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Abstract. Implicit Neural Networks (INRs) have emerged as powerful
representations to encode all forms of data, including images, videos, au-
dios, and scenes. With video, many INRs for video have been proposed
for the compression task, and recent methods feature significant improve-
ments with respect to encoding time, storage, and reconstruction quality.
However, these encoded representations lack semantic meaning, so they
cannot be used for any downstream tasks that require such properties,
such as retrieval. This can act as a barrier for adoption of video INRs
over traditional codecs as they do not offer any significant edge apart
from compression. To alleviate this, we propose a flexible framework
that decouples the spatial and temporal aspects of the video INR. We
accomplish this with a dictionary of per-frame latents that are learned
jointly with a set of video specific hypernetworks, such that given a la-
tent, these hypernetworks can predict the INR weights to reconstruct the
given frame. This framework not only retains the compression efficiency,
but the learned latents can be aligned with features from large vision
models, which grants them discriminative properties. We align these la-
tents with CLIP and show good performance for both compression and
video retrieval tasks. By aligning with VideoLlama, we are able to per-
form open-ended chat with our learned latents as the visual inputs. Ad-
ditionally, the learned latents serve as a proxy for the underlying weights,
allowing us perform tasks like video interpolation. These semantic prop-
erties and applications, existing simultaneously with ability to perform
compression, interpolation, and superresolution properties, are a first in
this field of work.

1 Introduction

In today’s age of content explosion, large quantities of data are created every
second, and storing them reliably and efficiently is of utmost importance for
many applications. A scalable compression technique enables companies to pro-
vide better services at reduced cost and helps the end consumer by improving
their access to high-fidelity data in addition to decongesting the network. Since
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Fig. 1: Existing INRs for video (left) typically take some time-coordinate, or time and
positional coordinates and train a single network to reconstruct a video. In contrast to
these, we propose an INR system where a dictionary of implicit latent codes is learned
for a video, one latent per frame. The latents are aligned to the image features of a
large vision model, while simultaneously an INR system is learned which, given these
latent codes, generates a positional INR which can reconstruct the frame. With this
framework, we successfully develop an INR which performs both reconstructive tasks
like compression, and semantic downstream tasks like retrieval and interactive chat.

the early 90s, several compression techniques have been created and widely de-
ployed for this exact purpose. Out of these, JPEG [52] for images, HEVC [47],
AV1[12], and H.264 [53] for videos have emerged as the most popular choices,
owing to their simple design and scalable performance.

In the past decade, the rise of deep learning led to a renaissance in computer
vision, eventually impacting the visual data compression landscape [15,4,28].
Despite their success, these ML-based codecs have not seen widespread adop-
tion like traditional codecs. This is in part due to failure to generalize, since ML
codecs trained on large datasets can give sub-optimal compression for data points
that differ significantly from their training set [56,7]. Implicit Neural Represen-
tations (INR) attempt to avoid the generalization issue by operating internally.
Instead of training large models that learn to identify general patterns in train-
ing data and apply them to specific out-of-distribution data, implicit techniques
involve training a small model to exploit the specific patterns for the given data
point. That is, for video compression, this approach would train one network per
video, and for image compression, it would train one network per image. The
resulting model is essentially a function that represents the underlying signal in
spatial/temporal space.

Despite these advances, neural video compression remains unsolved. Various
methods address issues of compression quality [9,21], but two crucial questions
remain unanswered – (i) how to scale for longer videos given architectural rigidity
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and (ii) how to reduce long encoding time due to training a network for every
video. Although recent works make some progress for these [26], the training
time is still quite long, and INR behavior for lossy compression is not well-
understood [31], limiting potential for practical adoption.

Furthermore, these approaches for INR tackle only one axis of the problem,
i.e., how to formulate video INRs with the primary goal of compression. These
aim to solve problems like long encoding time directly, by reducing it. In con-
trast to these works, we instead aim to justify the compute and time needed
to train implicit representations. So, as a step towards ML-based codecs with
compelling real-world potential, we present Latent-INR – a new flexible frame-
work for formulating video INRs, where in addition to compression, the INR
enables downstream tasks like retrieval and video question answering, without
the need to decode the video. Our framework consists of two parts: (i) a dic-
tionary of learnable latents, one for each frame, and (ii) a set of hypernetworks
learned on the entire video which, given a latent as input, predict frame-specific
weight modulations on the shared base network. This shared base takes a spatial
coordinate grid as input and outputs the specific frame

This design allows us to separate the spatial and temporal aspects of the
video by modeling them separately. We can view the set of hypernetworks as a
base model that learns the general structure and style of the video, while each
learned latent conditions it to output a specific frame. The latent here acts as a
proxy for the weights of the frame-specific INR. This property is apparent from
the video interpolation ability of our model - a task that other video INR repre-
sentations struggle to perform. Like other video INRs, our method is competitive
for compression, but uniquely retains the properties of original coordinate-based
INR. That is, our continuous representations of frames allows for spatial interpo-
lation, which can be leveraged for superresolution and a decoding paradigm we
refer to as “any-resolution inference.” That is, at inference/decoding time, our
same model, with no changes to latents or architecture, can decode a video at
any resolution - a key feature missing from traditional codecs. This latent is also
quite flexible, and according to the procedure shown in Figure 1, we can align
it with the features from a large vision model, such as CLIP [33] to encode the
visual semantics of the frame while retaining nice properties such as alignment
with CLIP text embeddings. This allows for a whole spectrum of applications,
including frame, concept, and whole video retrieval with text queries.

In summary, our framework gives that extra edge apart from compression to
ML-based codecs, paving the way for their widespread adoption. Concretely,

– We propose an auto-decoder latent-based framework with spatio-temporal
decoupling for implicit video representations. Compared to other video INR
methods, this is a new way of formulating the problem.

– Our system has good compression performance, competing well with other
ML-based codecs for PSNR, BPP, and decoding speed while also enabling
any-resolution inference.
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– The learnt latent embeddings from our framework demonstrate internal gen-
eralization from the encoded dataset, achieving video interpolation, a task
that other INR based methods struggle to achieve.

– We align our latents with large foundational models like CLIP [33], thus
making our representations useful for retrieval tasks.

– We align our entire dictionary with video features for VideoLlama [55] to
enable chat-style applications, including video question answering and cap-
tioning.

2 Related Work

Implicit Neural Representations (INR’s) are a class of neural networks
designed with the intention of representing a given data point or dataset perfectly
rather than exploiting general patterns and generalizing for unseen data. SIREN
[42] pioneered the use of periodic activations to train simple MLP’s that worked
well across images, SDF and audio. This was followed by a host of works that
improved the training process of INR’s by making them faster [35,50,30] work
across multiple scales [36] and encode multiple data points [14]. Models that used
meta learning [46,49] started gaining ground as they offered the advantages of
compression along with generalization. [38,48] further made improvements to this
line of work by directly learning sparse-INR’s leading to improved compression
and improved optimization by dataset selection respectively.

Hypernetworks are a class of networks optimized for predicting parameters
of another network, with the aim of generalizing across unseen tasks[16]. Some
utilized these for scenes [44,43,13]. Trans-INR [11] introduced the paradigm of us-
ing a transformer based hypernetwork to convert data directly from image-space
to INR’s. [20] improved upon this idea and made the important observation that
it is sufficient to modulate only the first hidden layer of an INR to represent a
dataset of points. Unfortunately, these hypernetworks act on input data points
which require test-time optimizations, making them unsuitable for compression
tasks. [39] try to overcome this with an “auto-decoder” framework, where learn-
able latents represent a dataset of videos, with each latent corresponding to
a single video, such that no encoder is needed. Others have investigated this
paradigm for a variety of modalities[40,37,5]. Still, the lack of decoupling space
from time prohibits the method from scaling to real-world videos.

Video INRs have recently gained popularity for compression. [9] was the
first implicit representation which modelled a video as a function mapping the
temporal coordinates to the corresponding frames. Later works [23,2,8,18] it-
erated on this method, providing improvements in performance. [21] enhanced
this concept by incorporating hash-grid [30] representations to speed up encoding
times. NIRVANA [26] represented a video using a series of smaller INR models
trained in an autoregressive manner to scale for longer videos.

Video Interpolation has been a fundamental task in computer vision,
helping in creating smoother visual experiences. Over the past few years, deep
learning based methods have vastly improved the quality of these interpolations
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Fig. 2: We propose a new framework for video INR models by decoupling the spa-
tial and temporal aspects of modeling. Our framework consists of auto-decoder based
learnable latents that modulate the base network using a hypernetwork, via low-rank
modulation. Once encoded, the resulting latents act as a proxy for the underlying
weights of the representation. On the right, we show the use of these latents for addi-
tional tasks like video interpolation. By aligning these latents to the embedding space
of foundational models like CLIP and VideoLlama, we also perform retrieval and chat.

[41,19].However, current INR-based video encoders lack this feature (see discus-
sion in [10,8], for example), hindering their widespread usage.

Video Retrieval is an essential process in the digital media landscape,
where the objective is to efficiently search and extract specific video content from
expansive datasets. The complexity of understanding and indexing diverse video
content has traditionally posed significant challenges. However, with the advent
of machine learning-based methods, there has been a remarkable improvement
in both the accuracy and efficiency of video retrieval systems [1,3,24]. These
advances are limited to systems requiring an additional model, which can act as
a burden on the system as they do not compress the data.

3 Approach

3.1 Background

Implicit Neural Representations parameterize a function,

fθ : X → Y where X = {(xi, yi)|0 ≤ xi ≤ W, 0 ≤ yi ≤ H}

which represents a mapping between the coordinate space, with height H and
width W, and the underlying signal Y . This formulation is usually trained with a
standard MSE-loss: ||fθ(X)−Y ||2. For a given video V ∈ RN×H×W×3 containing
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N frames, [42] represents them as pixels moving across time, i.e.,

fθ(x, y, t) = Yt

Other formulations exist which learn frame-based [9] or patch-based [26] rep-
resentation, yet in each of these formulations, the focus is on representing the
underlying data, with the added motivation of compressing it. However, none
of these systems are designed with the goal of making these representations,
fθ, useful for downstream tasks [31,32]. Instead, we utilize a learnable latent, z,
as a part of an auto-decoder framework, along with a hypernet h to not only
compress but to create useful representations.

fθ((x, y)|θt) = Yt θt = h(zt) (1)

The resulting latent z can be used for various downstream tasks like interpolation
and retrieval, as we show in our work.

3.2 Latent-INR

Directly predicting the weights θ of the base network f , using the hypernet h,
is expensive, parameter-heavy, and unsuitable for compression. Hence, we follow
[45] [37] and instead predict low-rank matrices, which are then applied to the
base network weights. This type of modulation acts as a form of subnetwork
selection, analogous to systems proposed in [17] [34]. For a base network f with
L layers, our formulation now looks like

fθ((x, y)|θl1t , θl2t ...θlLt ) = Yt

θlt = σ(P l ×Ql) · θl hl(zt) = [P l, Ql]
(2)

where θl represents the weights of the l-th layer and θlt denotes the modulated
weights for frame t. Here, σ signifies an activation function on the matrix-product
of low rank matrices P l , Ql, which are of dimensions RN×r and RM×r, where
N ×M is the width of the base network fθ and rank r ≪ (N,M). These matri-
ces are responsible for adjusting the weights θl as dictated by the corresponding
hypernetwork hl. Note that all hypernetworks use the same latent zt ∈ RD as
input. The rank r and the number of modulated layers essentially act a hyper-
parameters that control the compression-performance trade-off.

3.3 Model architecture

In our experiments, both the base network fθ and hypernetworks hl are feedfor-
ward MLP’s that take in a coordinate input. Following [26], we also propose a
variation to the base network with an additional convolutional up-sample block,
which accepts coordinates of centroids as input and gives frame patches as out-
put. We use the standard ReLU for base network and tanh for the hypernetwork
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as the respective non-linearities. The latents Z are initialized to be a standard
normal with small variance, as we found empirically that this made the conver-
gence faster. The complete model architecture is presented in Figure 2. For more
details, see Appendix.

3.4 Model Compression

We train this entire system end-to-end with MSE-loss as the objective function.
Once trained, we apply a standard quantization to all network parameters, fur-
ther reducing the required storage. Given ϕ, a flattened parameter tensor, we
transform it according to the following equations

ϕi =

⌈
ϕi − ϕmin

2b

⌋
scale =

ϕmax − ϕmin

2b
(3)

where the ⌈·⌋ (round) operation converts its argument to the nearest integer as
dictated by bit width b of the quantization process. We also store the scale, ϕmax,
ϕmin and the parameter shapes. These quantized values for all parameters are
concatenated and further compressed using Huffman encoding.

3.5 Interpolation

Given a video of N frames and a scale α, the task of interpolation involves
creating α · N coherent frames. Once we encode a video using our framework,
we perform linear interpolation on the frame latents {zt} and pass the resulting
latent through the hypernetwork. This gives us the weight modulation required
in the INR, and the updated base network is used to obtain the interpolated
frames:

zinter = βi · zt + (1− βi) · zt−1 Yinter = fθ(X;h(zinter)) (4)

where,

βi ∈
[
1

α
,
2

α
, ...,

α− 1

α

]
essentially generating α−1 frames between any two given frames. We train with
held out frames and show results for α ∈ {2, 4, 8}.

3.6 Downstream Tasks

Retrieval. Video retrieval involves searching and retrieving videos or clips from
a large database based on similarity to given user search queries that are usually
in the form of text. This can be viewed as a function R mapping query q to a
set of corresponding videos V .

R : q → V (5)
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Fig. 3: We plot the rate distortion curves on PSNR and SSIM to compare compression
with other methods. We observe that our large model achieves comparable PSNR to
the current SOTA [21]. Note that, while not plotted here, our decoding FPS is superior.
Additional per-video results are available in the Supplementary.

The function R can use any similarity measure like cosine, euclidean, or
nearest neighbors to retrieve matches. We encode a dataset of videos using our
Latent-INR framework and use the resulting trained latents as our frame level
representations. To ensure these latents share the same space as the text queries,
we add a cosine similarity loss between the latents and the CLIP image embed-
dings of the corresponding frames. Our encoding loss function is modified to be:

L = LMSE + λ · Lclip(Zt, Z
clip
t ) (6)

where Zclip
t is the CLIP Image embedding of the input frame and λ controls the

strength of this loss. In all our experiments, λ is set to 0.01.

Chat. We modify the formulation from retrieval slightly, aligning our dictio-
nary of features to VideoLlama [55] instead of CLIP. Since the shapes are not
compatible, we treat our latents as tokens and project the dimension to match
the VideoLlama space. With this, we are able to integrate our latents with a
powerful LLM, substituting our latents for the raw video input tokens. We can
then perform any task that VideoLlama can, in particular question answering
and captioning. We wish to emphasize that our latents are flexible – we can align
well with any large off the shelf model, for any downstream task.

4 Experiments

4.1 Video Compression

We perform comparative analysis for video compression on the standard Ul-
tra Video Group (UVG) dataset [29]. This dataset comprises seven high-quality
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Fig. 4: With the same model, we can
perform inference at any resolution, with
speeds competitive or beating HEVC. We
show sample frames for each resolution.
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Fig. 5: We achieve high quality reconstruc-
tion and are able to reproduce even the
finer details like water fountains and the
hair on the horse.

videos, each featuring diverse scenes shot at 120fps over a duration of five sec-
onds. While most videos contain 600 frames, the ‘shakendry’ video is an ex-
ception with 300 frames, all at a resolution of 1080x1920. To assess the visual
quality, we use standard metrics such as Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity index (SSIM). We measure the storage efficiency of these
methods using bits per pixel (BPP). As mentioned earlier, we use feedforward
MLPs for both the base network fθ and hypernetworks hl. The base network
consists of 6 layers with layer size of 512 and each hypernetwork that modulates
a selected layer has one hidden layer of size 128 with tanh non-linearity, followed
by the output layer. In the case where we use patch centroids as inputs, we add
a convolutional layer followed by a pixel-shuffle [25] for upsampling.

We use hash-grids [30] for positional encoding due to their high quality recon-
struction, although it should be noted we can use other schemes, such as Fourier
features [50] to exchange some quality for faster training (see Appendix). We
compare our method against NeRV [9] and NVP [21], with each of them encod-
ing a video per model, and the results are presented in Figure 3. We observe
that compression from our framework is comparable to baselines at similar bpp
ranges, in addition to the other downstream benefits it offers.

Due to our architecture, we are also able to operate in a novel paradigm,“any-
resolution inference.” Without changing the network architecture at all, we
can decode the video at arbitrary smaller resolutions, as well as at higher res-
olutions (super-resolution) by leveraging the continuous resolution property of
our hash grids and MLPs. We show our FPS decoding at various resolutions
in Figure 4, although it should be noted that HEVC, the standard codec we
compare to, must encode separately for every resolution while we can store all in
the same model. Figure 5 provides samples that showcase our method’s fidelity.

4.2 Video Interpolation

In our framework, we can interpolate in the latent space to generate valid inter-
polated frame outputs. We conduct experiments on two datasets: the “big buck
bunny sequence” and a selection of ten videos from the Taichi test set. Frames
are held out at a scale stride α during encoding. During testing, we interpolate
the resulting latents on the held out frames and evaluate their performance.
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Table 1: Interpolation Performance
(PSNR), for different scale strides (α).

Dataset α NeRV NIRVANA NVP Ours

Bunny

2 15.92 19.14 20.10 33.17

4 15.43 18.90 19.11 28.08

8 13.68 18.67 18.08 25.88

TaiChi

2 16.91 18.19 19.33 35.13

4 17.14 17.71 18.52 31.84

8 15.72 16.21 17.7 27.72

Table 2: Reconstruction and retrieval
ablations of CLIP on MSR-VTT.

Reconstruction Retrieval (T2V)

CLIP λ PSNR R@1 R@5 R@10

0.0 30.03 0.1 0.3 0.8

1e-3 29.83 28.4 50.8 60.6

1e-2 29.46 30.2 52.4 61.0

1e-1 28.93 29.7 51.5 61.8

1.0 28.61 30.2 51.4 61.3

Seen Frame Seen Frame Seen FrameInterpolated Frames Interpolated Frames
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Fig. 6: We compare interpolation with Latent-INR to NVP and NIRVANA. We find
that our method has less artifacts and smoother motion in the interpolated frames.

We use the same INR models utilized for compression as our baselines, with
a reduction in network layer size and modulating mask rank. While NeRV [9]
and NVP [21] interpolate time positions used as input, NIRVANA interpolates
the weights. In Table 1, we observe that while other INR methods fail to produce
perceptual frames at scale of 2, our model can give reasonable interpolations even
at a scale of 8. We confirm this qualitatively also, by inspecting interpolated
frames such as those shown in Figure 6. Our outputs have noticeably fewer
artifacts, and while imperfect, handle the motion better. Compared to other
video INR methods, our approach of using learnt latents facilitates the model to
have an internal representation of the video content.

4.3 Downstream Tasks

Retrieval
To showcase the flexibility of our latents, we align them with CLIP and evalu-

ate their performance on standard retrieval tasks. We utilize the validation set of
COIN dataset [51] and a subset of Howto100m dataset to evaluate performance.
We first encode each video in our split using our Latent-INR framework with
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Table 3: Class and segment retrieval. Our
method often exceeds CLIP performance.

Class Level Segment Level

Dataset Method R@1 R@5 R@10 R@1 R@5 R@10

COIN
CLIP 31.60 44.70 50.70 6.60 13.10 16.50

Ours 34.40 45.10 50.50 6.40 13.30 17.00

HowTo100m*
CLIP 31.58 36.84 47.37 21.13 37.32 40.85

Ours 31.58 42.11 47.36 23.24 43.67 48.60

Table 4: Whole video retrieval. Our
method matches CLIP performance.

Text to Video Video to Text

Dataset Method R@1 R@5 R@10 R@1 R@5 R@10

MSR-VTT
CLIP 30.10 51.50 61.50 24.70 49.30 61.90

Ours 30.20 52.40 61.10 25.40 49.90 61.70

ActivityNet*
CLIP 38.4 74.8 86.6 36.2 73.6 84.8

Ours 38.5 73.9 86.4 36.1 73.5 84.7

.350 .345 .342.343 .341 .341 .341 .341

.314 .313 .311.311 .311 .311 .310 .310

.322 .319 .317.317 .316 .315 .313 .312

.346 .338 .334.335 .333 .332 .330 .329

Fry Salmon

Cross the rope to wrap the bolt

Spray towards the fire

Put the clothes neatly on an ironing table

Fig. 7: Nearest Neighbours for segment-level matching of sample queries from COIN
validation set. The green boxes denote the true positives and the red ones are false pos-
itives. We show the inner product similarity between the image and the corresponding
query inside the green boxes at the bottom of each image.

a loss that encourages the latents to be closer to the CLIP-Image embeddings
of the frames, in addition to the standard reconstruction loss. We consider two
distinct problems – retrieval of the correct class across all videos and retrieval
of the correct segment within a video. These two use cases cover both ends of
the spectrum, from localizing an event in a given video to searching for similar
events across videos. We utilize the standard recall at K, where we have selected
k ∈ [1, 5, 10] to evaluate the efficacy of our method. The results are presented
in Table 3. We can see that our method matches CLIP in its retrieval perfor-
mance and even exceeds it in some cases. The qualitative results are presented
in Figure 7, where we visualize the top 5 nearest neighbours of the text query
that map to trained latents across all videos. Further results can be found in
the supplementary. We even find that our method can perform whole-video re-
trieval on MSR-VTT [54] and a custom 1,000 video sample from the ActivityNet
Captions [22] ‘val-1’ split. We average-pool both our features and CLIP features
(similar to [6]) and use CLIP features computed on video captions. In Table 4
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Fig. 8: Latent-INR LLM. We show results for aligning our learned latents to a
VideoLlama model, which allows for interactive chat. We show successes (left)
and failures (right) for summarization (top) and question answering (bottom).

we find that our retrieval is quite competitive to retrieval using the CLIP fea-
tures themselves, showing that the learnt latents have similarly good averaging
and summarizing properties even over longer (180 seconds) videos, as well as
alignment even to the paragraph-length captions used in ActivityNet.
Video-based Chat

We evaluate the performance of our trained latents, when aligned to inter-
mediate VideoLlama features. This alignment enables access to the full scope of
text chat with video understanding. We show a sample of such results, in the
form of text and video prompts with text response, in Figure 8. These results
show the LLM is able to understand video inputs when provided in the form of
INR latents rather than raw video tokens. While not perfect, we infer the ma-
jority of the shortcomings of this system are primarily the fault of the LLM we
align to. Furthermore, on the basis of our success in aligning with CLIP and now
VideoLlama, we believe our latents can be aligned to any representation. So, for
more powerful chat, one simply needs to align to a more powerful chatbot. We
thus provide these results two purposes. First, we show our model’s capability
to power efficient open-ended captioning and question answering, while still re-
taining reconstruction capabilities. Second, we point to the immense potential of
our model (or a similar paradigm) to continue to be leveraged with such models
as they expand in their size and performance.

4.4 Visualizing Trained Latents

The trained latents, representing the modulated frames, offer intriguing insights
when visualized in a reduced dimensional space. Utilizing Uniform Manifold
Approximation and Projection (UMAP)[27] we project the embeddings Zt into
a 2D space, allowing for an intuitive interpretation of their relationships. In
Figure 9, we plot the UMAP for three distinct videos from the UVG dataset:
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Fig. 9: We visualize the trained latents Zt projected to 2D using UMAP. We show that
the trained latents from our framework capture meaningful semantics of the underlying
data. Latents for Bosphore (left), Honeybee (middle) and Jockey (right) from UVG
dataset. Dark to Light color indicates frame numbers ranging from 0 to 600.

‘Bosphore,’ ‘Honeybee,’ and ‘Jockey,’ each offering unique characteristics for
examination.

‘Bosphore’, characterized by its slow-moving object and relatively static fore-
ground, exhibits a smooth latent trajectory in the 2D space. This smoothness
reflects the minimal variance in frame content, suggesting that our method ef-
fectively captures the subtle dynamics of the scene. In contrast, the ‘Honeybee’
video, with its repetitive frames, results in latents that cluster tightly together,
signifying our model’s ability to recognize and encode repetitive patterns ef-
ficiently. The most dynamic of the three, ‘Jockey’, presents a more complex
scenario with rapid changes in both the foreground and background. Here, the
latents form clusters around similar scenes, yet maintain a discernible trajectory
through the 2D space. These visualizations illustrate the semantic richness em-
bedded within the latents obtained from our framework even when trained only
for compression.

5 Ablation Studies

CLIP λ. We investigate the impact of the large model alignment weighting
term on both reconstruction and retrieval for MSR-VTT. In Table 2, we find
that PSNR decreases slightly as λ increases. However, the retrieval performance
seems to saturate at λ = 0.01. So, we suggest not tuning the λ too high for any
application, given the diminishing returns.
Layer Modulations. In our approach, we have separate hypernetworks that
modulated the selected layers. To evalute the importance of each, we design an
experiment where they are modulated in isolation. We use the same setup as
the compression experiments with the modulating mask rank fixed at 20 for all
models. In Figure 10, we can clearly see that the first few layers have a significant
impact on the encoding performance. This matches the observations from [20]
about the out sized impact of first few layers while modulating INRs.
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Fig. 10: Ablations to study the effect of layer modulations in the hypernetwork
and the effect of patch size on reconstruction quality (PSNR).

Patch Size. Scaling to higher-resolution videos can be memory-intensive. This
is particularly true when employing memory-demanding positional encoding
schemes such as hash-grids [30]. To investigate this aspect further, we experi-
ment with models that process centroids of fixed-size patches, directly predicting
the corresponding frame patches, to save memory. From Figure 10, performance
is consistent for smaller patch sizes, but drops off sharply for higher patch sizes.

6 Conclusion

Limitations. Our latents are somewhat restricted by the quality of the em-
beddings they are aligned to. Additionally, more work is still required to match
standard codecs in terms of storage and encoding time, in spite of impressive
gains in terms of quality and decoding speed. Future work could both improve
the compression, and leverage more powerful vision models.
Broader Impacts. Our method for simultaneously compressing and learning
useful features for recognition could reduce the need to decode videos for these
tasks and thus save computational resources, cutting costs and helping the envi-
ronment. However, work that advances performance for compression and recogn-
tion also has applications in surveillance and warfare.

In this work, we propose a new framework, Latent-INR, where we decou-
ple the temporal aspect from the spatial into a dictionary of learnable latents.
These auto-decoder based learnable latents modulate the layers of the base INR
network via low-rank modulation using hypernetworks. Latent-INR is not only
well-suited to video compression, but the resulting latents learn an internal rep-
resentation of the data they encode that lends itself to SOTA interpolation for
video INRs. Additionally, we also augment these latents by training them to
be aligned with CLIP and VideoLlama, which allows us to bring the power of
foundational models to compressed representations, and perform retrieval and
chat-based applications like captioning and question answering. Our work thus
opens up new possibilities of research in the implicit neural space where down-
stream tasks can be performed by these model without the need for decoding.
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