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A Math explanation for our fusion015 015

In the main paper, we point out that the fusion between two input images016 016

including Softmax Splatting [10] and time-weighted averaging loses details and017 017

high-frequency information. Here, we give an easy mathematical explanation.018 018

In the theories of Denoising Diffusion Probabilistic Models [4], a clean image019 019

can be turned into a full Gaussian noise by constant noise addition. Since our020 020

fusion process is performed at the noisy timestamp, we may as well assume that021 021

the noisy latent codes are standard Gaussian noise.022 022

Now we have the noisy latent code for each of the two images to be interpo-023 023

lated, z0T ∼ N (0, 1) and z1T ∼ N (0, 1), where T is the noisy timestamp. According024 024

to the nature of the Gaussian distribution, if the whole latent obeys the standard025 025

Gaussian distribution, each pixel should also conform to the standard Gaussian026 026

distribution and each pixel is independent of each other. Consider the Softmax027 027

Splatting operation and assume that the pixel points r1, r2, . . . rn ∼ N (0, 1) from028 028

z0T are mapped to the same location by optical flow F 0→δ, where δ ∈ (0, 1) is the029 029

middle time to be interpolated. Then the value of this location is the weighted030 030

average of the pixel points, and the formula is:031 031

µ1r1 + µ2r2 + · · ·+ µnrn ∼ N (0, µ2
1 + µ2

2 + · · ·+ µ2
n) , (1)032 032

where µi > 0 is the weight of ri and µ1 + µ2 + · · · + µn = 1. Due to the addi-033 033

tivity of independent Gaussian distributions, the mean at this location remains034 034

unchanged but the variance becomes µ2
1+µ2

2+ · · ·+µ2
n, which is far less than the035 035

original 1. Thus, the variance of all pixels of z0→δ
T obtained by Softmax Splatting036 036

of z0T is much less than 1. In the same way, we can get z1→δ
T obtained by Softmax037 037

Splatting of z1T .038 038
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Fig.A.1: Visualization of the directly fusion process, if we do not divide it into
two spaces, high-level and low-level. We can see the noise getting blurred and changes
from high frequencies to low frequencies.

The reduction in the variance of noisy latent codes means that the fluctu-039 039

ation of the noise becomes smaller and tends to be more stable. However, the040 040

noisy latent code are obtained by constantly adding noise to the clean latent041 041

codes via DDIM inversion [14], and the process forms a uniquely determined042 042

Markov chain [9]. Thus the detailed information in the image is embedded in043 043

the noise. Noise from high to low frequencies results in the loss of high frequency044 044

information in the image space.045 045

Next, we discuss the operation of time-weighted averaging:046 046

zδT = (1− δ) · z0→δ
T + δ · z1→δ

T ∼ N (0, (1− δ)2σ2
0 + δ2σ2

1) , (2)047 047

where σ2
0 and σ2

1 are the variance of z0→δ
T and z1→δ

T . Due to (1−δ)2+δ2 < 1,048 048

we can find that the variance of the final noisy latent code zδT at time δ further049 049

decreases and the detailed information is further lost. The whole process is shown050 050

in Fig. A.1, and the qualitative results are shown in Fig. A.2(a).051 051

A natural but incorrect idea is to normalize the variance back to 1 using052 052

Gaussian normalization. Thus we can rewrite Eq. 1 and Eq. 2 in the following053 053

form:054 054
µ1r1 + µ2r2 + · · ·+ µnrn√

µ2
1 + µ2

2 + · · ·+ µ2
n

∼ N (0, 1) , (3)055 055

056 056

zδT =
(1− δ) · z0→δ

T + δ · z1→δ
T√

(1− δ)2σ2
0 + δ2σ2

1

∼ N (0, 1) , (4)057 057

However, this simple normalization supplements some wrong high-frequency058 058

information and sharpens the final generated images as shown in Fig. A.2(b).059 059
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In addition, Diffmorpher [17] tries to adopt Adaptive Instance Normalization060 060

(AdaIN) [6] to ensure the coherence in color and brightness between generated061 061

images and input images. However, applying it to our task would also result in062 062

erroneous high-frequency information, just as shown in Fig. A.2(c).063 063

Our key insight is to divide the original zδT into the high-level space zT→0 and064 064

the low-level space ϵθ(zT , T ). We then fuse as usual but in the high-level space,065 065

which only contains little high-frequency information of images, mitigating the066 066

loss of details. As for ϵθ(zT , T ), in order to retain the high-frequency information,067 067

we employ the "winner-take-all"(WTA) strategy and replace all weighted average068 068

operations in Softmax Splatting and temporal interpolation with it. However, it069 069

is worth noting that if we use WTA for both high-level and low-level spaces, it070 070

will result in an unsmooth spatial transition between images interpolations, as071 071

illustrated in Fig. A.2(d).
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Fig.A.2: Visual comparison of different fusion strategies. (a)Directly fusion, (b)
using Gaussian normalisation, (c) adopting Adaptive Instance Normalization (AdaIN),
(d) employing "WTA" in both spaces, and our strategy.

072 072
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B Details about InterpBench Dataset073 073

We have collected 100 pairs of images in total, which include a wide variety of074 074

large motion of objects. We used off-the-shelf image editing tools such as MasaC-075 075

trl [1] and DragDiffusion [13] to obtain 10 pairs of edited images. All the other 90076 076

pairs of images are real images downloaded from Pixabay (https://pixabay.com/)077 077

and Mixkit (https://mixkit.co/). We hope future research on this task can ben-078 078

efit from InterpBench. The dataset will be released soon.079 079

C More Details of Baselines and metrics080 080

In experiment part, we comprehensively compare our method with previous081 081

state-of-the-art methods, including frame interpolation for large motion and im-082 082

age morphing techniques. We offer more details of the baselines and metrics that083 083

we use here:084 084

Diffinterp [15]: Interpoation between Images with Diffusion Models is a recent085 085

state-of-the-art image interpolation method based on diffusion models. They em-086 086

ploy latent interpolation, text embedding interpolation and pose guidance based087 087

on ControlNet [18]. However, they focus on transitions between different ob-088 088

jects, but cannot work well in the same objects with large motion. We utilize the089 089

official code (https://github.com/clintonjwang/ControlNet) and the pretrained090 090

Stable Diffusion v1.5 base model as our baseline.091 091

Diffmorpher [17]: Similar to Diffinterp, they worked on image morphing092 092

through diffusion model with two images of topologically similar objects as in-093 093

put. The key idea is to capture the semantics of the two images by fitting two094 094

LoRAs [5]. Since their interpolation is performed directly by superimposing two095 095

images, if there is large motion of the same object, the results are often dis-096 096

torted. We adopt the official code (https://github.com/Kevin-thu/DiffMorpher)097 097

with default settings and the pretrained Stable Diffusion v1.5 base model as our098 098

baseline.099 099

Film [12]: They try to apply frame interpolation between near-duplicate pho-100 100

tos, and accommodate larger motion than the previous method of video frame101 101

interpolation. Nevertheless, artifacts appear when the photos are not near dupli-102 102

cates. We employed the code of the Pytorch version and the official pretrained103 103

model (https://github.com/dajes/frame-interpolation-pytorch).104 104

In the main paper, we apply FID [3], LPIPS [19], WE [8] and WEmid as our105 105

evaluation metrics. We compute the FID score between the distribution of the106 106

two input images and the distribution of the two middle interpolated images.107 107

As for LPIPS, we take each of the two middle images and apply the perceptual108 108

similarity with the two input images respectively and calculate the mean values.109 109

We employ WE to evaluate the temporal consistency of the generated videos.110 110

In addition, for WEmid, we separately warp the intermediate two images to111 111

the input image pair and compute the MSE loss. For the sake of fairness, in all112 112

methods, we take the two middle-most generated images to calculate the metrics.113 113

https://pixabay.com/
https://mixkit.co/
https://github.com/clintonjwang/ControlNet
https://github.com/Kevin-thu/DiffMorpher
https://github.com/dajes/frame-interpolation-pytorch
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D Effects of inversion step T114 114

We conducted a qualitative comparison to elucidate the impact of varying T115 115

(i.e., the total number of inversion steps) during the latent optimization stage116 116

of our method. We set T to be T = 10, 20, 30, 40, 50 steps and run our approach117 117

on InterpBench to obtain the interpolation results (T = 50 corresponds to the118 118

pure noisy latent). We can observe qualitative visualization in Fig. D.3. Con-119 119

sidering generation effects and inference time, T = 30 steps outperforms other120 120

steps, we set this as our default setting.

Input image 1 Input image 2

T=10

T=20

T=30

T=40

T=50

Fig.D.3: Effects of different inversion steps T. We set DDIM inversion step to
be T = 10, 20, 30, 40, 50 steps, and compare the interpolation results.

121 121

E More implementation details of our method.122 122

E.1 Fine-tuning LORA123 123

Low-Rank Adaption (LoRA) [5] is an efficient tuning method initially developed124 124

for fine-tuning large language models, and more recently applied to diffusion125 125
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models. Rather than adjusting the complete diffusion model directly, LoRA re-126 126

fines the model parameters θ through the training of a low-rank residual com-127 127

ponent ∆θ, which can be broken down into low-rank matrices. In addition to128 128

its inherent efficiency in fine-tuning, LoRA demonstrates a remarkable ability129 129

to capture the essence of provided images within the low-rank parameter space.130 130

By simply fitting a LoRA on the two input images, the fine-tuned model can131 131

generate images with consistent semantic identity.132 132

Hence, we train a Lora ∆θ on the diffusion UNet ϵθ for the input image pair
I0 and I1. Formally, the learning objective for training ∆θ is:

L(∆θ) = Eϵ,t[||ϵ− ϵθ+∆θ(
√
ᾱtz0i +

√
1− ᾱϵ, t, ci)||2]

where z0i = ϵ(Ii) is the VAE encoded latent embedding associated with the133 133

input images, ϵ ∼ N (0, I) is the random sampled Gaussian noise, ci is the text134 134

embedding encoded from the text prompt Pi and ϵθ+∆θ represents the LoRA-135 135

intergrated UNet. The fine-tuning objective is optimized separately via gradient136 136

descent in ∆θ. After fine-tuning, we apply the UNet with LoRA ∆θ as the noise137 137

prediction network in the denoising steps.138 138

E.2 WTA139 139

In the main paper, we introduce "Winner-Takes-All" (WTA) to replace all140 140

weighted-averaging operations in Softmax Splatting and time-weighted inter-141 141

polation for low-level space. Here we go into more details about WTA. As the142 142

name implies, WTA stands for its literally meaning. As shown in Eq. 1 and143 143

3, both Softmax Splatting and time-weighted interpolation involve weighted-144 144

averaging operations. In other words, the results are derived by adding together145 145

the relevant weights of pixels or latent codes, and the sum of the weights is 1.146 146

Nevertheless, as demonstrated in A, the weighted-averaging operations result in147 147

a reduction of variance. We therefore decide to take the value of whoever has the148 148

largest weight directly, thus circumventing the loss of high-frequency information149 149

caused by the variance getting smaller in the low-level space. For Eq. 1, if ri has150 150

the highest weight µi, the final result is ri instead of µ1r1 + µ2r2 + · · ·+ µnrn.151 151

Similarly, for Eq. 3, if δ is the greater than 1− δ, the final result is z0→δ
t instead152 152

of (1− δ) · z0→δ
T + δ · z1→δ

T .153 153

E.3 Text prompt154 154

In our framework, I0 and I1 can be either real images or diffusion-generated155 155

images with text prompts P0 and P1. Text prompts can simply be described as156 156

"a photo of [something]". For the input image pair and the generated results,157 157

the text prompts are all the same.158 158

E.4 Inter-frame processing module159 159

Most recent works [2, 7, 11, 16, 20] attempt to extend the existing advanced dif-160 160

fusion models for text-to-image generation to a text-to-video editing model by161 161
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inflating spatial self-attention into spatio-temporal self-attention. Specifically,162 162

the features of the patches from different frames are combined in the extended163 163

spatio-temporal attention module. By capturing spatial and temporal context164 164

in this way, we introduce this strategy to improve the inter-frame consistency165 165

without training.166 166

F More qualitative results.167 167

We present a range of scenarios to illustrate the effectiveness of our method in168 168

both image quality and semantic coherence. Additionally, we encourage readers169 169

to refer to the accompanying video for a more comprehensive visual comparison.170 170

Input Image 1 Input Image 2OursFilmDiffMorpherDiffInterp LDMVFI

Fig. F.4: More qualitative results.

171 171
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Input Image 1 Input Image 2OursFilmDiffMorpherDiffInterp LDMVFI

Fig. F.5: More qualitative results.

G Execution time172 172

As shown in Table G.1, we counted the execution time of baselines and our173 173

method on a single NVIDIA RTX 3090 GPU. All methods generate 32 inter-174 174

mediate images of 512x512 resolution. Besides inference time, our method and175 175

Diffmorpher cost additional time in fine-tuning Loras [5]. They need to fine-tune176 176

two, while we only need one. Our total runtime includes 42.15s of fine-tuning177 177

Lora time and 138.39s of inference time. Our approach is based on a diffusion178 178

model but the inference time is essentially the same as Film, due to the fact that179 179

our method only needs to compute the optical flow once to generate all frames,180 180

but Film requires computing the flow every time a frame is generated. DiffInterp181 181

employs additional texture optimization and Diffmorpher applies a resampling182 182

strategy which takes a lot of time. LDMVFI trains a diffusion model for video183 183

interpolation with many more denoising steps, which significantly increases in-184 184

ference time.185 185
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Table G.1: Execution time.

DiffInterp Diffmorpher Film LDMVFI ours

Time(s) 886.76 83.24+387.09 126.68 1560.47 42.15+138.39

Fig.H.6: Interface of the user study website.

H User Study186 186

We conduct a user study to assess the effectiveness of our method as perceived187 187

by human observers. The study comprises 30 pairs of photos from InterpBench188 188

dataset. We create an online website for the user study, and a screenshot of189 189

the website interface is shown in Fig. H.6. Method 1 and Method 2 exhibit190 190

the synthesized videos of two different methods. One of the methods is ours,191 191

and the other was randomly selected from DiffInterp [15], DiffMorpher [17] and192 192

Film [12]. Note that the positions of the two methods are not fixed in a specific193 193

order, but are randomly arranged for each example. We use these methods to194 194

generate videos by interpolating frames between two images. Participants are195 195

required to select the method that can generate videos with high fidelity and196 196

high consistency. If the judgment is difficult, they can choose to skip to the next197 197

example without selecting any method. The user study is completely anonymous198 198

and it does not involve the collection of any personally identifiable data.199 199
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I Limitations200 200

Our approach builds upon the foundation of the pre-trained diffusion model;201 201

however, it also carries forward some of its constraints. By utilizing the diffusion202 202

model in a low-resolution latent space, we risk encountering issues such as texture203 203

sticking and challenges in capturing subtle movements, as shown in Fig I.7.204 204

Furthermore, our method may struggle with significant camera motions due to205 205

the wide range of viewing angles, making it challenging to obtain optical flow206 206

accurately, as shown in Fig. I.8.

Input Image 1 Input Image2
Interpolate

Fig. I.7: Limitations of our method. Our method may encounter texture sticking,
where the background near the subject moves along with it.
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Input image 1 Input image 2

Fig. I.8: Limitations of our method. The camera is rotating to advance in the
ground-truth video, but the animation we generated based on the two images is more
like changing in a plane.

207 207



ECCV 2024 Submission #2366 11

References208 208

1. Cao, M., Wang, X., Qi, Z., Shan, Y., Qie, X., Zheng, Y.: Masactrl: Tuning-free mu-209 209

tual self-attention control for consistent image synthesis and editing. arXiv preprint210 210

arXiv:2304.08465 (2023) 4211 211

2. Ceylan, D., Huang, C.H.P., Mitra, N.J.: Pix2video: Video editing using image212 212

diffusion. In: Proceedings of the IEEE/CVF International Conference on Computer213 213

Vision. pp. 23206–23217 (2023) 6214 214

3. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained215 215

by a two time-scale update rule converge to a local nash equilibrium. Advances in216 216

neural information processing systems 30 (2017) 4217 217

4. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in218 218

neural information processing systems 33, 6840–6851 (2020) 1219 219

5. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L.,220 220

Chen, W.: Lora: Low-rank adaptation of large language models. arXiv preprint221 221

arXiv:2106.09685 (2021) 4, 5, 8222 222

6. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance223 223

normalization. In: Proceedings of the IEEE international conference on computer224 224

vision. pp. 1501–1510 (2017) 3225 225

7. Khachatryan, L., Movsisyan, A., Tadevosyan, V., Henschel, R., Wang, Z.,226 226

Navasardyan, S., Shi, H.: Text2video-zero: Text-to-image diffusion models are zero-227 227

shot video generators. In: Proceedings of the IEEE/CVF International Conference228 228

on Computer Vision. pp. 15954–15964 (2023) 6229 229

8. Lai, W.S., Huang, J.B., Wang, O., Shechtman, E., Yumer, E., Yang, M.H.: Learning230 230

blind video temporal consistency. In: Proceedings of the European conference on231 231

computer vision (ECCV). pp. 170–185 (2018) 4232 232

9. Markov: An example of statistical investigation of the text eugene onegin concern-233 233

ing the connection of samples in chains. Science in Context 19(4), 591–600 (2006)234 234

2235 235

10. Niklaus, S., Liu, F.: Softmax splatting for video frame interpolation. In: Proceed-236 236

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.237 237

pp. 5437–5446 (2020) 1238 238

11. Qi, C., Cun, X., Zhang, Y., Lei, C., Wang, X., Shan, Y., Chen, Q.: Fatezero: Fusing239 239

attentions for zero-shot text-based video editing. In: Proceedings of the IEEE/CVF240 240

International Conference on Computer Vision. pp. 15932–15942 (2023) 6241 241

12. Reda, F., Kontkanen, J., Tabellion, E., Sun, D., Pantofaru, C., Curless, B.: Film:242 242

Frame interpolation for large motion. In: European Conference on Computer Vi-243 243

sion. pp. 250–266. Springer (2022) 4, 9244 244

13. Shi, Y., Xue, C., Pan, J., Zhang, W., Tan, V.Y., Bai, S.: Dragdiffusion: Har-245 245

nessing diffusion models for interactive point-based image editing. arXiv preprint246 246

arXiv:2306.14435 (2023) 4247 247

14. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint248 248

arXiv:2010.02502 (2020) 2249 249

15. Wang, C.J., Golland, P.: Interpolating between images with diffusion models. arXiv250 250

preprint arXiv:2307.12560 (2023) 4, 9251 251

16. Wu, J.Z., Ge, Y., Wang, X., Lei, S.W., Gu, Y., Shi, Y., Hsu, W., Shan, Y., Qie,252 252

X., Shou, M.Z.: Tune-a-video: One-shot tuning of image diffusion models for text-253 253

to-video generation. In: Proceedings of the IEEE/CVF International Conference254 254

on Computer Vision. pp. 7623–7633 (2023) 6255 255



12 ECCV 2024 Submission #2366

17. Zhang, K., Zhou, Y., Xu, X., Pan, X., Dai, B.: Diffmorpher: Unleashing the ca-256 256

pability of diffusion models for image morphing. arXiv preprint arXiv:2312.07409257 257

(2023) 3, 4, 9258 258

18. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image259 259

diffusion models. In: Proceedings of the IEEE/CVF International Conference on260 260

Computer Vision. pp. 3836–3847 (2023) 4261 261

19. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable262 262

effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE263 263

conference on computer vision and pattern recognition. pp. 586–595 (2018) 4264 264

20. Zhang, Y., Wei, Y., Jiang, D., Zhang, X., Zuo, W., Tian, Q.: Con-265 265

trolvideo: Training-free controllable text-to-video generation. arXiv preprint266 266

arXiv:2305.13077 (2023) 6267 267


	Supplementary Materials for DreamMover

