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The supplementary material is structured as follows:

1. In Section [A| we sketch a general framework for transfer MFL (§A.1), then
we adopt it to the transfer MFL setting in the vision-language (§A.2). We
give the convergence guarantee in Finally, in §A.4] we argue why multi-
modal FL might work with diverse data modalities by providing a simple
heuristic on the distribution of the multimodal data.

2. Section [B| elaborates on more experimental details, including (7) implemen-
tation details, (i) visualization of the data partitioning, (4ii) stochasticity
discussion, (iv) breakdown performance of the results in the main paper,
(v) communication analysis, (vi) experiments under imbalanced total client
numbers, and (vii) visualizations.

3. Section [C] discusses the potential negative social impact and limitation of
the proposed method.

A Theoretical Guarantee
In this section, we start with a general transfer multimodal FL framework.

A.1 A general framework for transfer MFL

In this section, we outline the general algorithmic framework of transfer MFL.
Consider the empirical risk minimization (ERM) problem:

M M 1 N
ur)rgl% F(w) :=ZFj(w)=Z F]ngz(w) ) (1)

::Fj

where fj;(w) = ﬁ ZieDj E.p,l(w;z) denotes the loss function evaluated on
J

input datapoint at the i*" client, with D; denoting the set of all clients whose

data has non-empty jth modality, M is the total number of modality types, and

N; denotes the number of clients for the j'® modality. At the beginning of the
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training process, the server initializes global models, w(®). The entire process
runs for 7' global communication rounds. At the beginning of each global round,
r, each client, i, receives the global model, initializes it to w) = w(), and updates
its local model in each iteration, t. We compactly write it:

t+1 t t
w; = w; — Qlocalvwiv (2)

where (2,ca1 is a block diagonal matrix, where each block is of the size of the
parameters of that individual modality type. Each client completes local training
, for E local epochs, communicates the model update to the server, and the
server aggregates them at the r*" round via:

V') = QAggregation(sz - w(r))- (3)
Finally, the update rule at the server for each round r is given as
w(T+1) = w(r) + Qservervw(r)a (4)

where (%erver is a symmetric, (M + 1) x (M + 1) block band matrix.

A.2 Transfer MFL in our setting

We consider a transfer multi-modal FL setting in the vision-language domain
with a total of N clients. Based on the general framework, we describe our
problem setup. Although presents a general multimodal loss function, in our
case, we are working with 3 modality types, so, M = 3. Let Dy, D), and Dy,
present the dataset for vision, text, and multimodal tasks, respectively. Note
that, Dy; = {d : d = (v,1)} contains vision and text pair as input, and define
Dy1(v) := Py(Dw1), Du(l) :== P(D.1), where P, is the projection operator on
the set y. For training the vision models, we use D, U Dy,(v); for training the
language models, we use Dj U Dyi(l). At the beginning of the FL process, the
server initializes global models, w(®) := (w(o’v),w(o’l),w(o"’lv),w(o"’h))T the set
of parameters, and Vuw" = (Vw], Vuj Vw], szll)—r

For local training, Qlocal = diag(nvI|Dv| nlI|D1| nle|D\,1(v)| 77V11|Dv1(1)\)7 where
N, M, Mot > 0 are stepsizes for respective modality type. Note that, |z| denotes
the dimension of an arbitrary vector, x, and I, is the identity matrix in the
space RIZIXI2l Let n,,n; and n,; clients be sampled uniformly at random from
each {N; }:;:1, respectively, in each training round. Hence, after E local epochs,

is given as:

Vuw] = nlv D ien, (wh —w}), Vuy = n% D ien (wf —wyp),

r E r
Vg \ 1 5 Wy, — Wy,
\VZT4 T Nl 1E€EN, E r

vl wvl“ - wvll

Our setting allows different structures of 2server that can be adapted to con-
sider cross-modal contribution. Specifically, we consider {2s¢;ver as follows: For



Supplementary Material for FedCola 3

i odd, ({%erver)is = Ay, and for i even, (server)is = Bi. The superdiagonal
blocks, j > 4, are given as: (¢) For i odd and j even, ({2server)i; = 0; for j
Oddv (Qscrvcr)ij = Bvl; (”) For i even and .] Oddv ('Qscrvcr)ii = Oa fOI‘j even,
(2server)ij = Dwi. Constructing server as above allows us to leverage the par-
ticipation and interaction of each modality over the vanilla multimodal Fed Avg.
For vanilla FedAvg [4L7], QPserver is a block diagonal matrix and n, = n; = ny,.

A.3 Convergence guarantee

Based on the convergence of FedAvg in [4,/7], in this section, we will comment
on the convergence of general transfer MFL. For ease of notation we consider,
at each round, S; be the number of clients sampled for the the j'! modality.

Assumptions. We require the following assumptions.

Assumption 1 (Global minimum) For each j € [M], there exists w* such
that, Fj(w*) = F} < Fj(w), for all w € R%.

Assumption 2 (3-Smoothness) The loss function f;; : RY — R at each node
is B-smooth, i.e. fij(y) < fij(x) +V fi; (@) (y—x)+ 5|y —z||? for all z,y € RY.
Remark 1. The above assumption implies that F} is B-smooth for all j.

Assumption 3 For each j € [M], there exist constants G; > 0,B; > 1, such
that for all x € R?, the stochastic noise, &4 follows

Nv

1 J
7 2 V55 @) < G+ B, (@)%

J =1

Assumption 4 (Bounded variance) For each j € [M], let gj;(w) := V fji(w, 2(x))
be the unbiased stochastic gradient of f;; with bounded variance. That is, there
exists, oj > 0 such that, E,, [llgji(w) = V fi(w)||?] < o3, for all w,i, where
Zi(k) 18 the k™ sample data at the i™™ node.

Assumption 5 The eigenvalues of the symmetric matriz, server are nonnega-
tive.

Remark 2. The above assumption implies that there exists an orthogonal matrix
P such that, 2server = PAPT, where A is a diagonal matrix of nonnegative
eigenvalues of {2server-

Remark 3. Based on the previous remark, the update rule can be rewritten
as:

Pl = pTyw 4 PTPAP VW™,
Consider the change of variable, (") := PTw(") and hence the above becomes:

) =™ 4 AVEH™, (5)



4 Sun et al.

Finally, we are all set to give our main convergence result based on the vanilla
FedAvg framework; for more details see [4,/7].

Theorem 1. For each j € [M], let F; satisfies Assumptions . Then

By /(F; (@) — Fy)
TES,

E[IVE@™)|2] <0

Remark 4. From 1 , we have F(w) = Z]M=1 F;(w). Hence the boundedness of
each E [||VE;(w™)|]] guarantee the boundedness of E [||VF(@™M)|] .

A.4 Distribution of the data

In this subsection, we discuss the perspective of multi-modal learning from the
learning of the joint distribution of the modalities. In general, we could (and
should) not assume independence among the different modalities at hand, and
thus, their joint distribution is not simply the product of the marginal distri-
butions. The training datasets then should be samples that reflect the same
distributions of each modality feature. Let D be the joint unknown distribution
of the input data of two modalities. Let the datasets, D, and D) have D, and D,
as their marginal probability distributions of modalities v and [ respectively. The
availability of the dataset Dy that follows the distribution D makes it possible
to learn the joint distribution when v and [ modalities are not independent; see
Figure [I] The learning of a joint density model over the space of multimodal
inputs is likely to yield a better generalization in various applications [10]. In-
tuitively, this explains the possibility that multi-modal learning could improve
performance when modalities are jointly used in training the parameters even
for the individual modality model.

B Numerical Experiments

This section serves as an addendum to the numerical experiments in the original
paper.

B.1 Implementation Details

General setup. We use AdamW |[6] as the optimizer with a learning rate of
0.0001 with a decay of 0.99 every epoch for local training. The batch size is set
as 112 in most cases. All the experiments are implemented under the PyTorch
framework and run on 4x Nvidia A5000 GPUs.
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Fig. 1: Multi-modal FL in the vision-language domain with collaboration from different

modalities.
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Fig. 2: Visualization of the data partitioning of different datasets: CIFAR-100 , AG

News , Flickr10k @

CreamFL . In the original CreamFL, there is public data in the server on
which the global model can be directly trained. However, we assume no training
data on the server following the traditional FL setting. Therefore, we replace
the centralized training on the server with an aggregation of the client models.
We use 500 samples from the MS-COCO [2| dataset for knowledge distillation
and set the optimal distillation and local contrastive weights as 1 and le — 7,

respectively, after a parameter search.

FedIoT . We follow the original design of FedloT by applying a factor of
100 to the multi-modal models during aggregation of the transformer blocks.
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B.2 Visualization of the data partitioning

We perform non-IID data partitioning to simulate the client data. For CIFAR-
100 and AG NEWS datasets, we partition samples of each class with a random
Dirichlet distribution with a given «. For Flickr10k, we apply a non-IID number
of training samples due to a lack of class labels, following [3]|. A visualization of
the number of samples on each client is shown in Fig. 2}

B.3 Stochasticity discussion

To study the impact of the stochasticity in the experiments, we additionally
conduct experiments with two additional random seeds besides the original seed
1 reported in the main paper and report the standard deviation (STD) of each
method. As shown in Table [2| FedCola consistently outperforms all the com-
parison methods with a significant gap meanwhile holding the smallest STD,
indicating the effectiveness and robustness of our proposed method.

B.4 Breakdown performance

To provide more details for the reported results under each setting in the main
paper, a breakdown performance with image-to-text top-1 recall (i2t RQ1), text-
to-image top-1 recall (t2i R@Q1) under both the 1k and 5k test image settings
are given in Table [4 for Flickr and Table [f] for COCO Captions.

B.5 Communication analysis

In §6.1 in the main paper, we study

the communication trade-off of the

proposed complementary local train-

ing. We further propose the communi- Table 1: Communication cost and perfor—
cation costs of the comparison meth- mance of each method on Flickr

ods as a reference. Specifically, we re- Method Comm. Cost (MB) R@lsum
port the size of the total download FedAvg 208.81 81.08
. . . FedProx 208.81 78.55
communication on one image client CreamFL 91174 74.83
and one text client. An extended ver- FedloT 208.81 85.51
sion is shown in Table[Il It shows that  FedCola (CA-only) 208.81 90.09
FedCol ith llab . FedCola (Attn) 262.95 91.73
even FedCola with collaborative ag- FedCola 371.96 91.96

gregation only (CA-only) can outper-
form all comparison methods without
additional communication overhead.
Further, when more communication budget is acceptable, FedCola (Attn) can
provide a better trade-off between communication cost and performance, while
the original FedCola can provide the highest performance.
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Table 3: Flickr performance under imbalanced to-
tal client numbers

Table 2: Performance on Flickr
under different random seeds. Fed-
Cola has the lowest standard devi-

. 1k Test Image 5k Test Image
ation (STD). Setting  Method ; - - ROLyum
i2t RQ1 t2i RQ1 {2t RA1 t2i R@l
FedAvg 3158 2274  14.74 9.98 79.04
Seed More FedProx  29.24  20.51 13.64 8.76 72.15
Method 1 o oom STD | Total Image CreamFL  29.58 2134 1384 922 73.98
Clients FedloT 3276 2336  15.68 10.53 82.33
FedAvg 81.08 79.14 82.04 1.48 FedCola  37.16 26.07 18.64 12.46 94.33
FedProx  78.55 77.86 8L.G9 2.04 FedAvg 3290 23.34 15.48 10.39 82.11
CreamFL 74.83 75.94 7834  1.79 More FedProx  20.02 14.60 7.88 5.64 48.14
FedIoT 85.51 80.16 81.10 2.86 Total Text CreamFL  30.38 21.86 13.82 9.56 75.62
Clients FedloT ~ 31.88  22.85 14.82 10.29 79.84

FedCola  91.96 90.80 93.21 1.21
FedCola  36.24  25.76  17.62  12.06 91.68

B.6 Imbalanced client scenario

In the main paper, we reported the performance when the number of partici-
pating clients is imbalanced and the number of total clients is the same as the
default setting, considering the total client numbers in each type of client will
only impact the uni-aggregation before the collaboration. To provide more ex-
perimental results, we report the performance under there are more image clients
(Ny = 16 increased from 12) and more text clients (N} = 16 increased from 12)
in Table[3] As expected, FedCola still outperforms all comparison methods under
such settings.

B.7 Visualization

The smoothness of the parametric loss space has been utilized as a significant
indicator of the model generalizabilty [1,/8}/12]. To illustrate that FedCola learns
a more generalized global model, we visualize the loss space on 256 training sam-
ples of FedAvg (Fig. and FedCola (Fig. when the weights of the model
are perturbed along the direction of the top Hessian eigenvectors. The loss land-
scape of FedCola is significantly smoother than FedAvg, indicating that with
the help of the proposed framework, a more generalized global model can be
obtained. Additionally, we further conduct visualizations with Linear Discrimi-
nant Analysis (LDA) at the feature level, as shown in Fig. By computing the
distance between the feature centers, we find the gaps between uni-modal and
multi-modal datasets are reduced under FedCola.

C Potential Negative Societal Impact and Limitation

Potential Negative Societal Impact. The effectiveness of FedCola, like any
machine learning model, is contingent on the data it’s trained on. Given that
data distribution in FL settings can be highly non-uniform and biased towards
certain demographics or modalities, there’s a risk of amplifying existing biases
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Table 4: Flickr Breakdown Performance

Table 5: COCO Breakdown Performance

1k Test Image

5k Test Image

1k Test Image

5k Test Image

Setting Method RGQlLum Setting Method - - R@1uum
2t RQ1 2 RAl 2t RA1 t2i Ral 20 RG1 2 RQl 2t RG1 t2i RG1
FedAvg 3284 2290 1532 1002 8108 FedAvg ~ 36.98 2028 1676 1240 9542
FedProx 3136 2241 1484  9.94 78.55 FedProx ~ 37.56 2846 1668 1246  95.16
Default CreamFL 302 2134 1382 9.46 74.83 Default mFL  37.60 2864 1668 1234 9526
FedloT ~ 3442 2387 1634  10.88 8551 FedloT 3862 2097  17.16  12.65  98.40
FedCola  35.68 2614 1810 1204 9196 FedCola 3162 1874 1372  105.10
FedAvg 325 2334 1540 1046  8L70 FedAvg 2011 1640 1235 95.32
FedProx  31.1 22.06 13.9 9.26 76.33 FedProx 2886 1690 1220  95.62
Hot. More ity CreamFL 3148 22.59 15.74 10.19 80.00 Het More ity CreamFL 28.11 1f 11.80 91.41
CLErogencity  FedloT  33.02 2373 1594 1057 83.28 cterogeneity  pedloT 2047 1 12.24 95.89
FedCola  36.26  26.06 17.54 1196 9182 FedCola  39.62 3037 17.72 1312  100.83
FedAvg ~ 25.81 1895 1196  8.06 FedAvg 2612 14.22 1090 8391
FedProx  25.94  19.02  10.74 7.64 FedProx 3120  25.13 1328 1027  79.88
b t.I‘c.ss tion CreamFL 2694 1951 119 8.47 P L.LC.SS tion CreamFL 8158 2500 1260 9.70 78.97
artieipation peqor 2518 1813 1102 7.62 articipation peqror 3162 2535 1344 10.24 80.65
FedCola 3494 2548 1660 11.84  88.85 FedCola  40.12 3047 1828 1343  102.30
FedAvg 3122 2268 1442 9.96 78.28 FedAvg 3826 2033  17.22 1247  97.28
FedProx 3146 2281 1490 1005  79.25 FedProx  37.46 2867 1680 1246  95.39
IM‘"e CreamFL  32.02 2318 1474 1036 80.31 IM‘“E CreamFL 3680  28.66  16.02 1217 93.65
mage FedloT 3322 2340 1578  10.34 82.74 mage FedloT 3686 2006  16.78 12.34 95.04
FedCola 3542 258  17.76 1226  91.24 FedCola  40.58  31.05 19.26 1333  104.22
FedAvg 3194 2255 1520  10.00 79.69 FedAvg 3800 2895  17.26 1248  96.69
FedProx 3120 2225 1444 9.70 77.59 FedProx 3696 2870 1692 1238  94.96
Ifr’l‘”te CreamFL 3196 2320 1512 1047 80.75 “;‘"f CreamFL  36.68 2846  15.62 12.06 92,81
ox FedloT 3146 2222 1456 9.77 78.02 ex FedloT ~ 37.74 2047  17.22 1261 97.04
FedCola 3548 2550 17.40 1172  90.10 FedCola 39.82  30.32 17.96 1286  100.96
FedAvg 2492 1801  10.70 7.49 6112 FedAvg  30.30 12.02 8.99 75.10
FedProx 2428 1750  10.22 7.19 50.19 FedProx 2922 11.32 9.22 73.08
I Fewer CreamFL 2320 1712 9.64 7.15 57.12 L Fewer CreamFL  29.60 12.18 9.12 74.69
mage-Text  pgior 2068 1776 1042 747 60.34 mage-Text  pior  30.80 1242 9.36 76.14
FedCola 3406 2428 1618 1116  85.68 FedCola 37.78 2808 16.80 1174  94.40
CrARI00(FedAvg)
45 A NEWSIFedhva)
Fica20k ImalFedhvg)
Fickra0K TxtFedhvg)
2.0 ClaARI0OFedCola)
AG_NEWS(FedCola)
ick30K ImoiFedCola)
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Fig. 3: Visualization of the parametric loss landscape with Hessian eigenvectors ¢y and
€1 and the extracted features for each resulting global multi-modal model.

or creating new ones. This can lead to unfair models that perform inequitably
across different groups or modalities.

Limitations. FedCola currently does not address system heterogeneity, repre-
senting a limitation in the present framework. We propose to explore this aspect

in future research.
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