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Abstract. Modern avatar generators allow anyone to synthesize photorealistic
real-time talking avatars, ushering in a new era of avatar-based human commu-
nication, such as with immersive AR/VR interactions or videoconferencing with
limited bandwidths. Their safe adoption, however, requires a mechanism to verify
if the rendered avatar is trustworthy: does it use the appearance of an individual
without their consent? We term this task avatar fingerprinting. To tackle it, we
first introduce a large-scale dataset of real and synthetic videos of people inter-
acting on a video call, where the synthetic videos are generated using the facial
appearance of one person and the expressions of another. We verify the identity
driving the expressions in a synthetic video, by learning motion signatures that are
independent of the facial appearance shown. Our solution, the first in this space,
achieves an average AUC of 0.85. Critical to its practical use, it also generalizes
to new generators never seen in training (average AUC of 0.83). The proposed
dataset and other resources can be found at: https://research.nvidia.
com/labs/nxp/avatar-fingerprinting/.
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1 Introduction

Recent digital avatar generators have fueled a myriad of computer vision and graph-
ics applications, allowing anyone to synthesize real-time photorealistic personas. Ma-
jor companies are now supporting avatar-driven remote interactions over immersive
AR/VR (e.g. Meta’s Pixel Codec Avatar [48]], Apple’s Vision Pro Persona [1]]) or video
conferencing (e.g. NVIDIA’s MAXINE [5]], Microsoft’s Teams [3]]), and selfie filters
for altering and enhancing appearance (e.g. by Snap and Tiktok). While the avatar gen-
eration technology today is still young, the legitimate use of synthetic avatars will be
ubiquitous in the future. Without proper guardrails, this poses a real risk of unautho-
rized use and large-scale spread of visual disinformation. To ensure the safe use of
such a technology, the relevant question is no longer whether the content is “real” or
not—since, by design, the videos and avatars are all synthetic—but rather, whether the
synthetically-generated videos and avatars are “trustworthy” or not.

When video conferencing, for instance, a synthetic video portrait generator can be
used to save valuable bandwidth by reconstructing a synthetic avatar of the sender at
the receiver’s end, using only a frame of the target identity and a compact representa-
tion of the speaker’s facial motion. To ensure the authorized use of such synthetically-
generated videos, we want to verify if the driving identity behind a synthetic video
(ID; or ID, in Figure[T) is authorized to control the likeness, or the appearance, of the
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Fig. 1: Talking-head avatar generators can synthesize realistic videos of a target identity from
driving videos of different identities. Our method extracts appearance-agnostic temporal facial
features and learns an embedding in which the synthetic videos driven by one identity fall close
to each other and far from those driven by other identities, regardless of the appearance of the
synthetic video. By comparing distances in the embedding space, we evaluate whether an avatar
is driven by an authorized identity or not. During evaluation, we only rely on the synthetic videos
as input, without requiring any prior knowledge about the driving identity.
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synthetic video (target identity in Figure [T). Crucially, we want to only leverage the
synthetic video avatars to do so. We call this novel task avatar fingerprinting.

We leverage a simple but fundamental observation: facial motions tend to be id-
iosyncratic, that is, individuals talk and emote in unique ways. For instance, someone
may raise one of her eyebrows more than the other, or smile more while talking. These
“dynamic identity signatures” [51]] have been shown to carry enough information for
humans to recognize other individuals, even when the physical appearance of their face
is altered [31,41,51]]. This makes them attractive for our task, as they can be derived
solely from the driving identity of a talking-head video, regardless of the appearance.

Fortunately, modern avatar generators are becoming increasingly accurate at cap-
turing the facial motion of a person and rendering it onto a target identity. As a first
solution to avatar fingerprinting, we then propose to estimate a dynamic identity sig-
nature for an identity from the synthesized videos they drove—regardless of the target
identities shown. Specifically, we extract facial landmarks and their temporal dynamics
from the video. We then introduce a novel contrastive loss to learn a dynamic identity
embedding, a space where the dynamic identity signatures of a driving identity across
multiple videos and target identities are close to each other, and far from those of other
driving identities (see Figure [I)). We show that this approach, albeit straightforward, is
robust and generalizes to generators not seen in training.

Avatar fingerprinting is a new task, and no existing datasets serve its training and
validation requirements. There are two key requirements from a dataset. First, we need
videos of multiple subjects delivering both scripted and free-form monologues, cap-
tured under realistic conditions, such as varying video quality and gaze direction. This
allows us to assess if a model leverages talking styles, and not the specific choice of
words. Second, to evaluate if the model learns to extract dynamic identity signatures
effectively from synthetic videos, we need synthetic talking-head videos for the case
in which the driving and target identities are different (cross-reenactment), and that in
which they match (self-reenactment). Unfortunately, existing datasets of real videos
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only fulfill a subset of these requirements (Table[I]and Section ). Further, no existing
dataset of synthetic videos contain both self- and cross-reenactments per subject or use
the state-of-the-art talking-head generation technology. To foster research in this new
domain, then, we introduce the NVIDIA Facial Reenactment (NVFAIR) dataset, con-
taining real and synthetic face reenactment talking-head videos (Figure[2)). Our dataset,
which includes ethnically diverse subjects, provides 10x more synthetic facial reenact-
ments than the second largest dataset, for a total of over 650, 000 synthetic videos. It is
also the only one using multiple state-of-the-art face reenactment generators [34,60,62],
or to provide cross-reenactments driven by all identities, which is critical for training
and evaluating avatar fingerprinting algorithms.

In summary:

— We introduce the novel task of avatar fingerprinting, which focuses on verifying
the driving identity of synthetic talking-head avatars, rather than classifying them
as real or synthetic (by design, all inputs to our model are synthetic).

— We release the first large-scale dataset of subjects delivering scripted and natural
monologues, complete with self- and cross-reenactment videos synthesized with
multiple state-of-the-art generators.

— We propose a solution for this novel task in the context of video conferencing by
extracting person-specific motion signatures, and demonstrate its robustness to var-
ious distortions and avatar generators not seen in training.

2 Related Work

Our proposed avatar fingerprinting task aims to verify authorized use of synthetic avatars:
this is fundamentally a different problem than traditional forensics research where one
aims to detect synthetic media (e.g. deepfake detection) or actively mark synthetic con-
tent. In our case, by design, the content being evaluated is always synthetic: we aim to
evaluate its authorized use. Since this is a novel task, no methods exist to directly ad-
dress it. No methods currently exist to directly address this novel task. Here we discuss
the related areas of research.

Learning-based Attribution of Synthetic Media. Learning-based approaches have been
used to identify the origin of synthetic media, or to determine if it has been manip-
ulated or altered in some way. Previous work used a pre-trained GAN generator to
attribute a synthesized image to its generator via GAN inversion by leveraging the fact
that a real image is less invertible [[11}|36}/63]]. Yet other works focus on attributing
other forms of synthetic media, such as text [50]. In contrast, our focus is to attribute a
talking-head avatar to the identity driving it, regardless of the appearance of the avatars.
Some existing works learn fingerprints associated with cameras to determine whether a
video is manipulated [[19], or embed watermarks into images and videos [[12}[25,4758]],
which are also shown to transfer to GAN-generated images [64]. Subsequent research
introduced a watermark-based conditional GANs for scalable fingerprinting [65]]. Our
method, in contrast, is a passive technique that does not rely on active watermarks.

Deepfake Detection Based on Identity-Specific Features. Deepfake detection (“is a
video synthetic?”’) and avatar fingerprinting (“whose identity is used to generate this
synthetic video?”’) are fundamentally different tasks. Most existing solutions for deep-
fake detection train a real-vs-synthetic classifier [26}28}/43}/52,/57,/68]], and therefore
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cannot be adapted to avatar fingerprinting (where all inputs are synthetic). However, a
specific class of detectors leverage identity-specific features to detect synthetic videos
by posing the detection problem as an identity-recognition problem. In our experiments,
we evaluate some of these methods as baselines. Specifically, Agarwal et al. exploit
person-specific patterns in facial expressions to detect fake videos [9]]. ID-Reveal used
facial shapes and motions encoded in a low-dimensional space of a 3D morphable
model [13]] to handle both face-swapping and face-reenactment deepfakes [20]. Other
works explored soft-biometric approaches such as leveraging vocal mannerisms [15],
phoneme-viseme consistencies [[8]], word-facial expression consistencies [|610]], and dy-
namics of ears [7]. While many of these works need person-specific training, previous
works [[6}/18}20,45] extended this idea to train a CNN-based detector using a large-
scale in-the-wild video data [[17] and variants of contrastive learning [27}|38}55,|61]].
Agarwal et al. combined static facial appearance using a facial recognition model and
dynamic facial behaviors using a CNN, and showed that this approach is effective for
detecting face-swap deepfakes [6]]. Yet another line of research has explored temporal
inconsistencies of face identities within a video [45]], and identity inconsistencies of
inner and outer face regions [22f]. Our experiments show that for avatar fingerprinting,
such features that are designed to distinguish real from synthetic videos are not reliable,
since we only have access to synthetic videos.

Dynamic Facial Identity Signatures. Cognitive scientists have studied the impact of
“dynamic facial identity signatures” (i.e., characteristic or identity-specific movements
of a face) for identity recognition for humans [51]]. In one experiment, scientists pro-
jected facial animations generated by human actors onto an average head and found
that subjects discriminated between individuals based solely on facial motion [31f]. In
another, subjects correctly attributed animations of synthetic faces to their morphed
versions [41]. While these studies point to the existence of “dynamic facial identity
signatures” that humans rely on, ours is the first method that isolates these from videos.
Talking-Head Datasets and Generators. Existing talking-head datasets include those
that contain only real videos showing a variety of emotions [16}/46,|59]], and oth-
ers that also contain synthetic videos [21}24}30L|35,42,|44//53]]. These datasets cater
to traditional forensics and facial analysis tasks. Therefore, they do not contain self-
and cross-reenactments driven by multiple identities, as well as scripted and free-form
monologues across diverse capture settings. There novel requirements posed by the
avatar fingerprinting task motivate us to design our own dataset. We focus specifically
on face-reenactment talking-head avatar generators for synthetic video generation—this
class of generators are the most relevant to AR/VR interactions, video conferencing, and
several other applications [2H5}48]]—and combine various modes of human expression
for capturing real videos. Given a target facial image and a driving video, these genera-
tors reenact the target image using the facial expressions and head pose from the driving
video [23/|33]/34,/37},/49L|561|601/621/66,/67]. Another class of talking-head generators use
person-specific models [40] and some models aim to preserve the style of the target
identity in the synthesized video [39]]. However, these models require person-specific
training, making them difficult to scale.

3 Terminology

We seek to verify the trustworthiness of a synthesized talking-head video, termed farget
video. We assume that an avatar-generation tool (e.g., [60]) created it by animating
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Fig.2: We introduce the NVFAIR dataset, containing real and synthetic talking-head videos.
We capture subjects talking in both scripted and free-form settings. To encourage natural perfor-
mance, we record the subjects while videoconferencing with each other (left). We then synthesize
more than 650, 000 talking-head videos—the largest collection till date—using three state-of-
the-art face-reenactment talking-head generators. On the right, each row corresponds to a driving
identity (ip;—(-)) and each column corresponds to a different target identity ((-)—;). The videos
in which driving and target identity match are self-reenactments, the rest are cross-reenactments.
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an image (target image) using the expressions and head poses obtained from another
video, the driving video. We call driving identity the identity of the person in the driving
video, and target identity the identity of the person in the target image. When driving
and target identities match, the target video is a self-reenactment, while the case of a
driving identity used to animate a different target identity is cross-reenactment. In both
cases, the appearance of the synthesized video is derived from the target identity. This
terminology allows us to formally state our goal: we want to verify that a target video
is a self-reenactment. With this terminology in mind, we introduce our dataset, which
includes real videos as well as self- and cross-reenactment videos.

4 The NVIDIA Facial Reenactment (NVFAIR) Dataset

Recall that avatar fingerprinting is not about detection of synthetic media. Rather, we
already know a video to be synthesized, and seek to verify that the driving identity is
authorized. This new task dictates a set of requirements for the dataset to be effective
for training and evaluation. Specifically, we need a dataset that contains
1. multiple real videos per identity, with scripted and free-form conversations, and
with both natural and prescribed emotions,
2. self- and cross-reenactments of target identities, with cross-reenactments driven by
all subjects to allow for a variety of driving facial structures, and
3. multiple face-reenactment generators.
All relevant existing datasets only capture a subset of these requirements (see Table [T}
the Supplement contains further discussion). Moreover they do not use the state-of-the-
art talking-head generation technology to synthesize the self- and cross-reenactment
videos. We introduce the NVFAIR dataset that features all of the above properties.
With over 650, 000 synthetic videos, it provides 10x as many videos as the next largest
dataset, and uses three different state-of-the-art generators for the self- and cross-reenactment
videos. Figure 2] shows an overview of data capture and synthesis.

4.1 Real Data Capture

Capturing videos of monologues delivered by different subjects for the purpose of iden-
tity verification introduces two conflicting goals. On the one hand a controlled evalua-
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. Emotion: R)eal / . # Face- .
Dataser| NS | Setipreaz | QDatural Seirs | e e Subjeet | Teenact. | i
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RAVDESS [46] | 24 (new) (S) P) (R) only N/A 120 (R) N/A v
MEAD [59) | 60 (new) ) (P) (R) only N/A 720 (R) N/A v
CREMA-D [16] | 91 (new) (S) P) (R) only N/A 81 (R) N/A v
VEHQ (24) | 36 ([46]) ) (P)+(N) R)+(S) 1,737 120 1 v
FR++[54] | 1000 (YT) (F) N) (R)+(C) 2,000 1(R) +2(C) 2 v
KoDF [42] | 403 (new) (F)+(S) (N) (R)+(C) 61,000 |150(R) + 151(C) 1 X
1\1(‘(/)5":51)11 iﬁié?ﬂ?é}v) F)+6S) | @+N) | R+S)+C) | 654,726 761113)’8’:'3(2355) 3 v

Table 1: The existing talking-head video datasets were designed for tasks such as deepfake de-
tection or facial emotion analysis. Avatar fingerprinting is a fundamentally different task. As a
result, no existing dataset satisfies the requirements for training and evaluating models for avatar
fingerprinting. To overcome this limitation, we introduce the NVFAIR dataset, which is the first
dataset that offers the complete set of monologue modalities, and features the largest collection
of facial reenactments to date. Specifically, it provides scripted and free-form monologues, with
natural and prescribed emotions, and self- and cross-reenactments (driven by all remaining sub-
jects) synthesized using three generators, alongside original videos for newly-recorded subjects.

tion of the trained models requires predictability of what is spoken to prevent identifi-
cation algorithms from latching onto the spoken content itself. On the other, we want
the subjects to act as they would in a casual conversation, rather than reciting memo-
rized text, to capture their uniquely identifying mannerisms. We address this trade-off
by recording the subjects while videoconferencing in pairs, which creates the impres-
sion of being in a natural conversation. This differs from existing datasets, in which
the subjects look at the camera, but are not interacting with another person during the
recording [[16442/46]]. We also design two distinct recording strategies: a free-form stage
where the subjects are given only general guidance on the topics, and a more controlled
scripted stage in which subjects speak short, memorized monologues of 2-3 sentences
each, see Figure[2a). To capture the variability of real-life scenarios, we provided min-
imal instructions on how to setup the video call, allowing for diverse face, scale, and
lightning, bandwidth stability, and background scene clutter. In total we record 46 sub-
jects of diverse genders, ages, and ethnicities, while strictly abiding by a pre-approved
IRB protocol (see Supplement for details and privacy considerations).

Stage I: Free-Form Monologues. In this first stage, the two subjects on the call alternate
between asking and answering seven pre-defined questions. The questions are designed
to avoid sensitive or potentially inflammatory topics. This is critical because we later
use sentences spoken by one individual to animate the video of a second individual,
quite literally putting words in their mouths. The complete list of questions is in the
Supplement. To further create a natural interaction, the subject listening is encouraged
to actively but silently engage with the one speaking (e.g., by nodding or smiling).

Stage II: Scripted Monologues. For this stage, we prepared thirty short utterances con-
sisting of two or three sentences each. We chose this length to allow for memorization,
while still providing enough content to trigger facial expressions. However, to avoid in-
ducing unnatural expressions, we do not prescribe specific emotions for each utterance.
For instance, we do not ask to express anger for a sentence, but we do choose sentences
that may naturally evoke it, and used punctuation to encourage it, e.g., “Will you please
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answer the darn phone? The constant ringing is driving me insane!” We instruct the sub-
jects to split their screens to show both this list and video call and encourage them to
speak to their recording partner when reciting, see Stage II in Figure[2[a). More details,
including the full list of utterances can be found in the Supplement.

4.2 Synthetic Talking-Head Videos

Using the videos described in Section as well as the original videos from the
CREMA-D [16]] and RAVDESS [46] datasets, we generate synthetic talking-head videos
to train and evaluate our avatar fingerprinting algorithm. Specifically, we pool the 91
identities from the original videos of CREMA-D [16]], the 24 identities from those of
RAVDESS [46], and the 46 from our own video-conferencing data capture, for a total
of 161 unique identities Z. Recall that we have several real videos for each identity
ID; € Z. To avoid a combinatorial explosion of synthetic videos, for all pairs of iden-
tities ID; and ID;, we use ID; as the target identity and we randomly select 8 of the
videos of ID; to generate 8 cross-reenactment videos, {ID} — ID;} 1,5y (all 8
share the same target image). We also generate self-reenactment videos for each of the
target identities, by animating their neutral-face images derived from captured videos
with each of their real videos.

We use three different generators for synthesizing the videos for all the 161 iden-
tities: face-vid2vid [60], LIA [62], and TPS [34]]. This allows us to test if our model
generalizes across generators. We chose these talking-head generators because they are
the state of the art and they preserve the identity-specific facial motion dynamics well.
Nevertheless, the reconstruction is not perfect; for instance, in the third row of Fig-
ure 2[b) the person in the driving video (ID5) is squinting, but the eyes are shut in all
the synthetic videos, including the self-reenactment video. In total we generate more
than 650, 000 synthetic videos, which required more than 2, 500 RTX 3090 GPU hours.
More details are in the Supplement.

5 Method

Overview. We seek to verify the driving identity of a synthetic video, independently
of the target identity. We leverage the finding from cognitive science research that each
person emotes in unique ways when communicating, and that this signal is sufficient
for recognition, even when the actual appearance is artificially corrupted [31,41},/51].
We note that our method does not latch onto artifacts introduced by the generators—
a property that we demonstrate by showing generalization to new generators not seen
during training. Rather, our features capture the dynamics of the expressions, like the
way a person frowns, or the way she smiles. Notably, they are distinct from the temporal
artifacts introduced by the generator, and that existing algorithms use to detect whether
a video is synthetic or real [29].

An overview of our algorithm for avatar fingerprinting is shown in Figure [3] To
capture expressions, we extract the relative position of facial landmarks over time from
the input video, as shown in Figure 3] (Section[5.1)). We learn to project these temporal
signatures onto a dynamic identity embedding in which features belonging to the same
driving identity are close to each other regardless of the target identity, i.e., indepen-
dently of appearance (Figure[T). To learn this embedding we train a 3SDCNN (where the
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Fig. 3: We extract landmarks from the frames of a talking-head clip, compute their normalized
pairwise distances, and concatenate the frame-wise features. We then learn an identity embedding
using a loss that pulls closer features of videos driven by the same identity and pushes away those
driven by others. ID; — ID; indicates a video that looks like identity 7 (the “target” identity),
and is driven by identity <.

third dimension spans video frames—a temporal CNN) with a novel contrastive loss
that pulls together all embedding vectors of synthetic videos driven by an individual,
while pushing away the embedding vectors of videos driven by all others individuals
(Section[5.2). More implementation details are in Section[5.3]

5.1 Dynamic Facial Identity Features

Our first step is to extract temporal features that summarize short segments of the video
we wish to fingerprint. We identify the following guiding principles for the extracted
features. We would like features that:

1. have minimal dependency on the appearance of the face in the video (that is, the

target identity),

2. reflect the dynamics of the expressions, and

3. capture subtle expressions.
One choice could be per-frame 3DMM features [[14]: a strategy also used by Coz-
zolino et al. to detect synthetic videos [20]]. However, we empirically observe that
3DMM features are not sufficiently expressive, and do not satisfy desideratum 3 (see
ablation experiments in Section @ We observe a similar behavior for action units [9].
Facial landmarks [[32]] address this issue, but are sensitive to the shape of the face in the
video, and thus to the target identity.

To leverage the expressiveness of facial landmarks while abstracting from the under-
lying facial shape, we compute the pairwise normalized Euclidean distances between
each pair of landmarks of a frame. We concatenate these distances into a single vector
for the frame, d . A subset of the facial landmarks and distances are shown in Figure 3]

We then break the input video into clips, which are sequences consisting of F frames
and offset by one frame (e.g., [1,F], [2,F+1], etc.), and concatenate the vectors from all
the frames in each clip. Using the change in the relative position of the landmarks over
a short period of time (the length of a clip) allows us to capture temporal dynamics with
minimal dependence on the absolute position of each landmark, i.e., independently of
the shape of the face.

We show empirically that our features are a good representation for our task, by
comparing against alternative choices for input features such as 3DMM (Section [6).
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5.2 Dynamic Identity Embedding Contrastive Loss

While the features described in Section are designed to extract low-level motion
dynamics, they cannot be used directly to disambiguate two target videos based on their
driving identities. We tackle this problem by learning a dynamic identity embedding, a
space where videos driven by one subject map to points that are close to each other and
far from the videos driven by anybody else.

Specifically, we use a temporal 3DCNN to extract an embedding vector from a clip,
which, as described before, is a short segment of an input video. To train the network we
use a dataset of synthetic videos driven by different identities. We denote as CIle 1, (1)
the embedding produced by the network for the clip starting at time ¢ in the k-th video,
of a target identity ID» driven by identity ID;. As stated above, we have two main
objectives, which we capture with the following terms in our proposed loss function.

We Want to Pull Together All the Videos Driven by ID;1. To achieve this, we define the
following term:

7 k
Njp, 1, (1) = Z mT?X‘g(CIJDlHIDQ (t), CIDlﬂlDl (n)), (1)
D,k
where s(-,-) = el is a similarity metric. Intuitively, Equationtakes two videos,

j and k, both driven by ID;. Given a clip starting at time ¢ in the first video, it looks for
the most similar clip in the second video. Since the driving identity is the same for both
videos, Equation [[|encourages an embedding where clips that capture a similar expres-
sion are closer to each other. Equation|[I]is high even if only one clip from video k has a
similar temporal signature to Cf;, _,p, (t). That is because even just one occurrence of
the same expression is evidence that the driving identity may be the same. Of course,
other driving identities may use similar expressions and we address that with the loss
term described below. Additionally, we note that k spans the set of all videos driven by
ID4, and ID; spans all identities, including ID; = ID; and ID; = ID>.

We Want to Push Away Videos not Driven by ID1. We define the following term:

Qj,lDl,ng(t): Z mT?XS(CIJDlﬁIDz(t%CIk]/DZHIDz(n))v (2)
ID;#ID1 ,k

where, similarly to Equation |1, we take a clip from video j, and look for the most
similar clip in video k. This time the two videos share the same target identity, but are
driven by different identities: we want all the videos driven by identities different from
ID; to be pushed away from those driven by ID, including videos where ID; is the
target identity. Note that ID, spans all identities, including IDy = ID; and ID, = ID;.

We Want to Rely on the Temporal Dynamics of the Videos Driven by ID;. Although
we use a temporal CNN, the model could still learn to rely on static expressions, such
as a snapshot of the person smiling, rather than the temporal progression of expression
leading to, or following, the smile. To further encourage the model to learn from the
temporal dynamics, we introduce an additional term:

. ~k
Rjm, ., (1) = ) max 5(Cip, i, (t): Cip, 1, (1)), 3)
D,k
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~k

where Cyp, ,1p, denotes a version of the clip CIle _p, from Equationwith randomly
shuffled frame ordering. We want such time-shuffled versions of the clips driven by 1D
to be pushed away from the pristine clips driven of ID;. Effectively, this means that
the driving identity of the time-shuffled clips is regarded as different from ID;. In other
words, we want to pull together video clips in the learned embedding space only when
the temporal facial dynamics are characteristic of ID;. We further show the importance
of this term in Section[6.3]

Combining Equations[I] 2] and[3] we write the probability that the embedding vector
Cb, _.1p, (t) lies close to the embedding vectors for all video clips driven by ID; and
far from all the videos driven by others as

N; b, b, ()

) 4)
Nj 1,10, (t) + Q; b1, (£) + Ry b, 1D, ()

PjID, D, (t) =

and the complete loss term as

L= % —log(pjm, (1) (5)

J,ID1,ID2,t

5.3 Implementation

Parameter Choices. To extract the per-frame dynamic facial identity features d s, we
detect 126 facial landmarks for each frame [|32]], and compute the per-frame normalized
pairwise Euclidean distances between these landmarks. The clip duration is set to 71
frames. We find that this is sufficient to capture the facial dynamics that are meaningful
for avatar fingerprinting, while also maintaining a good trade-off between speed and
accuracy. We also experiment with shorter-duration video clips (see Supplement). The
input tensor to the temporal CNN is obtained by concatenating d ¢ across 71 frames. In
each batch, we include 8 unique identities. For each identity ID;, the pull term (Equa-
tion[I)) comprises 16 clips: 8 are self-reenactments, randomly sampled from the full set,
and the remaining are cross-reenactments with ID; as the driving identity. This allows
the neural network to pull together videos based purely on the facial motion, regardless
of the appearance of the video. The push term (Equation[2) for ID; consists of clips with
the remaining 7 identities in the batch serving as driving identities (8 clips per driving
identity), as well as the time-shuffled self-reenactments of ID; (Equation [3). Additional
training details can be found in the Supplement.

Training, Validation, and Testing Datasets. Of the 161 total identities (pooling together
the identities from our dataset, RAVDESS, and CREMA-D, see Section @]), WEe reserve
35 for testing, 14 for validation, and 112 for training. We ensure that there are no cross-
set cross-reenactments: that is, identities in the training set only drive other training-
set identities (and similarly for the validation and test sets). This allows us to test the
models on facial appearances and expressions that were not seen during training. To
evaluate the generalization of trained models to new generators, we train our network
on videos generated for the training set identities using one generator, and evaluate on
the synthetic videos of test-set identities synthesized using remaining two generators.
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Reference Identity = IDg

IDg — IDg d=0.84 D¢ — ID; d=0.95 ID; — IDg d=1.58

ID; — ID> d=0.589  IDs — ID7 d=0.961  ID; — 1Dy d=2.042  IDg — ID, d=1.787
Fig.4: Animated figure. Open in a media-enabled viewer like Adobe Reader and click on
the inset. Our embeddings capture the dynamics of an expression, rather than the appearance
of the face. For each row, we pick a reference identity. The green box indicates reenactments
driven by the reference identity, the red and blue are cross-reenactments of the reference identity.
We compute the average distance of each clip shown here against all other clips driven by the
reference identity. The average distance to the other clips of the reference identity is consistent
for a given motion, and lower (better) when the reference identity is driving as compared to the
cross-reenactments that use the reference identity as target. Here, we show videos generated by
face-vid2vid [[60], and use the embedding vectors predicted by the model trained on the same
generator (see Figure generalization to new generators not seen during training).

6 Evaluation

We thoroughly evaluate our algorithm both qualitatively and quantitatively. Our algo-
rithm outperforms reasonable baselines (Section [6.1)), it generalizes to generators not
seen in training (Section [6.2)), and it is robust to video compression (Supplement). We
also perform a number of ablation studies to analyze our design choices: our input fea-
tures, the importance of the time-shuffling term in the loss function (Section @, and
the impact of clip duration (Supplement).

We begin by evaluating qualitatively our method’s ability to extract embedding vec-
tors based on the driving identity. Figure 4] shows a set of self- and cross-reenacted
clips (please view the animation in a media-enabled viewer, such as Adobe Acrobat).
For each row, we take one identity as reference and we compute the embedding vec-
tors of clips that use it both as the driving and the target identity. We then compute
the average Euclidean distance of the resulting embedding vectors against those of the
self-reenactments by the same reference identity. We note that the average distance d is
lower when the driving identity matches the reference identity (first two columns). We
also note that the distances between the clips in the first two columns are similar: this
confirms that the distance is a function of the facial motion, rather than the facial ap-
pearance. When the driving identity changes, the average distance increases, even if the
target identity matches the reference identity, which is precisely our goal. More results
are in the Supplement.
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Generator: Face-vid2vid Generator: TPS Generator: LIA

0.5 4 051 4 05

Ours - 0.87 Ours - 0.85
— [91-0.73 — [9]-0.68 — [9]-0.67
— [20] -0.72 — [20] - 0.71 — [20] - 0.67
. . 0

0 0.5 1 “(l 0.5 1 0 ll‘.') 1
Fig.5: ROC curves and AUC values for our method and two baselines: Agarwal et al. [9] and
ID-Reveal [20]. Each sub-plot shows the results on our test set for each of the three talking-head
generators: face-vid2vid [60], LIA [62]], and TPS [34].

Ours - 0.84

To evaluate our approach more formally, we use the 35 unique test-set identities
that are not used as driving or target identities in the training set (Section [5.3). One at
a time, we treat each identity ID; as target and synthesize cross-reenactments using all
the remaining identities as drivers. This is the set of “unauthorized” synthetic videos for
ID;. The self-reenacted samples for ID; form the “authorized” set. Note that there are
several self-reenacted videos of ID;, one per original video of ID;.

For each target identity ID,, we extract the dynamic identity embedding vector of all
the clips in the pool of its self- and cross-reenacted videos, and compute their Euclidean
distances. That is, for clip £ we compute

d(CIk]/)i%IDpCIlDiHIDi)v VI # k, and
d(Cih, 1, Cin, 1, )» VL # K, Vi# j.

We threshold these distances for each target identity to get an ROC curve, and average
across the target identities to get the overall area under the curve (AUC). We note that
this AUC measures one model’s ability to classify a synthetic video as self-reenactment
or as cross-reenacted. We conduct further analysis of our model’s ability to classify
other categories of videos—such as, evaluating AUC on same-utterance self- vs. cross-
reenactments or on scripted vs. free-form monologues—in the Supplement.

(6)

6.1 Comparisons with Existing Methods

Avatar fingerprinting is a novel task, and no existing methods directly address it. The
closest related works aim at detecting real versus synthetic media. As discussed in Sec-
tion 2} some of these detectors learn identity-specific features such as facial expressions
and head poses [9]], or facial shapes and motion [20] and can serve as baselines for the
task of avatar fingerprinting with some adaptation. The work by Agarwal et al. trains a
model to detect synthetic videos of a specific identity [9]. To adapt it to our task, we train
35 different models, one for each identity in the evaluation, by splitting the correspond-
ing original videos into two subsets. We then test each model on the self- and cross-
reenactment videos of the corresponding identity. ID-Reveal, trained on a large-scale
dataset, learns an embedding space where real videos of a specific identity are grouped
together [[20]. Since it shows good generalization to new identities, for the task of syn-
thetic media detection, we directly use the pre-trained model on our data to detect, once
again, self- versus cross-reenactment. Figure [5] shows the ROC curves for our method
compared to these baselines, on three face-reenactment generators (face-vid2vid [60],
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Trained on Face-vid2vid [60] Trained on TPS [34] Trained on LIA [62]
1 - 1 ; 1 T
0. 0.5 0.5
Face-vid2vid — 0.87 Face-vid2vid — 0.85 Face-vid2vid — 0.83
—_ TPS - 0.82 —_ TPS - 0.85 —_ TPS - 0.82
—_— LIA -0.84 — LIA -0.84 — LIA -0.84

T 0 : 0 -
0 0.5 1 0 0.5 1 0 0.5 1

Fig. 6: Generalization to new generators. To study the robustness to new talking-head genera-
tors, we train three version of our model on three different generators and test on all three.

LIA [62], and TPS [34]). Our method (AUC=0.868 on face-vid2vid) outperforms by a
wide margin both ID-Reveal (AUC=0.720 on face-vid2vid), and the method by Agar-
wal et al. (AUC=0.726 on face-vid2vid). We also note that, unlike ID-Reveal and our
method, Agarwal et al. uses a different model per identity.

6.2 Generalization to New Generators

For an avatar fingerprinting model algorithm to be broadly applicable, generalization
to new talking-head generators that are not seen in training is crucial. Since our dataset
contains videos synthesized by three different generators, we can train three models,
one with each generator, and test these models on all three generators. Figure [6] shows
the resulting ROC curves and AUC values: the overlap of the curves and similar AUC
values in each subplot confirms that our method generalizes well to new generators.

6.3 Ablation Study

Our method outperforms existing baselines by introducing two novel components: the
dynamic facial identity features, which capture the facial dynamics in a compact and ex-
pressive way, and the loss function, which defines the shape of the identity embedding.
Here we study the contribution of each, using the face-vid2vid generator for training
and testing. We evaluate the contribution of our dynamic facial identity features by
swapping them with 3DMM features [13]], a popular choice to capture facial dynam-
ics. Since we use a temporal CNN backbone similar to the one from ID-Reveal, for
this ablation we use the loss function proposed in their original paper [20]. We re-train
the same network using our features and observe a jump from 0.718 to 0.754 in terms
of AUC. Upon inspection we notice that the 3DMM features tend to over-smooth the
facial motion, and are unable to capture subtle dynamics that prove critical to avatar
fingerprinting, and which our features capture. We also evaluate the contribution of
our dynamic identity embedding loss and observe a further improvement (AUC 0.868).
With our loss formulation, the advantage of R; p, m, (t) in Eq. [3]is also evident when
compared against a model trained without this term (AUC 0.850). Table [2] summarizes
this ablation study. Additional experiments in the Supplement show the impact of F,
performance on scripted vs. free-from monologues, and robustness to video distortions.

6.4 Limitations

Our algorithm is less discriminative of subjects that are less emotive and more neu-
tral. In the future, relying on more granular dynamic signatures that can extract micro-
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Input Features Loss | AUC
3DMM ID-Reveal rec. loss [20] 0.718
Landmark distances ID-Reveal rec. loss [20] 0.754

Landmark distances | Our loss without R ip; 5 (t) | 0.850
Landmark distances Our loss with R ip; ip,, () 0.868

Table 2: Ablation study showing the importance of our input features and loss function design.

expressions can help alleviate this. The performance of our method degrades when
expressions that are critical to verifying the driving identity are not captured by the
synthetic portrait generator. Lastly, our dataset currently features only one style of in-
teraction: one-on-one conversations. We plan to expand to other conversation styles,
such as one-way speeches, in future.

7 Societal Impact

We acknowledge the societal importance of introducing guardrails when it comes to
the use of talking-head generation technology. We present this work as a step towards
trustworthy use of such technologies. Nevertheless, our work could be misconstrued
as having solved the problem and inadvertently accelerate the unhindered adoption of
synthetic talking-head technology. We do not advocate for this. Instead, we stress that
this is the first work on this topic and underscore the importance of further research.

8 Conclusions

Highly photo-real synthetic talking-head generators are becoming increasingly benefi-
cial to applications such as video conferencing and AR/VR-based remote interactions.
This trend raises the important new research question of how best to also ensure their
safe use in such scenarios. To this end, we investigate the new problem of avatar fin-
gerprinting, to authenticate legitimate talking-heads created by authorized users. We
leverage the fact that driving individuals have uniquely identifying dynamic motion
signatures, which are also preserved in the synthetic videos that they drive. Since none
exists, we contribute a new large-scale dataset carefully designed for avatar fingerprint-
ing and related tasks. We hope that our work lays the foundation for further research.
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