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Fig. 1: Overview. (a) Existing deformable 3D Gaussian Splatting methods show
blurry results in complex dynamic scenes, even with deformation fields using finer
feature grids. (b) Our model solves the problem by employing per-Gaussian latent em-
beddings to predict deformations for each Gaussian and achieves a clearer results.

Abstract. As 3D Gaussian Splatting (3DGS) provides fast and high-
quality novel view synthesis, it is a natural extension to deform a canoni-
cal 3DGS to multiple frames for representing a dynamic scene. However,
previous works fail to accurately reconstruct complex dynamic scenes.
We attribute the failure to the design of the deformation field, which is
built as a coordinate-based function. This approach is problematic be-
cause 3DGS is a mixture of multiple fields centered at the Gaussians,
not just a single coordinate-based framework. To resolve this problem,
we define the deformation as a function of per-Gaussian embeddings and
temporal embeddings. Moreover, we decompose deformations as coarse
and fine deformations to model slow and fast movements, respectively.
Also, we introduce a local smoothness regularization for per-Gaussian
embedding to improve the details in dynamic regions.
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1 Introduction

Dynamic scene reconstruction from multi-view input videos is an important task
in computer vision, as it can be extended to various applications and industries
such as mixed reality, content production, etc. Neural Radiance Fields (NeRF)
[19], which enable photorealistic novel view synthesis from multi-view inputs,
can represent dynamic scenes by modeling the scene with an additional time
input [12, 22]. However, typical NeRFs require querying multilayer perceptron
(MLP) for hundreds of points per camera ray, which limits rendering speed.

On the other hand, the recently emerging 3D Gaussian Splatting (3DGS) [10]
has the advantage of real-time rendering compared to NeRFs using a differen-
tiable rasterizer for 3D Gaussian primitives. 3DGS directly optimizes the param-
eters of 3D Gaussians (position, opacity, anisotropic covariance, and spherical
harmonics coefficients) and renders them via projection and α-blending. Since
3DGS has the characteristics of continuous volumetric radiance fields, some re-
cent studies [3,8,14,29,31,32] represent dynamic scenes by defining a canonical
3DGS and deforming it to individual frames as deformable NeRFs [31] do. Specif-
ically, they model the deformation as a function of 4D (x, y, z, t) coordinates
with MLPs or grids to predict the change in the 3D Gaussian parameters.

However, since 3DGS is a mixutre of multiple volumetric fields, it is not
appropriate to model the deformation of Gaussian parameters with a single
coordinate-based network to represent dynamic scenes. In addition, existing field-
based approaches are constrained by the resolution of the grid which models the
deformation field, the capacity of the model, or the frequencies of the input. As
shown in Figure 1, existing study does not properly represent complex dynamic
scenes, and even introducing an additional feature grid that is twice the max-
imum resolution has only a slight improvement in performance (See Appendix
for more results). We alleviate this problem by introducing a novel dynamic
representation to deform each Gaussian.

In this paper, we model the deformation of Gaussians at frames as 1) a func-
tion of a product space of per-Gaussian embeddings and temporal embeddings.
We expect this rational design to bring quality improvement by precisely model-
ing different deformations of different Gaussians. Additionally, 2) We decompose
temporal variations of the parameters into coarse and fine components, namely
coarse-fine deformation. The coarse deformation represents large or slow move-
ments in the scene, while fine deformation learns the fast or detailed movements
that coarse deformation does not cover. Finally, we propose 3) a local smooth-
ness regularization for per-Gaussian embedding to ensure the deformations of
neighboring Gaussians are similar.

In our experiments, we observe that our per-Gaussian embeddings, coarse-
fine deformation, and regularization improve the deformation quality. Our ap-
proach outperforms baselines in capturing fine details in dynamic regions and
excels even under challenging camera settings. Additionally, our method also
achieves fast rendering speed and relatively low capacity.
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2 Related Work

In this section, we review methods for dynamic scene reconstruction that deform
3D canonical space and methods for reconstructing dynamic scenes utilizing
dynamic 3D Gaussians. Afterward, we review methods that use embeddings and
spatial relationships of Gaussians.

Deforming 3D Canonical Space D-NeRF [22] reconstructs dynamic scenes
by deforming ray samples over time, using the deformation network that takes 3D
coordinates and timestamps of the sample as inputs. Nerfies [20] and HyperNeRF
[21] use per-frame trainable deformation codes instead of time conditions to
deform the canonical space. Instead of deforming from the canonical frame to
the entire frames, HyperReel [1] deforms the ray sample of the keyframe to
represent the intermediate frame. 4DGaussians [29] and D3DGS [31] reconstruct
the dynamic scene with a deformation network which inputs the center position
of the canonical 3D Gaussians and timestamps. MoDGS [15] learns the mapping
between canonical space and space at specific timestamp through invertible MLP.
In contrast, we demonstrate a novel deformation representation as a function of
a product space of per-Gaussian latent embeddings and temporal embeddings.

Dynamic 3D Gaussians To extend the fast rendering speed of 3D Gaussian
Splatting [10] into dynamic scene reconstructions. 4DGaussians [29] decodes fea-
tures from multi-resolution HexPlanes [2] for temporal deformation of 3D Gaus-
sians. While D3DGS [31] uses an implicit function that processes the time and
location of the Gaussian. 4DGS [30] decomposes the 4D Gaussians into a time-
conditioned 3D Gaussians and a marginal 1D Gaussians. STG [13] represents
changes in 3D Gaussian over time through a temporal opacity and a polynomial
function for each Gaussian.

Our method uses deformable 3D Gaussians as 4DGaussians [29] and D3DGS
[31] do, but does not necessitate the separated feature field to obtain the input
feature of the deformation decoder. Our approach uses embeddings allocated to
each Gaussian and a temporal embedding shared within a specific frame.

Latent Embedding on Novel View Synthesis Some studies incorporate
latent embeddings to represent different states of the static and dynamic scene.
NeRF-W [18] and Block-NeRF [25] employ per-image embeddings to capture
different appearances of a scene, representing the scenes from in-the-wild image
collections. DyNeRF and MixVoxels [12, 27] employ a temporal embedding for
each frame to represent dynamic scenes. Nerfies [20] and HyperNeRF [21] incor-
porate both per-frame appearance and deformation embeddings. Sync-NeRF [11]
introduces time offset to calibrate the misaligned temporal embeddings on dy-
namic scenes from unsynchronized videos. We introduce per-Gaussian latent
embedding to encode the changes over time of each Gaussian and use temporal
embeddings to represent different states in each frame of the scene.
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Considering Spatial Relationships of Gaussians Scaffold-GS [16] recon-
struct 3D scenes by synthesizing Gaussians from anchors, utilizing that the neigh-
boring Gaussians have similar properties. SAGS [26] creates a graph based on
k-nearest neighbors (KNN) so that each Gaussian is optimized while consider-
ing its neighboring Gaussians. In dynamic scene reconstruction, SC-GS [9] and
GaussianPrediction [34] deform Gaussians by combining the deformations of key
point Gaussians. Dynamic 3D Gaussians [17] utilizes regularization to encourage
that Gaussians and their neighboring Gaussians deform with local rigidity. Sim-
ilarly, we propose a local smoothness regularization that encourages neighboring
Gaussians to have similar embeddings, resulting in similar deformations.

3 Method

In this section, we first provide a brief overview of 3D Gaussian Splatting (Section
3.1). Next, we introduce our overall framework, embedding-based deformation
for Gaussians (Section 3.2) and coarse-fine deformation scheme consisting of
coarse and fine deformation functions (Section 3.3). Finally, we present a local
smoothness regularization for per-Gaussian embeddings to achieve better details
on dynamic regions (Section 3.4).

3.1 Preliminary: 3D Gaussian Splatting

3D Gaussian splatting [10] optimizes a set of anisotropic 3D Gaussians through
differentiable tile rasterization to reconstruct a static 3D scene. By its efficient
rasterization, the optimized model enables real-time rendering of high-quality
images. Each 3D Gaussian kernel Gi(x) at the point x consist with position xi,
rotation Ri, and scale Si:

Gi(x) = e−
1
2 (x−xi)

TΣ−1
i (x−xi), where Σi = RiSiS

T
i R

T
i . (1)

To projecting 3D Gaussians to 2D for rendering, covariance matrix Σ′ are cal-
culated by viewing transform W and the Jacobian J of the affine approximation
of the projective transfomation [35] as follows:

Σ′ = JWΣWTJT . (2)

Blending N depth-ordered projected points that overlap the pixel, the Gaussian
kernel Gi(x) is multiplied by the opacity of the Gaussian σi and calculates the
pixel color C with the color of the Gaussian ci:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), where αi = σiGi(x). (3)

The color of Gaussian ci is determined using the SH coefficient with view direc-
tion.
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Fig. 2: Framework. Existing coordinate-based network methods struggle to represent
complex dynamic scenes. To this end, we define per-Gaussian deformation. (a) Firstly,
we assign a latent embedding for each Gaussian. Additionally, we introduce coarse and
fine temporal embeddings to represent the slow and fast state of the dynamic scene.
(b) By employing two decoders that take per-Gaussian latent embeddings along with
coarse and fine temporal embeddings as input, we estimate slow or large changes and
fast or detailed changes to model the final deformation, respectively. (c) Finally, we
introduce a local smoothness regularization so that the embeddings of neighboring
Gaussians are similar.

3.2 Embedding-Based Deformation for Gaussians

Deformable NeRFs consist of a deformation field that predicts displacement ∆x
for a given coordinate x from the canonical space to each target frame, and a
radiance field that maps color and density from a given coordinate in the canon-
ical space (x + ∆x). Existing deformable Gaussian methods employ the same
approach for predicting the deformation of Gaussians, i.e., utilizing a deforma-
tion field based on coordinates.

Unlike previous methods, we start from the design of 3DGS: the 3D scene
is represented as a mixture of Gaussians that have individual radiance fields.
Accordingly, the deformation should be defined for each Gaussian. Based on this
intuition, we introduce a function Fθ that produces deformation from learnable
embeddings zg ∈ R32 belonging to individual Gaussians (Figure 2a), and typical
temporal embeddings zt ∈ R256 for different frames:

Fθ : (zg, zt) → (∆x, ∆r, ∆s, ∆σ,∆Y ), (4)

where r is a rotation quaternion, s is a vector for scaling, σ is an opacity, and Y is
SH coefficients for modeling view-dependent color. We implement Fθ as a shallow
multi-layer perceptron (MLP) followed by an MLP head for each parameter. As
a result, the Gaussian parameters at frame t are determined by adding Fθ(zg, zt)
to the canonical Gaussian parameters (Figure 2c).

We jointly optimize the per-Gaussian embeddings zg, the deformation func-
tion Fθ, and the canonical Gaussian parameters to minimize the rendering loss.
We use the L1 and periodic DSSIM as the rendering loss between the rendered
image and the ground truth image.
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3.3 Coarse-Fine Deformation

Different parts of a scene may have coarse and fine motions [5]. E.g., a hand
swiftly stirs a pan (fine) while a body slowly moves from left to right (coarse).
Based on this intuition, we introduce a coarse-fine deformation that produces a
summation of coarse and fine deformations.

Coarse-fine deformation consists of two functions with the same architecture:
one for coarse and one for fine deformation (Figure 2c). The functions receive
different temporal embeddings as follows:

Following typical temporal embeddings, we start from a 1D feature grid
Z ∈ RN×256 for N frames and use an embedding zf

t = interp(Z, t) for fine
deformation. For coarse deformation, we linearly downsample Z by a factor of 5
to remove high-frequencies responsible for fast and detailed deformation. Then
we compute zc

t as a linear interpolation of embeddings at enclosing grid points
(Figure 2b).

As a result, coarse deformation Fθc(zg, zc
t) is responsible for representing

large or slow movements in the scene, while fine deformation Fθf(zg, zf
t) learns

the fast or detailed movements that coarse deformation does not cover. This
improves the deformation quality. Refer to the Ablation study section for more
details.

3.4 Local Smoothness Regularization

Neighboring Gaussians constructing dynamic objects tend to exhibit locally sim-
ilar deformation. Inspired by [17], we introduce a local smoothness regularization
for per-Gaussian embedding zg (Figure 2d) to encourage similar deformations
between nearby Gaussians i and j:

Lemb_reg =
1

k|S|
∑
i∈S

∑
j∈KNNi;k

(wi,j∥zgi − zgj∥2),

where wi,j = exp(−λw∥µj − µi∥22) is the weighting factor and µ is the Gaussian
center. We set λw to 2000 and k to 20 following [17]. To reduce the computational
cost, we obtain sets of k-nearest-neighbors only when the densification occurs.

Note that unlike previous approaches that directly constrain physical proper-
ties such as rigirity or rotation, We implicitly induce locally similar deformation
by ensuring that per-Gaussian embeddings are locally smooth. Our regulariza-
tion allows better capture of textures and details of dynamic objects.

4 Experiment

In this section, we first describe the criterion for selection of baselines, and
evaluation metrics. We then demonstrate the effectiveness of our method through
comparisons with various baselines and datasets (Section 4.1-4.2). Finally, we
conduct analysis and ablations of our method (Section 4.3).
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Table 1: Average performance in the test view on Neural 3D Video Dataset
The computational cost was measured based on flame_salmon_1 on the A6000. 1flame
salmon scene includes only the first segment, comprising 300 frames. 2reported time
and DyNeRF is trained on 8 GPUs and tested only on flame salmon. 3trained with 90
frames. 4trained with 50 frames.

model metric computational cost
PSNR↑ SSIM↑ LPIPS↓ Training time↓ FPS↑ Model size↓

DyNeRF12 [12] 29.58 - 0.083 1344 hours 0.01 56 MB
NeRFPlayer13 [24] 30.69 - 0.111 6 hours 0.05 1654 MB
MixVoxels [27] 30.30 0.918 0.127 1 hours 40 mins 0.93 512 MB
K-Planes [6] 30.86 0.939 0.096 1 hours 40 mins 0.13 309 MB
HyperReel4 [1] 30.37 0.921 0.106 9 hours 20 mins 1.0 1362 MB
4DGS [30] 31.19 0.940 0.051 9 hours 30 mins 33.7 8700 MB
4DGaussians [29] 30.71 0.935 0.056 50 mins 51.9 59 MB
Ours 31.31 0.945 0.037 1 hours 52 mins 74.5 35 MB

Baselines We choose the start-of-the-art method as a baseline in each dataset.
We compared against DyNeRF, NeRFPlayer, MixVoxels, K-Planes, HyperReel,
Nerfies, HyperNeRF, and TiNeuVox on the NeRF baseline. In detail, we use the
version of NeRFPlayer TensoRF VM, HyperNeRF DF, Mixvoxels-L, K-Planes
hybrid. We compared with 4DGaussians, 4DGS, and D3DGS based on the Gaus-
sian baseline. Meanwhile, we have not included STG in our comparison due to
its requirement for per-frame Structure from Motion (SfM) points, which makes
conducting a fair comparison challenging. Also, STG is not a deformable 3D
Gaussian approach. We followed the official code and configuration, except in-
creasing the training iterations for the Technicolor dataset to 1.5 times that of
the 4DGaussians, in comparison to the Neural 3D Video dataset.

Metrics We report the quality of rendered images using PSNR, SSIM, and
LPIPS. Peak Signal-to-Noise Ratio (PSNR) quantifies pixel color error between
the rendered video and the ground truth. We utilize SSIM [28] to account for the
perceived similarity of the rendered image. Additionally, we measure higher-level
perceptual similarity using Learned Perceptual Image Patch Similarity (LPIPS)
[33] with an AlexNet Backbone. Higher PSNR and SSIM values and lower LPIPS
values indicate better visual quality.

4.1 Effectiveness on Dynamic Region

Neural 3D Video Dataset [12] includes 20 multi-view videos, with each
scene consisting of either 300 frames, except for the flame_salmon scene, which
comprises 1200 frames. These scenes encompass a relatively long duration and
various movements, with some featuring multiple objects in motion. We uti-
lized Neural 3D Video dataset to observe the capability to capture dynamic ar-
eas. Total six scenes (coffee_martini, cook_spinach, cut_roasted_beef,
flame_salmon, flame_steak, sear_steak) are evaluated in Figure 3 and Ta-
ble 1. The flame_salmon scene divided into four segments, each containing 300
frames.
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Fig. 3: Qualitative comparisons on the Neural 3D Video Dataset.

Table 1 presents quantitative metrics on the average metrics across the test
views of all scenes, computational and storage costs on the first fragment of
flame_salmon scene. Refer to the Appendix for per-scene details. Our method
demonstrates superior reconstruction quality, FPS, and model size across com-
pared to baselines. As the table shows, NeRF baselines generally required longer
training and rendering times. While 4DGS shows relatively high reconstruction
performance, it demands longer training times and larger VRAM storage capac-
ity compared to other baselines. 4DGaussians requires lower computational and
storage cost but it displays low reconstruction quality in some scenes with rapid
dynamics, as shown in the teaser and Figure 3.

Figure 3 reports the rendering quality. Our method successfully reconstructs
the fine details in moving areas, outperforming baselines on average metrics
across test views. Baselines show blurred dynamic areas or severe artifacts in
low-light scenes such as cook_spinach and flame_steak. 4DGS exhibits the
disappearance of some static areas. In 4DGaussians, a consistent over-smoothing
occurs in dynamic areas. All baselines experienced reduced quality in reflective
or thin dynamic areas like clamps, torches, and windows.
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Table 2: Average performance in the test view on Technicolor Dataset

model metric computational cost
PSNR↑ SSIM↑ LPIPS↓ Training time↓ FPS↑ Model size↓

DyNeRF 31.80 - 0.140 - 0.02 0.6 MB
HyperReel 32.32 0.899 0.118 2 hours 45 mins 0.91 289 MB
4DGaussians 29.62 0.844 0.176 25 mins 34.8 51 MB
Ours 33.24 0.907 0.100 2 hours 55 mins 60.8 77 MB
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Fig. 4: Qualitative comparisons on the Technicolor Dataset.

Technicolor Light Field Dataset [23] is a multi-view dataset captured with
a time-synchronized 4× 4 camera rig, containing intricate details. We train ours
and the baselines on 50 frames of five commonly used scenes (Birthday, Fabien,
Painter, Theater, Trains) using full-resolution videos at 2048 × 1088 pixels,
with the second row and second column cameras used as test views.

Table 2 reports the average metrics across the test views of all scenes, com-
putational and storage costs on Painter scene. HyperReel demonstrates overall
high-quality results but struggles with relatively slow training times and FPS,
and a larger model size. 4DGaussians exhibits fast training times and FPS but
significantly underperforms in reconstructing fine details compared to other base-
lines. However, our method demonstrates superior reconstruction quality and
faster FPS compared to the baselines.

As shown in Figure 4, HyperReel produces noisy artifacts due to incorrect
predictions of the displacement vector. 4DGaussians fails to capture fine details
in dynamic areas, exhibiting over-smoothing results. All baselines struggle to
accurately reconstruct rapidly moving thin areas like fingers.
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4.2 Scenes with Challenging Camera Setting

Table 3: Average performance in the test view on Hypernerf Dataset

model metric computational cost
PSNR↑ SSIM↑ LPIPS↓ Training time↓ FPS↑ Model size↓

Nerfies [20] 22.23 - 0.170 ∼ hours < 1 -
HyperNeRF DS [21] 22.29 0.598 0.153 32 hours < 1 15 MB
TiNeuVox [4] 24.20 0.616 0.393 3 hours 30 mins 1 48 MB
D3DGS [31] 22.40 0.598 0.275 16 mins 6.95 309 MB
4DGaussians 25.03 0.682 0.281 50 mins 96.3 60 MB
Ours 25.43 0.697 0.231 1 hours 15 mins 139.3 33 MB
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Fig. 5: Qualitative comparisons on the HyperNeRF Dataset.

HyperNeRF dataset includes videos captured using two phones rigidly mounted
on a handheld rig. We train on all frames of four scenes (3D Printer, Banana,
Broom, Chicken) at a resolution downsampled by half to 536 × 960. Due to
memory constraints, D3DGS is trained on images downsampled by a quarter.

The table shows that our method outperforms the reconstruction perfor-
mance with previous methods along with compact model size and faster FPS.
Figure 5 shows that previous methods struggle to reconstruct fast-moving parts
such as fingers and broom. Especially D3DGS deteriorates in Broom scene. Table
3 reports the average metrics across the test views of all scenes, computational
and storage costs on Broom scene.
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4.3 Analyses and Ablation Study

(d) full rendering(c) fine deform only (b) coarse deform only(a) canonical rendering

Fig. 6: Deformation components. (a) The canonical space contains Gaussians to
represent all target frames of the scene. (b) Applying coarse deformation to the canon-
ical space roughly reflects the dynamics of the scene. (c) The rendering without coarse
deformation and only with fine deformation looks similar to the canonical rendering,
i.e., responsible for fine deformations. (d) Applying both coarse and fine deformation
yields natural rendering results.

Frame 185Frame 67

slow

fast

slow

fast

Fig. 7: Visualization of the magnitude of deformation. Coarse deformation
(blue) captures large and slow changes, such as the movement of the head and torso,
while fine deformation (red) is responsible for the fast and detailed movements of arms,
tongs, shadows, etc.

Deformation components In Figure 6, we present an analysis of the coarse-
fine deformation. To achieve this, we render a flame_steak scene by omitting
each of our deformation components one by one. Our full rendering results from
adding coarse and fine deformation to the canonical space (Figure 6d). When
both are removed, rendering yields an image in canonical space (Figure 6a).
Rendering with the coarse deformation, which handles large or slow changes in
the scene, produces results similar to the full rendering (Figure 6b). On the other
hand, fine deformation is responsible for fast or detailed changes in the scene,
yielding rendering similar to canonical space (Figure 6c).
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(d) Ours +     injection(c) fine deform only(b) coarse deform only(a) Ours Full

Fig. 8: Qualitative ablation results on coarse-fine deformation. (a) Our model
achieves clear results with both coarse and fine decoders. (b-c) The quality of dynamic
areas decreases if one is missing. (d) Additionally, introducing the coordinates of Gaus-
sian as an additional input into our decoders results in a decrease in the quality of both
static and dynamic regions.

Table 4: Quantitative ablation results on coarse-fine deformation.

Method PSNR↑ SSIM↑ LPIPS↓
Ours 29.70 0.933 0.041
coarse deformation only 29.48 0.931 0.044
fine deformation only 29.23 0.932 0.043
Ours + x injection 29.60 0.931 0.045

To examine the roles of the coarse and fine deformation in the coarse-fine de-
formation, we conduct a visualization on flame_steak scene. First, we compute
the Euclidean norm of positional shifts between the current and subsequent
frames. We then add the value to the DC components of the SH coefficients
proportionally to the magnitude: blue for coarse deformation and red for fine
deformation. For visual clarity, we render the original scene in grayscale. As il-
lustrated in Figure 7, coarse deformation models slower changes such as body
movement, while fine deformation models faster movements like cooking arms.
Thus, we demonstrate that by downsampling the temporal embedding grid Z,
we can effectively separate and model slow and fast deformations in the scene.

Ablation study We report the results of an ablation study on the deformation
decoder in Figure 8 and Table 4. First, our full method (using both coarse and
fine decoders) produces clear rendering results and models dynamic variations
well (Figure 8a). Training only with the coarse or fine decoder leads to blurred
dynamic areas and a failure to accurately capture detailed motion (Figure 8b-c).
Additionally, we demonstrate experiments where the Gaussian center coordinates
x are injected into the input of each decoder. As shown in Figure 8d, including
the Gaussian coordinates degrades the quality of deformation, supporting our
argument that coordinate dependency should be removed from the deformation
function.

Furthermore, we report the results of an ablation study on the local smooth-
ness regularization for per-Gaussian embeddings. As shown in Figure 9, our reg-
ularization improves the details and texture quality of moving objects. In Table
5, we show a performance comparison between the proposed regularization and
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Table 5: Quantitative ablation results on local smoothness regularization.
We compare the performance of applying our regularization with the physically-based
regularization of Dynamic 3D Gaussians [17]. Our regularization better captures details
of dynamic objects.

Method PSNR↑ SSIM↑ LPIPS↓
Ours w/o embedding reg 32.26 0.951 0.037
+ our embedding reg 32.34 0.952 0.036
+ physically-based reg 32.08 0.950 0.036

Ours w/o regOurs fullOurs w/o regOurs full

Fig. 9: Qualitative ablation results on local smoothness regularization.

the existing physically-based regularizations. To apply the method proposed by
Luiten et al. [17] to ours, we make some modifications: 1) Like our method, we
find the set of k-nearest-neighbours only when the densification occurs to reduce
the computational cost. 2) For long-term local-isometry loss, we use the time of
video frame used in previous training step instead of using the time of the first
frame. Our regularization is simple and shows better performance compared to
previous method.

5 Conclusion and Limitation

We propose a per-Gaussian deformation for 3DGS that takes per-Gaussian em-
beddings as input, instead of using the typical deformation fields from previous
deformable 3DGS works, resulting in high performance. We enhance the re-
construction quality by decomposing the dynamic changes into coarse and fine
deformation. However, our method learns inappropriate Gaussian deformation
with casually captured monocular videos [7], like other baselines. We plan to ad-
dress it in future work by introducing useful prior for monocular video settings.

Ours4DGaussiansOurs4DGaussians

Fig. 10: Limitation. Ours struggles with the casually captured monocular videos.
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