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The supplementary material is structured as follows:

1. In Section A we sketch a general framework for transfer MFL (§A.1), then
we adopt it to the transfer MFL setting in the vision-language (§A.2). We
give the convergence guarantee in §A.3. Finally, in §A.4, we argue why multi-
modal FL might work with diverse data modalities by providing a simple
heuristic on the distribution of the multimodal data.

2. Section B elaborates on more experimental details, including (i) implemen-
tation details, (ii) visualization of the data partitioning, (iii) stochasticity
discussion, (iv) breakdown performance of the results in the main paper,
(v) communication analysis, (vi) experiments under imbalanced total client
numbers, and (vii) visualizations.

3. Section C discusses the potential negative social impact and limitation of
the proposed method.

A Theoretical Guarantee

In this section, we start with a general transfer multimodal FL framework.

A.1 A general framework for transfer MFL

In this section, we outline the general algorithmic framework of transfer MFL.
Consider the empirical risk minimization (ERM) problem:

min
w∈Rd

F(w) :=

M∑
j=1

Fj(w) =

M∑
j=1

 1

Nj

Nj∑
i=1

fji(w)︸ ︷︷ ︸
:=Fj


 , (1)

where fji(w) =
1

|Dj |
∑

i∈Dj
Ez∼Di

l(w; z) denotes the loss function evaluated on
input datapoint at the ith client, with Dj denoting the set of all clients whose
data has non-empty jth modality, M is the total number of modality types, and
Nj denotes the number of clients for the jth modality. At the beginning of the
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training process, the server initializes global models, w(0). The entire process
runs for T global communication rounds. At the beginning of each global round,
r, each client, i, receives the global model, initializes it to w0

i = w(r), and updates
its local model in each iteration, t. We compactly write it:

wt+1
i = wt

i −Ωlocal∇wt
i , (2)

where Ωlocal is a block diagonal matrix, where each block is of the size of the
parameters of that individual modality type. Each client completes local training
(2), for E local epochs, communicates the model update to the server, and the
server aggregates them at the rth round via:

∇w(r) = ΩAggregation(w
E
i − w(r)). (3)

Finally, the update rule at the server for each round r is given as

w(r+1) = w(r) +Ωserver∇w(r), (4)

where Ωserver is a symmetric, (M + 1)× (M + 1) block band matrix.

A.2 Transfer MFL in our setting

We consider a transfer multi-modal FL setting in the vision-language domain
with a total of N clients. Based on the general framework, we describe our
problem setup. Although (1) presents a general multimodal loss function, in our
case, we are working with 3 modality types, so, M = 3. Let Dv, Dl, and Dvl
present the dataset for vision, text, and multimodal tasks, respectively. Note
that, Dvl = {d : d = (v, l)} contains vision and text pair as input, and define
Dvl(v) := Pv(Dvl), Dvl(l) := Pl(Dvl), where Py is the projection operator on
the set y. For training the vision models, we use Dv ∪ Dvl(v); for training the
language models, we use Dl ∪ Dvl(l). At the beginning of the FL process, the
server initializes global models, w(0) :=

(
w(0,v), w(0,l), w(0,vlv), w(0,vll)

)⊤
the set

of parameters, and ∇wr =
(
∇wr

v ∇wr
l ∇wr

vlv
∇wr

vll

)⊤
.

For local training, Ωlocal = diag(ηvI|Dv| ηlI|Dl| ηvlI|Dvl(v)| ηvlI|Dvl(l)|), where
ηv, ηl, ηvl ≥ 0 are stepsizes for respective modality type. Note that, |x| denotes
the dimension of an arbitrary vector, x, and I|x| is the identity matrix in the
space R|x|×|x|. Let nv, nl and nvl clients be sampled uniformly at random from
each {Nj}3j=1, respectively, in each training round. Hence, after E local epochs,
(3) is given as:

∇wr
v := 1

nv

∑
i∈nv

(wE
vi − wr

v),∇wr
l := 1

nl

∑
i∈nl

(wE
li
− wr

l ),(
∇wr

vlv

∇wr
vll

)
:= 1

nvl

∑
i∈nvl

(
wE

vlvi
− wr

vlv

wE
vlli

− wr
vll

)
.

Our setting allows different structures of Ωserver that can be adapted to con-
sider cross-modal contribution. Specifically, we consider Ωserver as follows: For
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i odd, (Ωserver)ii = Av, and for i even, (Ωserver)ii = Bl. The superdiagonal
blocks, j > i, are given as: (i) For i odd and j even, (Ωserver)ij = 0; for j
odd, (Ωserver)ij = Bvl; (ii) For i even and j odd, (Ωserver)ii = 0, for j even,
(Ωserver)ij = Dvl. Constructing Ωserver as above allows us to leverage the par-
ticipation and interaction of each modality over the vanilla multimodal FedAvg.
For vanilla FedAvg [4, 7], Ωserver is a block diagonal matrix and nv = nl = nvl.

A.3 Convergence guarantee

Based on the convergence of FedAvg in [4, 7], in this section, we will comment
on the convergence of general transfer MFL. For ease of notation we consider,
at each round, Sj be the number of clients sampled for the the jth modality.

Assumptions. We require the following assumptions.

Assumption 1 (Global minimum) For each j ∈ [M ], there exists w⋆ such
that, Fj(w

⋆) = F ⋆
j ≤ Fj(w), for all w ∈ Rd.

Assumption 2 (β-Smoothness) The loss function fij : Rd → R at each node
is β-smooth, i.e. fij(y) ≤ fij(x)+∇fij(x)

⊤(y−x)+ β
2 ∥y−x∥2 for all x, y ∈ Rd.

Remark 1. The above assumption implies that Fj is β-smooth for all j.

Assumption 3 For each j ∈ [M ], there exist constants Gj ≥ 0, Bj ≥ 1, such
that for all x ∈ Rd, the stochastic noise, ξi,t follows

1

Nj

Nj∑
i=1

∥∇fij(x)∥2 ≤ G2
j +B2

j ∥Fj(x)∥2.

Assumption 4 (Bounded variance) For each j ∈ [M ], let gji(w) := ∇fji(w, zi(k))
be the unbiased stochastic gradient of fji with bounded variance. That is, there
exists, σj ≥ 0 such that, Ezi(k)

[
∥gji(w)−∇fji(w)∥2

]
≤ σ2

j , for all w, i, where
zi(k) is the kth sample data at the ith node.

Assumption 5 The eigenvalues of the symmetric matrix, Ωserver are nonnega-
tive.

Remark 2. The above assumption implies that there exists an orthogonal matrix
P such that, Ωserver = PΛP⊤, where Λ is a diagonal matrix of nonnegative
eigenvalues of Ωserver.

Remark 3. Based on the previous remark, the update rule (4) can be rewritten
as:

P⊤w(r+1) = P⊤w(r) + P⊤PΛP⊤∇w(r).

Consider the change of variable, w̃(r) := P⊤w(r) and hence the above becomes:

w̃(r+1) = w̃(r) + Λ∇w̃(r). (5)
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Finally, we are all set to give our main convergence result based on the vanilla
FedAvg framework; for more details see [4, 7].

Theorem 1. For each j ∈ [M ], let Fj satisfies Assumptions 1-5. Then

E
[
∥∇Fj(w̃

(T ))∥2
]
≤ O

β
√
(Fj(w̃(0))− F ⋆

j )√
TESj

 .

Remark 4. From (1), we have F(w̃) =
∑M

j=1 Fj(w̃). Hence the boundedness of
each E

[
∥∇Fj(w̃

(T ))∥
]

guarantee the boundedness of E
[
∥∇F(w̃(T ))∥

]
.

A.4 Distribution of the data

In this subsection, we discuss the perspective of multi-modal learning from the
learning of the joint distribution of the modalities. In general, we could (and
should) not assume independence among the different modalities at hand, and
thus, their joint distribution is not simply the product of the marginal distri-
butions. The training datasets then should be samples that reflect the same
distributions of each modality feature. Let D be the joint unknown distribution
of the input data of two modalities. Let the datasets, Dv and Dl have Dv and Dl
as their marginal probability distributions of modalities v and l respectively. The
availability of the dataset Dvl that follows the distribution D makes it possible
to learn the joint distribution when v and l modalities are not independent; see
Figure 1. The learning of a joint density model over the space of multimodal
inputs is likely to yield a better generalization in various applications [10]. In-
tuitively, this explains the possibility that multi-modal learning could improve
performance when modalities are jointly used in training the parameters even
for the individual modality model.

B Numerical Experiments

This section serves as an addendum to the numerical experiments in the original
paper.

B.1 Implementation Details

General setup. We use AdamW [6] as the optimizer with a learning rate of
0.0001 with a decay of 0.99 every epoch for local training. The batch size is set
as 112 in most cases. All the experiments are implemented under the PyTorch
framework and run on 4× Nvidia A5000 GPUs.
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Fig. 1: Multi-modal FL in the vision-language domain with collaboration from different
modalities.
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Fig. 2: Visualization of the data partitioning of different datasets: CIFAR-100 [5], AG
News [13], Flickr10k [9].

CreamFL [11]. In the original CreamFL, there is public data in the server on
which the global model can be directly trained. However, we assume no training
data on the server following the traditional FL setting. Therefore, we replace
the centralized training on the server with an aggregation of the client models.
We use 500 samples from the MS-COCO [2] dataset for knowledge distillation
and set the optimal distillation and local contrastive weights as 1 and 1e − 7,
respectively, after a parameter search.

FedIoT [14]. We follow the original design of FedIoT by applying a factor of
100 to the multi-modal models during aggregation of the transformer blocks.
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B.2 Visualization of the data partitioning

We perform non-IID data partitioning to simulate the client data. For CIFAR-
100 and AG NEWS datasets, we partition samples of each class with a random
Dirichlet distribution with a given α. For Flickr10k, we apply a non-IID number
of training samples due to a lack of class labels, following [3]. A visualization of
the number of samples on each client is shown in Fig. 2.

B.3 Stochasticity discussion

To study the impact of the stochasticity in the experiments, we additionally
conduct experiments with two additional random seeds besides the original seed
1 reported in the main paper and report the standard deviation (STD) of each
method. As shown in Table 2, FedCola consistently outperforms all the com-
parison methods with a significant gap meanwhile holding the smallest STD,
indicating the effectiveness and robustness of our proposed method.

B.4 Breakdown performance

To provide more details for the reported results under each setting in the main
paper, a breakdown performance with image-to-text top-1 recall (i2t R@1), text-
to-image top-1 recall (t2i R@1) under both the 1k and 5k test image settings
are given in Table 4 for Flickr and Table 5 for COCO Captions.

B.5 Communication analysis

Table 1: Communication cost and perfor-
mance of each method on Flickr

Method Comm. Cost (MB) R@1sum

FedAvg 208.81 81.08
FedProx 208.81 78.55
CreamFL 211.74 74.83
FedIoT 208.81 85.51

FedCola (CA-only) 208.81 90.09
FedCola (Attn) 262.95 91.73

FedCola 371.26 91.96

In §6.1 in the main paper, we study
the communication trade-off of the
proposed complementary local train-
ing. We further propose the communi-
cation costs of the comparison meth-
ods as a reference. Specifically, we re-
port the size of the total download
communication on one image client
and one text client. An extended ver-
sion is shown in Table 1. It shows that
even FedCola with collaborative ag-
gregation only (CA-only) can outper-
form all comparison methods without
additional communication overhead.
Further, when more communication budget is acceptable, FedCola (Attn) can
provide a better trade-off between communication cost and performance, while
the original FedCola can provide the highest performance.
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Table 2: Performance on Flickr
under different random seeds. Fed-
Cola has the lowest standard devi-
ation (STD).

Method
Seed

STD ↓
1 42 2024

FedAvg 81.08 79.14 82.04 1.48
FedProx 78.55 77.86 81.69 2.04

CreamFL 74.83 75.94 78.34 1.79
FedIoT 85.51 80.16 81.10 2.86

FedCola 91.96 90.80 93.21 1.21

Table 3: Flickr performance under imbalanced to-
tal client numbers

Setting Method
1k Test Image 5k Test Image

R@1sum
i2t R@1 t2i R@1 i2t R@1 t2i R@1

More
Total Image

Clients

FedAvg 31.58 22.74 14.74 9.98 79.04
FedProx 29.24 20.51 13.64 8.76 72.15

CreamFL 29.58 21.34 13.84 9.22 73.98
FedIoT 32.76 23.36 15.68 10.53 82.33

FedCola 37.16 26.07 18.64 12.46 94.33

More
Total Text

Clients

FedAvg 32.90 23.34 15.48 10.39 82.11
FedProx 20.02 14.60 7.88 5.64 48.14

CreamFL 30.38 21.86 13.82 9.56 75.62
FedIoT 31.88 22.85 14.82 10.29 79.84

FedCola 36.24 25.76 17.62 12.06 91.68

B.6 Imbalanced client scenario

In the main paper, we reported the performance when the number of partici-
pating clients is imbalanced and the number of total clients is the same as the
default setting, considering the total client numbers in each type of client will
only impact the uni-aggregation before the collaboration. To provide more ex-
perimental results, we report the performance under there are more image clients
(Nv = 16 increased from 12) and more text clients (Nl = 16 increased from 12)
in Table 3. As expected, FedCola still outperforms all comparison methods under
such settings.

B.7 Visualization

The smoothness of the parametric loss space has been utilized as a significant
indicator of the model generalizabilty [1,8,12]. To illustrate that FedCola learns
a more generalized global model, we visualize the loss space on 256 training sam-
ples of FedAvg (Fig. 3a) and FedCola (Fig. 3b) when the weights of the model
are perturbed along the direction of the top Hessian eigenvectors. The loss land-
scape of FedCola is significantly smoother than FedAvg, indicating that with
the help of the proposed framework, a more generalized global model can be
obtained. Additionally, we further conduct visualizations with Linear Discrimi-
nant Analysis (LDA) at the feature level, as shown in Fig. 3c. By computing the
distance between the feature centers, we find the gaps between uni-modal and
multi-modal datasets are reduced under FedCola.

C Potential Negative Societal Impact and Limitation

Potential Negative Societal Impact. The effectiveness of FedCola, like any
machine learning model, is contingent on the data it’s trained on. Given that
data distribution in FL settings can be highly non-uniform and biased towards
certain demographics or modalities, there’s a risk of amplifying existing biases
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Table 4: Flickr Breakdown Performance

Setting Method
1k Test Image 5k Test Image

R@1sum
i2t R@1 t2i R@1 i2t R@1 t2i R@1

Default

FedAvg 32.84 22.90 15.32 10.02 81.08
FedProx 31.36 22.41 14.84 9.94 78.55

CreamFL 30.2 21.34 13.82 9.46 74.83
FedIoT 34.42 23.87 16.34 10.88 85.51

FedCola 35.68 26.14 18.10 12.04 91.96

More
Heterogeneity

FedAvg 32.5 23.34 15.40 10.46 81.70
FedProx 31.1 22.06 13.9 9.26 76.33

CreamFL 31.48 22.59 15.74 10.19 80.00
FedIoT 33.02 23.73 15.94 10.57 83.28

FedCola 36.26 26.06 17.54 11.96 91.82

Less
Participation

FedAvg 25.84 18.95 11.96 8.06 64.82
FedProx 25.94 19.02 10.74 7.64 63.33

CreamFL 26.94 19.54 11.9 8.47 66.85
FedIoT 25.18 18.13 11.02 7.62 61.94

FedCola 34.94 25.48 16.60 11.84 88.85

More
Image

FedAvg 31.22 22.68 14.42 9.96 78.28
FedProx 31.46 22.84 14.90 10.05 79.25

CreamFL 32.02 23.18 14.74 10.36 80.31
FedIoT 33.22 23.40 15.78 10.34 82.74

FedCola 35.42 25.8 17.76 12.26 91.24

More
Text

FedAvg 31.94 22.55 15.20 10.00 79.69
FedProx 31.20 22.25 14.44 9.70 77.59

CreamFL 31.96 23.20 15.12 10.47 80.75
FedIoT 31.46 22.22 14.56 9.77 78.02

FedCola 35.48 25.50 17.40 11.72 90.10

Fewer
Image-Text

FedAvg 24.92 18.01 10.70 7.49 61.12
FedProx 24.28 17.50 10.22 7.19 59.19

CreamFL 23.20 17.12 9.64 7.15 57.12
FedIoT 24.68 17.76 10.42 7.47 60.34

FedCola 34.06 24.28 16.18 11.16 85.68

Table 5: COCO Breakdown Performance

Setting Method
1k Test Image 5k Test Image

R@1sum
i2t R@1 t2i R@1 i2t R@1 t2i R@1

Default

FedAvg 36.98 29.28 16.76 12.40 95.42
FedProx 37.56 28.46 16.68 12.46 95.16

CreamFL 37.60 28.64 16.68 12.34 95.26
FedIoT 38.62 29.97 17.16 12.65 98.40

FedCola 41.02 31.62 18.74 13.72 105.10

More
Heterogeneity

FedAvg 37.46 29.11 16.40 12.35 95.32
FedProx 37.66 28.86 16.90 12.20 95.62

CreamFL 35.76 28.11 15.74 11.80 91.41
FedIoT 37.66 29.47 16.52 12.24 95.89

FedCola 39.62 30.37 17.72 13.12 100.83

Less
Participation

FedAvg 32.68 26.12 14.22 10.90 83.91
FedProx 31.20 25.13 13.28 10.27 79.88

CreamFL 31.58 25.00 12.60 9.79 78.97
FedIoT 31.62 25.35 13.44 10.24 80.65

FedCola 40.12 30.47 18.28 13.43 102.30

More
Image

FedAvg 38.26 29.33 17.22 12.47 97.28
FedProx 37.46 28.67 16.80 12.46 95.39

CreamFL 36.80 28.66 16.02 12.17 93.65
FedIoT 36.86 29.06 16.78 12.34 95.04

FedCola 40.58 31.05 19.26 13.33 104.22

More
Text

FedAvg 38.00 28.95 17.26 12.48 96.69
FedProx 36.96 28.70 16.92 12.38 94.96

CreamFL 36.68 28.46 15.62 12.06 92.81
FedIoT 37.74 29.47 17.22 12.61 97.04

FedCola 39.82 30.32 17.96 12.86 100.96

Fewer
Image-Text

FedAvg 30.30 23.78 12.02 8.99 75.10
FedProx 29.22 23.32 11.32 9.22 73.08

CreamFL 29.60 23.78 12.18 9.12 74.69
FedIoT 30.80 23.56 12.42 9.36 76.14

FedCola 37.78 28.08 16.80 11.74 94.40

(a) FedAvg
0 1.00.50.00.51.0

1

1.00.50.00.51.0

Loss

3.0

3.5

4.0

4.5

(b) FedCola (c) Extracted features

Fig. 3: Visualization of the parametric loss landscape with Hessian eigenvectors ϵ0 and
ϵ1 and the extracted features for each resulting global multi-modal model.

or creating new ones. This can lead to unfair models that perform inequitably
across different groups or modalities.

Limitations. FedCola currently does not address system heterogeneity, repre-
senting a limitation in the present framework. We propose to explore this aspect
in future research.
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