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Abstract. We study the problem of generating intermediate images
from image pairs with large motion while maintaining semantic con-
sistency. Due to the large motion, the intermediate semantic information
may be absent in input images. Existing methods either limit to small
motion or focus on topologically similar objects, leading to artifacts and
inconsistency in the interpolation results. To overcome this challenge, we
delve into pre-trained image diffusion models for their capabilities in se-
mantic cognition and representations, ensuring consistent expression of
the absent intermediate semantic representations with the input. To this
end, we propose DreamMover, a novel image interpolation framework
with three main components: 1) A natural flow estimator based on the
diffusion model that can implicitly reason about the semantic correspon-
dence between two images. 2) To avoid the loss of detailed information
during fusion, our key insight is to fuse information in two parts, high-
level space and low-level space. 3) To enhance the consistency between
the generated images and input, we propose the self-attention concatena-
tion and replacement approach. Lastly, we present a challenging bench-
mark dataset called InterpBench to evaluate the semantic consistency of
generated results. Extensive experiments demonstrate the effectiveness
of our method. Our project is available at https://dreamm0ver.github.io.

Keywords: Diffusion models · Image interpolation · Image editing ·
Short-video generation · Semantic consistency

1 Introduction

With the widespread popularity of short videos on the internet and mobile phone
apps such as TikTok and YouTube shorts, people enjoy so much watching short
videos. The desire for a more engaging visual experience has led to the explo-
ration of innovative technologies in computer vision and graphics, one of which is
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Fig. 1: Given two input images with large motion, our proposed method can generate
a short video with high fidelity and semantic consistency compared to previous ap-
proaches. To see the dynamic effect of our method, we encourage readers to watch our
supplementary video.

image interpolation. Image interpolation refers to the process of generating inter-
mediate images from two given images, and it has been a typical and challenging
task for many years, especially when these two images show large motions. Two
images with large motion captured at different times in one scene often exhibit
great variation, and image interpolation aims to recover the potential dynamic
processes, providing viewers with lively and dynamic animations. With the input
image pair serving as the starting and ending images, such a process generally
produces a consistent sequence of object motion videos with rather high fidelity.

Several existing methods can synthesize intermediate frames from two given
images, such as video frame interpolation and image morphing. However, video
frame interpolation [18,49,54] is primarily designed to increase video frame rates,
which is significantly different from our purpose of generating short videos. Due
to the small differences between adjacent frames, these algorithms often neglect
the semantic consistency between input video frames and synthesized interme-
diate frames. LDMVFI [4] struggles in large motion and lacks the ability of se-
mantic cognitive. Film [28] attempts to interpolate frames between two images
with relatively large motion. However, it also operates within near-duplicates
and does not model the semantic consistency of intermediate frames. On the
other hand, image morphing methods [43, 46, 51] can also produce intermediate
images from given pairs. However, these models usually focus on the transition
between topologically similar objects. In contrast, image interpolation mainly
aims to construct semantic consistency for the intermediate and input images,
generating realistically consistent videos of object movements from two images.
The lack of semantic cognitive in the aforementioned methods results in a ten-
dency to split the complete object during interpolation. When applied to such
settings, they often result in severe semantic errors and artifacts, leading to in-
accuracies in generating intermediate images (as illustrated in Fig. 1 with the
erroneous expression of the panda head).

The rise of diffusion models [10, 38, 39] has made a profound impact on the
field of image generation and image editing. Thanks to the powerful architecture
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and large aligned image-text datasets [32], the pre-trained generative diffusion
models contain rich implicit semantic information. When there is large motion
between image pairs, intermediate semantic information may not be present in
either of the input images. In order to guarantee a coherence transition from one
image to the other, we attempt to leverage the pre-trained diffusion model to
express the semantic information of input image pairs, and generate intermediate
images with high semantic consistency.

To this end, we propose DreamMover, a novel image interpolation algorithm
based on a text-to-image diffusion model, which enables generating large motion
videos with semantic consistency from two images. To ensure semantic consis-
tency between the generated and input images, we suggest a new scheme that
consists of flow estimation and image fusion. Specifically, we extract feature maps
of the input image pair from the up-blocks of U-Net [30] during the noise-adding
process. These features are then used to establish pixel correspondences between
two images by calculating the cosine distance, further yielding bidirectional opti-
cal flow maps. Based on this, we fuse the image pair using softmax splatting [24]
and time-weighted interpolation in latent space to generate intermediate images.

For image fusion, we observed that directly using weighted average opera-
tions in latent space may result in a significant loss of high-frequency information,
which is not beneficial to modeling semantic consistency. To address this issue,
we divide the noisy latent code into two components: a high-level part for over-
all spatial layout information and a low-level part representing high-frequency
details. For the high-level part, we maintain the fusion method using softmax
splatting and time-weighted interpolation. For the low-level part, we employ the
Winner-Takes-All (WTA) method for fusion. This approach preserves the cor-
rect semantic overall layout in the generated video while effectively retaining
high-frequency detail information. During the denoising stage, to further ensure
semantic consistency, we concatenate the key and value of the input image pairs
and replace those of the intermediate ones. Also, we perform low-rank adapta-
tions (LoRAs) [12] to enhance consistency by fine-tuning the diffusion model.

To the best of our knowledge, we are the first image interpolation method
considering semantic consistency, which has a vital impact on video effect. Due to
the lack of suitable datasets for image interpolation, we curate a dataset, Interp-
Bench, to evaluate the performance of generated videos from image interpolation
algorithms. Extensive experiments demonstrate that our approach significantly
outperforms the state-of-the-art video frame interpolation and image morphing
methods. We also conduct a user study to demonstrate the superiority of our
method in the view of humans.

In summary, we propose a novel image interpolation framework that can
generate semantic consistent intermediate images from image pairs with large
motion, which has the following contributions: 1) a natural optical flow estimator
for large motion, 2) a two-level fusion strategy to minimize the loss of high-
frequency information, 3) a self-attention concatenation and replacement method
to enhance semantic consistency.
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2 Related work

Image Interpolation. Previous methods such as video frame interpolation and
image morphing can synthesize interpolation images from two given images.
Video frame interpolation [6, 15, 17, 26, 36, 49] are commonly used for up-scale
frame rates of videos, which mainly exhibit small motion between consecutive
video frames. These methods often lack semantic-level cognitive capabilities and
are challenging for large motion. LDMVFI [4] trains a diffusion model for video
frame interpolation from scratch, but artifacts tend to occur when there is large
motion between images. Film [28] attempts to capture relatively large motion
in near-duplicate images. However, when the motion is even larger, artifacts
and fragmentation often appear. In contrast, our method leverages the prior in
pre-trained text-to-image diffusion models and generates reasonable and high-
fidelity interpolated images. DiffInterp [43] tries to interpolate images through
latent code interpolations and text embedding interpolations. Further, Diffmor-
pher [51] applies low-rank adaptations (LORA) [12] to two images separately
and interpolates between the LoRA parameters for semantic transition. How-
ever, they mainly focus on two images of topologically similar objects, but may
not work well in the same objects with large motion. Unlike them, we use optical
flow to fuse information between two images instead of simply overlaying it.
Controllable Image Editing Controllable image editing based on diffusion
model is a challenging task that aims to manipulate and generate novel images
according to various conditions, including text-based editing [5, 8, 42], image-
based editing [20, 31, 33, 52], point-based editing [23, 25, 35] and motion-based
editing [7,34]. These methods mainly add noise to the clean image using DDIM
inversion [38] and denoise by the guidance of various conditions. In this way,
diffusion models can generate high-quality new images that fit well with the
semantics of the origin image. Most of these works edit a single image and gen-
erate semantically consistent edited images, while the generation of intermediate
results from two images is much less explored in image diffusion models.
Image-to-Video Diffusion Models Previous works on Image-to-Video Diffu-
sion Models [37,44,47,48] have achieved great success, which contain downstream
tasks that can be used for frame interpolation between two images. We differ
significantly from these methods in that we edit images to generate intermedi-
ate image sequences via the prior pre-trained image diffusion models, but they
directly utilize video diffusion models which require more complex architectures
and training on large-scale video datasets.

3 Method

Given a pair of images I0 and I1 with large motion, we aim to generate inter-
mediate images Iδ and yield a semantically consistent video V = {Iδ|δ ∈ (0, 1)},
where the sequence length of time δ depends on the desired number of interpo-
lation images n.

We schematically illustrate our pipeline in Fig. 2. Our method starts by
obtaining bidirectional optical flow from correspondence between the feature
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Fig. 2: Overview of our method. Given two input images I0 and I1, we extract
feature maps and leverage them to obtain the bidirectional optical flow F 0→1 and F 1→0.
Next, we decompose the noisy latent code zT into two-level space and perform softmax
splatting and time interpolation for image fusion. For high-frequency information ϵθ, we
replace all weighted average operations with "Winner-Takes-All"(WTA). In addition,
we propose a novel self-attention replacement method for consistency. Finally, our
method can generate a sequence of high-fidelity interpolation frames.

maps (Sec. 3.2). In order to preserve the details of interpolation images carefully
during fusion, we divide the origin latent space into two parts, high-level and
low-level space, and operate on each part individually (Sec. 3.3). Finally, to
enhance the appearance consistency between the two input images, we propose
the self-attention concatenation and replacement during denoising, and perform
LoRA for semantic-preserving (Sec. 3.4).

3.1 Premininaries

Latent diffusion model (LDM) [29] stands out as an efficient variant of dif-
fusion models, employing the diffusion process within the latent space. This
involves the implementation of both a forward and a backward process. For a
given clean latent input z0, the forward diffusion process gradually adds Gaus-
sian noise at each timestamp t to obtain zt:

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI),

where {βt}Tt=1 represent the scale of noises, and T denotes the number of diffusion
timestamps. Then the backward denoising process utilizes a trained U-Net ϵθ for
denoising:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t), Σθ(zt, t)),

where µθ and Σθ are computed by ϵθ.
To accurately reconstruct given real images, we employ the deterministic

DDIM inversion and sampling [38] to add noise and remove noise. We can sim-
plify the denoising process into the following form to predict the zt−1 of previous
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Fig. 3: The potential of diffusion model for optical flow estimation. We per-
form PCA on the features and observe consistent spatial layouts with input images, and
obtain bidirectional optical flow through the correspondence between feature maps.

timestamp:
zt−1 =

√
αt−1 · zt→0 +

√
1− αt−1 · ϵθ(zt, t), (2)

zt→0 =
zt −

√
1− αtϵθ(zt, t)√

αt
. (3)

where t denotes the noisy time, αt =
∏t

i=1(1−βi) and zt→0 means the predicted
clean latent code that is directly denoised from zt.

3.2 Diffusion-aware flow estimation

Given two images I0 and I1, optical flow estimation is a key step in image
interpolation, which indicates the correspondences of pixels between two images
and can be employed to warp pixels to generate the intermediate results. We
can warp an image with an optical flow F by softmax splatting method [24]:

−→σ (I, F ) =

∑
(exp(M) · I, F )∑
(exp(M), F )

, (4)

where M is a metric of brightness constancy [1].
Specifically, we encode I0 and I1 into the latent space to get z0 and z1. By

getting a bidirectional optical flow F 0→1 and F 1→0 from the two images, we can
warp z0 and z1 to the middle time δ ∈ (0, 1) using softmax splatting, and get
the middle latent code z0→δ and z1→δ respectively. The final intermediate latent
code zδ can be obtained by fusing them with time-weighted interpolation.

The crux of the matter lies in getting bidirectional optical flow between two
images without introducing additional optical flow prediction modules. Draw-
ing inspiration from [19, 40, 50], diffusion model engages in implicit reasoning
about image correspondences, yielding remarkably robust and accurate results.
Therefore, we use the pre-trained diffusion model to obtain optical flow through
semantic correspondence between real images, without the need for additional
fine-tuning or supervision. Specifically, we employ the DDIM inversion [38] to
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Fig. 4: The process of direct fusion and our proposed two-level fusion. Gen-
erally, zT→0 represents a latent code. Here, for clearer visualization, we illustrate the
RGB image decoded from it to emphasize a significant loss of high-frequency informa-
tion compared to input images.

send z00 and z10 into the U-Net for adding noise, where zδt represents the latent
code of intermediate time δ after t steps of noise-adding. Meanwhile, feature
maps f0 and f1 are extracted from up-blocks of U-Net. As illustrated in Fig. 3,
the spatial layout between the feature maps is highly similar to that of the orig-
inal images, which provides us with the possibility for optical flow prediction
of two images in latent space. By traversing the points in one feature map, we
can select the pixel in the other map with the highest cosine similarity as its
corresponding location, thereby obtaining the bidirectional optical flow maps:

F 0→1(x, y) = argmax
i,j

⟨f0(x, y), f1(i, j)⟩, (5)

where (x, y) and (i, j) are the indexes of I0 and I1, and ⟨ , ⟩ denotes the cal-
culating of cosine similarity. Likewise, we can derive the optical flow F 1→0 from
I1 to I0. Lastly, we can gain the optical flow F 0→δ = δ · F 0→1 from time 0 to
the intermediate time δ and the flow F 1→δ = (1− δ) · F 1→0 from time 1 to the
intermediate time δ.

3.3 Latent space fusion

In order to combine the effective semantic information of the input image pairs,
we apply softmax splatting [24] to respectively warp these two images to middle
time δ based on the bi-directional flow, and acquire the middle results z0→δ =
−→σ (z0, F 0→δ) and z1→δ = −→σ (z1, F 1→δ). Further, we can fuse them together using
time-weighted interpolation. However, due to the large object motion between
two input images, the intermediate semantic information may be absent in input
images. Hence, we leverage the potential semantic capability of image diffusion
to yield reasonable results and maintain semantic consistency.
Direct fusion. We first add noise through DDIM inversion to z00 and z10 in
order to obtain z0T and z1T , where T is the total number of noise addition steps.
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Fig. 5: (a) Effects of fusion in different space. Compared to direct fusion, our
strategy better preserves details in the RGB image and maintains more high-frequency
energy in the Fourier spectrograms. (b) Definition of high-frequency region. We
define it as the part of the spectrogram beyond the centre 1/4. (c) High-frequency
variations during denoising.

Then, we simply warp them to the middle and combine them according to time-
weighted interpolation to obtain the noisy latent code for the middle time δ:

zδT = (1− δ) · −→σ (z0T , F
0→δ) + δ · −→σ (z1T , F

1→δ). (6)

Finally, we transmit zδT to the diffusion model for denoising and desire to di-
rectly generate a reasonable and fidelity result. Nevertheless, as demonstrated in
Fig. 4, the results of direct fusion exhibit noticeable blurriness. Intuitively, both
softmax splatting and interpolation will introduce average operations, leading to
the loss of high-frequency information. We provide mathematical explanations
and conduct a thorough analysis in supplementary material.
Two-level fusion. Revisiting the denoising process of diffusion as shown in
Eq. 2, it has two components zt→0 and ϵθ(zt, t). For zt→0, since it is a pre-
dicted clean latent by a one-step denoising rather than a multi-step progressive
denoising, it can only capture certain high-level context information while lack-
ing high-frequency details. On the other hand, the component ϵθ(zt, t) serves
to complement low-level textures during denoising. we show quantitatively that
ϵθ(zt, t) has more high-frequency components than zt→0 and that our strategy
retains more high-frequency information in Fig. 5(c).We define high-frequency
energy by the sum of the amplitudes in the high-frequency region of the Fourier
spectrogram. For the high-frequency region, we define it as the part of the spec-
trogram beyond the centre 1/4. Specifically, the portion outside the green square
in Fig. 5(b). We take the ratio of their respective high-frequency energies to that
of input image as a metric(y-axis). We perform fusion operations at the 30th
noisy step, and ϵθ(zt, t) has more high-frequency information compared to zt→0.

To integrate the effective information of two images while preserving high-
frequency details, we propose a two-level fusion strategy. Specifically, for high-
level information, we perform fusion in the zT→0 space. Per Eq. 3, z0T→0 and
z1T→0 can be obtained from z0T and z1T , and the fused result is:

zδT→0 = (1− δ) · −→σ (z0T→0, F
0→δ) + δ · −→σ (z1T→0, F

1→δ). (7)
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For low-level information, we perform fusion on ϵθ space. To mitigate the loss
of high-frequency information caused by average operation in softmax splat-
ting and time interpolation, we apply the "Winner-Takes-All"(WTA) opera-
tion, i.e, taking values of the highest weights, to obtain the fused result ϵδ =
WTA(ϵθ(z

0
T ), ϵθ(z

1
T )). After obtaining the separately fused results for two levels,

we backtrack to obtain zδT ,

zδT =
√
αT · zδT→0 +

√
1− αT · ϵδ. (8)

Finally, based on Eq. 2, we can yield a clean latent zδ0 by performing T times of
denoising, and then send it to the decoder of diffusion to get the intermediate
image Iδ. As shown in Fig. 5(a), the quality of images obtained through our
proposed two-level fusion is significantly superior to the one of direct fusion.

3.4 Reference-guided consistency

Although the intermediate results are reasonable regarding spatial layout, we
observe inconsistent changes in the generated images. We posit that this issue
arises due to the absence of adequate guidance from the original input images
during the denoising process. To solve this problem, we draw inspiration from
attention control techniques in previous image editing research [2,3,13,14,27,42]
and propose a novel self-attention concatenation and replacement method, which
introduces the attention features of the input image pair during denosing into
the denoising process of the intermediate image. Specifically, we can use the
query features in the self-attention module of interpolation images to query the
corresponding key and value features in input image pairs.

As shown in Fig. 6, in the denoising steps, we feed the noisy latent code
of the input two images into the U-Net to obtain the key and value matrices
Ki, V i(i = 0, 1) in the self-attention modules of U-Net up-sampling blocks. In
order to generate a reliable intermediate image Iδ, we replace its key and value
by concatenating Ki and V i:

Q = Qδ, K = (K0 ⊕K1), V = (V 0 ⊕ V 1); (9)
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Attentionδ = softmax(
QKT

√
dk

)V, (10)

where ⊕ denotes the concatenation operation. Thus, intermediate latent code
can query correlated local structures and textures from both input images to
further enhance consistency.

In addition, we conduct Low-Rank Adaption (LoRA) [12] to further improve
the semantic consistency of the intermediate images with input images. Unlike
Diffmorpher [51], which requires adapting LoRAs to the input two images re-
spectively, our method simply fits a single LoRA for the image pair. Finally, the
fine-tuned model can generate samples with consistent semantic identity.

4 Experiments

4.1 Implementation Details

In all of our experiments, we adopt the Stable Diffusion 1.5 [29] as our diffusion
model and the number of interpolation images is 32. During the latent optimiza-
tion stage, we schedule 50 steps for DDIM and optimize the diffusion latent at
the 30th noisy step unless specified otherwise, and we extract the output of the
second up-block of the UNet at the 14th noisy step as feature maps used for flow
estimation. In addition, we set the rank of LoRA to 16. We fine-tune the LoRA
using the AdamW optimizer with a learning rate of 5× 10−4 for 80 steps, and it
takes ∼ 40 seconds on a single NVIDIA RTX 3090 GPU. It is noteworthy that
in both DDIM inversion and denoising, we do not apply classifier-free guidance
(CFG) [11]. This is because CFG tends to accumulate numerical errors and cause
supersaturation problems [21].

4.2 Baselines and Evaluation metrics

To evaluate the effectiveness of our method, we extensively compare our out-
comes with two image morphing techniques and two video interpolation meth-
ods. Diffinterp [43] and Diffmorpher [51] are diffusion model-based methods that
can generate a sequence of intermediary images for two given images of topologi-
cally similar objects. Film [28] trained on multi-scale video interpolation datasets
attempts to handle frame interpolation for large motion. LDMVFI [4] trains a
latent diffusion model for video interpolation, since this method just obtains one
intermediate image, we iterate to generate a sequence of interpolated images.

To quantitatively evaluate the quality of interpolation images and the gener-
ated videos, we adopt Fréchet Inception Distance (FID) [9], Perceptual Similarity
(LPIPS) [53], Warping Error (WE) [16], and WEmid as our metrics. We use FID
and LPIPS to evaluate the fidelity and rationality of all methods, and utilize
WE to evaluate the temporal coherency of the generated videos. In addition, we
employ WEmid to measure whether the middle-most image is consistent with
the input image pair.
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Fig. 7: Qualitative comparisons of baselines and our method on Interp-
Bench. For each scenario, from left to right we show four methods: Diffinterp, Diff-
Morpher, Film, and ours, and from top to bottom we show four images interpolated
from each method.

4.3 InterpBench

Due to the lack of discussion on semantic consistency modeling for image in-
terpolation, there are currently no datasets suitable for our task. Existing video
frame interpolation datasets [1, 17, 22, 45] provide triplets of input image pairs
and intermediate images, but they are designed for scenarios where the mo-
tion between two input images is minimal. As such, discussing the semantic
consistency of the intermediate image may be meaningless and not applicable
to evaluating the performance of image interpolation algorithms. To meet the
demand for performance evaluation of image interpolation algorithms, we intro-
duce InterpBench, the first benchmark dataset tailored for image interpolation.
InterpBench is a diverse compilation encompassing various large motions of ob-
jects and we collected 100 pairs of pictures in total. Details of our dataset can
be found in the supplementary materials.

4.4 Qualitative Evaluation

Visual qualitative comparisons are shown in Fig. 7. Our method outperforms all
other baselines in terms of image fidelity, image detail, and semantic consistency
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Input Image 1 Input Image 2OursFilmDiffMorpherDiffInterp LDMVFI

Fig. 8: More Visualization Comparison of baselines and our method. We show
the middle-most image obtained by all methods. Our approach generates intermediate
results that maintain the best semantic consistency.

of interpolated images. In particular, our method can generate reasonable and
realistic intermediate results, such as a puppy and an eagle slowly opening their
mouths. However, Diffinterp cannot produce results that are consistent with the
input and the results are full of flickering artifacts. Diffmorpher cannot handle
correct semantic transitions with large object motion, resulting in low-quality
and distorted images. The results of Film and LDMVFI produce artifacts and
give the impression of fragmentation. Also note the legs of the bird in the top
right of Fig. 7, only our method retains the details. Meanwhile, we can observe
the girl in the bottom right, our results have the best quality and consistency.

For more comparison results, please see Fig. 8 and the supplementary ma-
terial. We show a variety of scenarios to demonstrate the superiority of our
approach in both image details and semantic consistency. Furthermore, we hope
readers to watch the supplementary video for a better dynamic comparison.

4.5 Quantitative Evaluation

As shown in Table 1, our method outperforms all baselines across most metrics
by a large margin. Specifically, our approach produces higher-quality images
with fewer artifacts, resulting in significantly better FID than other approaches.
Additionally, thanks to our effective modeling of semantic representation and
consistency, the images generated by our method exhibit higher consistency with
input images, achieving optimal LPIPS and WEmid metrics, which measure the
consistency of high-level semantic and low-level detail information, respectively.
Film [28] and LDMVFI [4] achieve better temporal consistency metrics, but the
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Table 1: Quantitative comparisons
against all baselines on InterpBench . The
better approach favors lower FID, LPIPS and
WE metrics. The best performance is in bold.

Method FID↓ LPIPS↓ WE ↓ WEmid ↓

DiffInterp 185.7836 0.5375 0.5112 0.9573
Diffmorpher 68.2286 0.3061 0.2673 0.7784
Film 54.2792 0.2313 0.1244 0.4176
LDMVFI 48.3469 0.2347 0.1453 0.4373
Ours 43.1798 0.2227 0.2069 0.3687

Table 2: User study. Pairwise com-
parison results indicate that users pre-
fer our method as better quality and fi-
delity.

Comparison Human preference

Diffinterp / Ours 5.61% /94.39%
Diffmorpher / Ours 20.36% /79.64%
Film / Ours 24.77% /75.23%
LDMVFI/ Ours 13.65% /86.35%

content they generate does not guarantee semantically consistent representations
of objects, which can seriously affect the quality of the generated video. We
encourage readers to watch the video of the supplementary material, which can
reflect the superiority of our method more intuitively.

4.6 User Study

We further conducted a user study to investigate the performance of our method
compared to all baselines from a human perspective. Specifically, we collected
30 pairs of images from InterpBench. We used different approaches to generate
videos with identical settings. During the study, we showed participants with
the input image pair and two interpolation videos, one generated by our method
and another randomly selected approach, in random order. 139 volunteers were
invited to choose the method with better perceptual quality and realism. We
report the results in Table 2, which indicates that our method outperforms al-
ternative approaches by a significant margin.

4.7 Ablation Study

Each component of our system plays an important role in improving the gen-
eration quality. To justify our design choices, we conduct quantitative ablation
studies, as presented in Table 3. Visual results of the ablation study are shown
in Fig. 9. In the “w/o our estimator” experiment, we employ “off-the-shelf” op-
tical estimator RAFT [41] as an alternative to obtain the flow. However, on one
hand, directly acquiring the optical flow in the RGB space and using it in the
latent space generates errors. On the other hand, it is difficult for general opti-
cal flow estimators to capture large motions. Therefore, as shown in Fig. 9(a),
the rock on the left incorrectly moves with the bear since input image pairs are
not derived with accurate correspondence by optical flow. In the “w/o two-level
fusion”, we directly fuse on zT space, and we can observe the results in Fig. 9(b)
and Fig. 5 are blurry. In the “w/o replace attention” and “w/o lora” experiments,
the interpolation images are not consistent with the input two images. In the
supplementary material, we discuss the effects of alternative fusion strategies
and different total noisy timestamp T .
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Fig. 9: Visual examples of the ablation study. Each row shows the results of four
intermediate images in different settings.

Table 3: Ablation Study on each component of our method.

Method FID ↓ LPIPS ↓ WE ↓ WEmid ↓

(a) w/o our estimator 53.8510 0.2334 0.2682 0.5229
(b) w/o two-level fusion 138.9329 0.4286 0.2693 0.6510
(c) w/o replace attention 69.4221 0.2919 0.2254 0.4865
(d) w/o lora 76.7142 0.2595 0.2332 0.4744
(e) Full model 43.1798 0.2227 0.2069 0.3687

5 Conclusion

In this paper, we present a novel approach for image interpolation with large
motion while ensuring the preservation of semantic consistency in the generated
results. By leveraging the prior knowledge of a pre-trained text-to-image diffu-
sion model, we propose a natural optical flow estimator, a novel two-level fusion
strategy, and a self-attention concatenation and replacement method to generate
intermediate images. We conduct extensive experiments to verify the effective-
ness of our method. We hope that our work can bring large motion interpolation
into the sight of a broader community and motivate further research.
Limitations. Our method leverages the prior of the pre-trained diffusion model,
but meanwhile inherits its limitations. Since we employ the diffusion model at low
resolution latent space, it may cause texture sticking and be difficult to capture
slight motion. We plan to explore more effective solutions in future work.
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