knowledge, our work represents the first application of
event cameras to the HPE task, offering potential advantages for handling
rapid head movements and extreme lighting scenarios.

– To facilitate further research in HPE, we have constructed two large-scale
event-based head pose datasets encompassing diverse scenarios.

– We propose the first event-based network for HPE, with two specially design
modules and a unified loss.

– Experimental results validate the effectiveness of our proposed method on
the proposed datasets.

2 Related Work

2.1 Head Pose Estimation

In the domain of the HPE task, early methods utilize extra information-utilized
approaches to enhance the performance of HPE. Xin et al. [42] introduced a novel
method that treats HPE as a graph regression problem, utilizing the graph neu-
ral network. However, the performance of HPE heavily depends on the accuracy
of facial landmark detector. Wu et al. [41] introduced a SynergyNet that com-
bines 3D Morphable Models (3DMM) and 3D facial landmarks to accurately
predict complete facial geometry, thereby improving the accuracy of estimation.
Besides, Fanelli et al. [6] introduced a system that estimate the position and
head pose through additional depth information. Meyer et al. [23] proposed a
robust method through registering 3D morphable models to depth images and
iterative refining the registration over time.

Recently, researchers start to explore the effective learning strategies for HPE.
Ruiz et al. [34] first achieved end-to-end prediction of three Euler angles through
combination between classification and regression. Yang et al. [44] introduced a
stage-wise regression method from a single image, employing feature aggrega-
tion with a fine-grained structure to enhance spatial feature grouping. Recently,
Cao et.al. [4] proposed a vector-based head pose representation method that ad-
dresses the discontinuity issues of Euler angle annotations. To address the prob-
lem of ambiguous ground truth, Hempel et al. [11] introduced the 6D rotation
matrix representation to restrict range of angle, thereby predicting satisfactory
results. Zhang et al. [46] proposed a transformer-based approach utilizing ori-
entation tokens for efficient and accurate head pose estimation. However, these
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Table 1: Comparison with other real-world HPE datasets.

Dataset Resolution #Scene #Volunteer #Seq. #Frame #Anno. Source

AFLW2000 [50] 450x450 / / / 2000 2000 RGB
BIWI [6] 640x480 1 20 24 15678 15678 RGB+D
Davis-HP 346x260 20 31 282 170636 683102 RGB+E

Prophesee-HP 1280x720 20 31 282 / 547653 Event

Table 2: The summary of the Prophesee-HP and Davis-HP datasets, including the
number of slices (10ms) and event.

Prophesee-HP Davis-HP

Train Test Total Train Test Total

#Slices (10ms) 393655 153998 547653 492576 190526 683102
#Event 12.11G 6.27G 18.38G 1.12G 0.52G 1.63G

methods require high-quality RGB information, which could not handle the ex-
tremely lighting scenarios.

2.2 Event Camera and Applications

Different from conventional cameras, event cameras [13] asynchronously capture
events when brightness changes exceed a certain threshold. Therefore, event
cameras are particularly beneficial in scenarios requiring real-time and energy
efficient systems, like robotics or edge devices, especially in environments with
variable lighting. These cameras are applied in various applications, includ-
ing object detection [26–28], surveillance [20], depth estimation [29, 32], optical
flow detection [2,48], HDR image reconstruction [31,40], video frame interpola-
tion [37, 45], video super resolution [16, 17] and Simultaneous Localization and
Mapping (SLAM) [30,38].

In event-based vision, event cameras are well-suited for pose estimation.
Xu et al. [43] proposed a hybrid event camera method that generates both
an asynchronous event stream and low-frequency grayscale images to capture
high-frequency 3D volumetric poses. To capture local motion, Zou et al. [51]
proposed a novel two-stage deep learning framework through optical flow and
shape to estimate 3D human shapes. Goyal et al. [10] proposed a real-time sys-
tem for high-frequency 2D human pose estimation using event cameras. Rudnev
et al. [33] introduced a new approach for 3D hand pose estimation, which can
be trained on synthetic event streams and then generalized to real-world data.
However, event cameras have not been applied to HPE.
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Fig. 2: Overview of the proposed method for event-based Head Pose Estimation.

3 Benchmark Dataset

To our knowledge, there are no datasets for event-based HPE. To explore the
event-based HPE, we constructed event-based HPE data ourselves. Our data
collection involved 31 volunteers, recording 15 participants in an indoor environ-
ment and 16 participants in a car. To capture diverse scenarios, we varied lighting
conditions (strong, normal, low, extremely low, with added dynamic flickering
light in the car), head movement speeds (from normal to high), and occlusions
(eyeglasses, hats). Additionally, for the car recordings, we collected data under
different driving states, including wakefulness and fatigue. This comprehensive
approach ensures our event-based head pose datasets encompass a rich variety
of real-world conditions.

To capture high-resolution head pose dynamics, volunteers wore an HWT906
gyroscope sensors on their heads, recording data at up to 1000 Hz. Before data
collection, we calibrated these sensors with the volunteers’ heads in a horizontal
position. During recording, timestamps from the computer triggered synchro-
nized data capture from all sensors. We used two event cameras (Prophesee
EVK4 and DAVIS346) to capture data for each volunteer. This process resulted
in the construction of two large-scale event-based HPE datasets: Prophesee-HP
and Davis-HP. As highlighted in Tab. 1, our datasets offer a richer variety of
scenarios and a larger scale compared to two commonly used real-world HPE
benchmarks. Tab. 2 shows the total numbers of slice (10ms) and event in the
Prohpesee-HP and Davis-HP datasets.

4 Method

4.1 Overview

Fig. 2 illustrates our novel event-based HPE network, EV-HPE. Its core com-
ponents are: an Event Spatial-Temporal Fusion (ESTF) module, four lightweight
RepVGG blocks (inspired by [5]), four Event Motion Perception Attention (EMPA)
modules, a prediction head with multi-layer perceptrons (MLPs).

The event stream is initially transformed into a voxel grid representation
[8] [49]. The ESTF module augments the temporal aspects of head motion in
the data. This processed data is input into four feature extraction blocks, each
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consisting of RepVGG layers and EMPA modules to capture essential motion
information during head movements. After feature extraction, the network em-
ploys a perceptron and a matrix mapping layer to estimate the rotation matrix.
This matrix is subsequently converted into Euler angles via an angle mapping
technique. The predicted angles are then evaluated against ground truth labels
to calculate both Geodesic and Angle Loss, which facilitate the training of the
network.

4.2 Event Spatial-Temporal Fusion Module

The voxel grid representation of event information suffers from sparsity in the
temporal dimension. This sparsity can hinder HPE tasks that require detailed
understanding of spatial motion over time. To address this challenge, we enhance
the spatial information within the original representation, allowing the network
to learn more effective features for head pose estimation.

To achieve this, we propose an Event-based Spatio-Temporal Fusion (ESTF)
module, as illustrated in Fig. 3(a). This module aims to enrich the representa-
tion of spatial information along the temporal dimension. The ESTF module
first generates two separate representations by applying mean and max pooling
operations along the temporal axis. Mathematically, this can be expressed as:

FMean (i, j) =
1

B

B∑
k=1

F (i, j, k) , FMax (i, j) = MaxB
k=1F (i, j, k) , (1)

where FMean and FMax represent the newly obtained representations, respec-
tively. F represents the voxel representation after processing the original event
information. F (i, j, k) denotes the value at position (i, j) and the k-th temporal
bin in the voxel grid. B represents the number of bins in the voxel grid.

The mean operation smooths out the noise, preserving the differential in-
formation between pixels, while the max operation highlights detailed temporal
features with relatively sharper noise. Subsequently, we extract horizontal and
vertical edge contours from these two representations using the Adaptive Sobel
Module, initially setting the kernel weights to Sobel X and Sobel Y operators,
shown in Fig. 3(b). These weights can be dynamically adjusted with a minimal
learning rate to better adapt to the event information stream. Finally, we con-
catenate both representations and their edge features with the original represen-
tation, thereby enhancing the spatial information of the original representation
through a fusion block, as illustrated in Fig. 3(c). The fusion process can be
expressed by the formula:

Ffusion = Fusion

{
Concat

[
F, Fw, fsx

(
Fw

)
, fsy

(
Fw

)]
, F

}
, (2)

where W is an operator, such as the Mean or Max operator, and fsx , fsy
represent the convolution functions with Sobel X and Sobel Y, respectively.
Ffusion denotes the fused feature, which is the output of the ESTF module.
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Fig. 3: (a) An overview of the Event Spatio-Temporal Fusion module (ESTF). (b)
The components of the Adaptive Sobel module in ESTF. (c) The components of fusion
block. (d) An overview of the Event Motion Perceptual Attention module (EMPA).

4.3 Event Motion Perceptual Attention module

To address the challenges of HPE in complex scenarios with rapid head move-
ments, various lighting conditions and occlusion, we introduce an Event Motion
Perception Attention (EMPA) module. This module enables the network to fo-
cus on learning the critical information of head movements across diverse and
complex environments. Initially, as illustrated in Fig. 3(d), the event features
generate a new feature map F l after passing through a 1x1 convolution layer
followed by a GELU activation function. Then, F l is passed through a 1x1 con-
volution layer and batch normalization to further generalize the features. Next,
we use a grouped local convolution layer. This layer lets the network learn fea-
tures independently within each group, helping to represent a wider variety of
features. This local convolution focuses on important positional information for
pose estimation. Subsequently, we employ deep dilated convolution to capture
more extensive contextual information. This approach improves accuracy and ro-
bustness in complex scenes by considering both local features and environmental
context. Next, we normalize the feature map from the deep dilated convolution,
apply a 1x1 convolution and batch normalization, followed by the ReLU activa-
tion function. The output serves as the attention weights Attn. We multiply the
attention weights with the original features from the other pathway, pass them
through a 1x1 convolution layer, and then apply a residual connection, enabling
the network to learn crucial information about head movements across diverse
scenarios. The process can be expressed by the following formula:

F l
attn = fconv

(
Attn · F l

)
+ F l, (3)
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where F l and F l
attn represent the input features and noticed features of the lth

EMPA module, fconv stands for a 1x1 convolution layer, respectively.

4.4 Loss function

After obtaining the final feature map, our event data stream passes through an
average pooling layer, followed by a multi-layer perceptron that regresses six
parameters [11]. The prediction process of the rotation matrix can be mathe-
matically represented as follows:

Rpred = fGS (W2 (LeakyReLU (W1X + b1)) + b2) , (4)

where Rpred denotes the predicted rotation matrix, fGS(·) represents the map-
ping of two column matrices into the rotation matrix, and W1, W2, b1, b2 rep-
resent the parameters in the perceptron’s linear layers. LeakyReLU denotes the
activation function.

In this paper, we employ the geodesic loss [11] as the primary loss function,
which forms a rotation matrix using the six regressed parameters. The discrep-
ancy between matrices is then measured by the geodesic distance between the
predicted and true matrices. However, due to the diversity of evaluation metrics,
we introduce an angle loss to better regress the Euler angle that captures the
difference between the angles derived from the matrix transformation and the
true angles, improving the prediction of the model. The geodesic loss LR and
angle loss LE can be mathematically expressed as follows:

LR = cos−1

(
tr
(
RpredR

T
gt

)
− 1

2

)
, (5)

LE =

3∑
i=1

|fR→E (Rpred) (i)− Egt (i) |, (6)

where tr(·) stands for the trace of a matrix. Rpred and Rgt represent the predicted
rotation matrix and the ground truth rotation matrix, respectively. fR→E(·)
represents the function that converts the rotation matrix to Euler angles, and i
indicates the corresponding Euler angle index. Therefore, the total loss function
of the network is depicted as follow:

Ltotal = LR + αLE , (7)

where α represents the weight coefficient for the angle loss.

5 Experimental Results

5.1 Implementation Details

For model optimization, we employed the Adam optimizer with a learning rate
of 5e-5 and a weight decay of 0.5. We used a batch size of 40 and trained for 20
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Table 3: On the Prophesee-HP dataset, the input data format consists of 10ms event
time slices. A quantitative comparison between existing HPE methods and our ap-
proach has been conducted, with the best results highlighted in bold.

Method Input Euler angle errors Vector errors

(10ms) Pitch Yaw Roll MAE Left Down Front MAEV

HopeNet [34] Event 9.20 9.30 5.95 8.15 12.71 11.99 14.41 13.04
FSA-Net [44] Event 10.39 11.07 6.34 9.27 14.36 13.31 16.65 14.77
WHENet [47] Event 8.72 10.03 5.98 8.24 13.11 11.54 14.59 13.08
6DRepNet [11] Event 7.00 8.44 5.11 6.85 11.12 9.42 11.95 10.83
TokenHPE [46] Event 11.13 12.06 7.08 10.09 15.72 14.24 17.97 15.98
Ours Event 6.00 7.47 4.55 6.01 9.89 8.20 10.49 9.53

Table 4: On the Davis-HP dataset, the input data format consists of 10ms event time
slices. A quantitative comparison between existing HPE methods and our approach
has been conducted, with the best results highlighted in bold.

Method Input Euler angle errors Vector errors

(10ms) Pitch Yaw Roll MAE Left Down Front MAEV

HopeNet [34] Event 8.98 9.98 5.95 8.30 13.08 11.71 14.89 13.23
FSA-Net [44] Event 9.56 9.81 6.23 8.53 13.02 12.31 14.97 13.43
WHENet [47] Event 8.50 9.14 5.81 7.82 12.23 11.13 13.70 12.35
6DRepNet [11] Event 8.30 8.62 4.91 7.28 10.97 10.38 13.15 11.50
TokenHPE [46] Event 11.05 11.02 6.11 9.39 14.08 13.53 17.09 14.90
Ours Event 7.50 7.57 4.41 6.49 9.75 9.32 11.65 10.24

epochs. The coefficient α in the total loss function was set to 0.001. To ensure
a fair comparison with other methods, we excluded samples exceeding 99° or
below -99° from both datasets due to the 198-bin limitation in HopeNet [34].
The training set comprised sequences from 22 volunteers, while the testing set
included data from 9 volunteers.

For experiments with the Prophesee-HP dataset, we leveraged the recorded
facial bounding box information to crop the input data to the resolution of
600×600. In contrast, for the Davis-HP dataset, all inputs were of size 346×260.
Finally, to maintain a consistent and fair experimental platform, all training was
conducted using 8 NVIDIA A800 GPU cards.

5.2 Experimental Results

Quantitative Results. Tab. 3 provides a detailed quantitative analysis of our
network in comparision with other methods on the Prophesee-HP dataset. The
comparison results show that our method surpasses current HPE methods for
the same 10ms slice of event data stream, reducing average Euler angle errors by
0.84 and average vector errors by 1.30. Particularly, our approach significantly
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GTHopenet FSA-Net WHE-Net 6DRepNet TokenHPE OursRGB Scene

Fig. 4: Qualitative HPE results for four scene sequences using 10ms event slices. The
top row showcases sequences from the Prophesee-HP dataset, while the bottom row
presents sequences from the Davis-HP dataset. The leftmost column displays schematic
diagrams depicting the captured volunteer scenes. The middle columns compare the
performance of existing HPE methods with our proposed approach. Finally, the right-
most column presents the ground-truth angle labels.

enhances pitch and yaw angle predictions compared to the best-performing meth-
ods. This improvement is credited to the broad variability in pitch and yaw
angles. Our ESTF module effectively integrates spatial information over time,
while the EMPA module efficiently captures motion information of critical parts.

Tab. 4 shows the quantitative comparison between our method and other
methods on the Davis-HP dataset. Our EV-HPE is superior to other method-
ologies when dealing with 10ms slices of data. The comparative analysis clearly
illustrates that our approach outperforms the existing HPE techniques, with
a notable decrease in the average Euler angle errors and average vector errors
by 0.79 and 1.26, respectively. Importantly, our method maintains a consistent
edge in reducing angle errors across datasets of different resolutions. This advan-
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Table 5: Quantitative comparison between existing HPE methods and our method
on the Davis-HP dataset. To keep with the RGB frame rate, we choose 40ms slice for
event data. The best results are highlighted in bold.

Method Input Euler angles errors Vector errors

(40ms) Pitch Yaw Roll MAE Left Down Front MAEV

HopeNet [34] Event 9.09 9.71 6.59 8.46 13.25 12.06 14.58 13.30
RGB 14.11 13.95 7.67 11.91 17.32 17.16 21.92 18.80

FSA-Net [44] Event 10.76 9.85 6.01 8.87 12.69 12.49 14.63 13.27
RGB 13.32 12.94 6.61 10.96 16.07 15.92 20.25 17.41

WHENet [47] Event 8.73 9.49 5.98 8.07 12.53 11.41 14.18 12.71
RGB 12.05 13.60 6.66 10.77 16.37 15.14 20.20 17.24

6DRepNet [11] Event 8.29 8.59 5.09 7.32 11.04 10.49 13.13 11.55
RGB 10.91 11.78 6.23 9.64 14.57 13.52 17.65 15.25

TokenHPE [46] Event 11.23 10.30 5.90 9.14 13.43 13.87 16.73 14.68
RGB 13.80 12.18 6.53 10.84 15.16 16.35 20.42 17.31

Ours Event 6.97 7.62 4.80 6.46 9.93 9.05 11.34 10.11

tage is largely due to the proficiency of our EMPA module in capturing essential
motion details across various scales.

Within the Davis-HP dataset, we specifically contrasted the event data stream
between RGB frames with the test results from different methods applied to RGB
frames. Tab. 5 provides a detailed quantitative analysis of our network’s perfor-
mance on inter-frame event data compared to other methods’ performances on
both inter-frame event data and RGB frame configurations. As observed from
the table, existing HPE methods exhibit low accuracy due to the complexity
and challenges presented by the scene. However, event data streams are able to
compensate for the insufficiency of RGB information, particularly in conditions
with varied luminance and velocity, thereby enhancing the precision of existing
HPE methods in complex settings. Moreover, the comparative results unequivo-
cally demonstrate that our method remains superior to current HPE techniques
in handling the same inter-frame event data streams, reducing average Euler
angle errors and average vector errors by 0.86 and 1.44, respectively. This con-
firms that our network is capable of achieving optimal precision across different
temporal segments of event streams

Qualitative Results Fig. 4 showcases the qualitative comparision of our pro-
posed method against other methods on the Prophesee-HP dataset. We can
observe that when volunteers wear occlusions and exhibit significant roll incli-
nations along with certain yaw angles, methods like 6DRepNet [11], HopeNet
[34], and FSA-Net [44] fail to accurately estimate the yaw component, whereas
WHENet [47] and TokenHPE [46] struggle with roll and pitch estimations. In sce-
narios where volunteers are in poorly lit environments, exhibiting actions akin to
drowsy driving (such as lowering the head or hand obstructions), other methods
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GTHopenet WHE-Net 6DRepNet Ours

Fig. 5: Visualization of attention maps and HPE results generated by our method and
other methods on the Prophesee-HP dataset.
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Fig. 6: Comparative stability analysis of the HPE results across two sequences on the
Prophesee-HP dataset.

fall short in predicting the pitch angle. In contrast, our method effectively esti-
mates both minor and significant pitch movements, attributed to the enhanced
spatial motion information by our ESTF module. When faces are exposed to
strong lighting, HopeNet [34], FSA-Net [44], WHENet [47], and 6DRepNet [11]
inaccurately estimate the roll angle (indicated in red), and TokenHPE [46] has
considerable deviation in yaw angle estimation. Our method closely aligns with
the true labels for all three angles.

Fig. 4 illustrates qualitative results between our method and other approaches
on the Davis-HP dataset. We can observe that our method in low-light condi-
tions with dynamic lighting, facial halos predict accurate estimations, leading
to significant errors in other methods. However, our approach provides more
accurate estimations of yaw and subtle pitch movements. Under extremely low
lighting, where event information is sparse, actions resembling fatigue lead to
considerable yaw estimation errors in HopeNet [34], FSA-Net [44], WHE-Net,
and TokenHPE [46], while 6DRepNet’s [11] pitch estimation is less accurate com-
pared to our method. During rapid head movements, which include both noise
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and motion information, our method offers a more precise estimation of yaw
angles with significant changes (highlighted in blue). In bright light conditions
with some obstructions, our method aligns closest to the true labels despite the
presence of interfering information.

5.3 Attention Map Visualization

To understand how the EMPA module focuses on critical pose information, we
visualized the attention maps using GradCAM [35] during head pose prediction.
We compared our method’s attention patterns with leading HPE approaches
like 6DRepNet [11], WHENet [47], and HopeNet [34]. Fig. 5 showcases two sce-
narios: indoor and in-car. We observe that our method effectively locates key
positional information even under sparse event data conditions, unlike other
methods that exhibit more dispersed attention in similar scenarios. In the third
scenario, where hats and sunglasses obscure facial features, our method focuses
on the nose and mouth, crucial for predicting three euler angles. During rapid
head movements (the first and last scenarios), our method prioritizes attention
on the nose and mouth, as these features are critical for pose estimation accord-
ing to prior works [14,15].

5.4 Stability Analysis

To delve deeper into the stability of our method’s predictions over continu-
ous time, we compared it with the two best-performing methods tested on the
Prophesee-HP dataset. We evaluated their performance using Mean Absolute Er-
ror (MAE) across two continuous sequences, each containing 140 frames. A lower
MAE value signifies a smaller deviation from the ground truth value. As illus-
trated in Fig. 6, our method consistently achieves lower MAE values across both
sequences, indicating smaller overall deviations from the true head pose. While
some fluctuations are present in all methods, our approach exhibits smoother
and more stable performance compared to the other two existing HPE methods.
This improved stability translates to a more reliable prediction of head pose over
time, making it well-suited for real-world applications that require continuous
and accurate tracking.

5.5 Ablation Study

The effectiveness of ESTF, EMPA and Angle loss. To evaluate the con-
tributions of the ESTF and EMPA modules to our event-based HPE network,
we conducted ablation experiments on the Prophesee-HP dataset. As shown
in Tab. 6, removing the ESTF module significantly impacts performance. The
lack of ESTF leads to sparse spatial information in the temporal dimension,
hindering the capture of overall spatial context. Consequently, the EMPA mod-
ule struggles to identify key spatial features, resulting in an MAE increase of
approximately 0.51 and an MAEV increase of approximately 0.78. Similarly,
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Table 6: Ablation experimental re-
sults of assessing the effectiveness of
different modules and losses on the
Prophesee-HP dataset.

Method MAE MAEV
w/o ESTF 6.52 10.31

w/o EMPA 6.55 10.32

w/o Angle Loss 6.14 9.71

ours 6.01 9.53

Table 7: Ablation experimental re-
sults of evaluating the impact of the
number of EMPA modules on the
Prophesee-HP dataset.

#EMPA Blk. MAE MAEV
0 6.55 10.32
1 6.43 10.14
2 6.29 9.96
3 6.15 9.73
4 6.01 9.53

removing the EMPA module diminishes the network’s ability to capture crucial
motion information. This translates to an MAE increase of approximately 0.54
and an MAEV increase of approximately 0.79. Finally, removing the Angle loss
from the network leads to a slight decrease in overall regression accuracy, with
the average Euler Angle error increasing by approximately 0.13 and the aver-
age vector error increasing by approximately 0.18. These results highlight the
critical roles of both ESTF and EMPA in extracting spatial and motion features
from event streams, ultimately leading to more accurate head pose estimation.

The impact of EMPA block number. To explore the influence of the number
of EMPA blocks on our network’s performance, we conducted ablation exper-
iments by incorporating varying numbers of stacked EMPA blocks. As shown
in Tab. 7, adding a single EMPA block yields a notable improvement in perfor-
mance. This suggests that the EMPA module effectively captures inter-layer flow
information. Furthermore, stacking additional blocks progressively enhances this
capability, leading to a gradual increase in performance.

6 Conclusion

This paper introduces the use of event cameras for HPE, offering a promising new
approach in the field. We introduce the first event-based HPE network, accompa-
nied by two large-scale, real-world event-based HPE datasets (Prophesee-HP and
Davis-HP). These datasets capture challenging scenarios with high exposure, low
light, rapid movements, and occlusions, pushing the boundaries of conventional
HPE methods. To address these complexities, we design two novel modules, the
Event Spatio-Temporal Fusion module and the Event Motion Perception Atten-
tion module, that demonstrably enhance HPE accuracy across diverse scenes.
Rigorous testing on our established datasets showcases the superiority of our
approach. This work represents a promising advancement in applying event cam-
eras to HPE, providing more possibilities for their application.
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