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1 Feature-Level Perturbation Strategies

As mentioned in Sec.3.2 of the main paper, we develop a series of feature-level
perturbation strategies from different perspectives, including ‘dropout’ (compris-
ing channel-wise dropout and spatial-wise dropout), ‘movement’ (encompassing
translation and shearing in both the X-axis and Y-axis), and ‘value’ (involving
the weighted sum of the smoothed and input feature maps). In this section, we
will elaborate on the implementation of these strategies. For the sake of simplic-
ity, we maintain a consistent notation for all perturbation strategies.

fout = Φ(f in) (1)

fout, f in ∈ RC×H×W (2)

where f in and fout denote the input and output feature maps, Φ stands for the
perturbation operation, C represents the number of channels, H and W signifies
the height and width of the feature maps.

1.1 Channel-Wise Dropout

This perturbation strategy applies channel-wise dropout with a drop probability
of 0.5 to hidden representations. Mathematically, the feature-level perturbation
using channel-wise dropout can be defined as follows.

fout = torch.nn.Dropout2d(p = 0.5)(f in) (3)

1.2 Spatial-Wise Dropout

Spatial-wise dropout discards a randomly selected rectangle region across all
channels, similar to the Cutout operation applied to raw images. To determine
the dropped spatial region, the strategy performs the following steps. Firstly, we
compute the height hd and width wd of the dropped region by rescaling the size
of input feature maps. Subsequently, we randomly select the upper left point
(x, y) of the dropped area. With the size and the location of its top-left point in
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Fig. 1: A toy sample for feature-level translation perturbation.

place, we can uniquely define the dropped area. Mathematically speaking, the
above process can be expressed as follows.

h,w = int(α×H), int(α×W ) (4)
x, y = U [0, H − h],U [0,W − w] (5)

In all experiments, we set α to 0.5. Once the dropped spatial region is determined,
we generate a 0-1 mask denoted as m ∈ RH×W and implement spatial-wise
dropout by multiplying the mask with the input feature maps. Formally, the
output feature maps can be computed as follows.

m(i, j) =

{
0 if (i, j) in Rectangle(x, y, h, w)
1 otherwise

(6)

fout = f in ⊙m (7)

where ⊙ denotes the element-wise product. Note that a similar rescaling ap-
proach is applied to the remaining feature values as in channel-wise dropout.

1.3 Translation

The feature-level translation perturbation randomly selects a direction from the
candidate set (up, down, left, and right) with equal probability and translates
the input feature map along the determined direction. The length of the trans-
lation path denoted as l can be computed by rescaling the size of the input
feature maps. Specifically, we first draw a random factor α from a uniform dis-
tribution ranging from 0 to αmax and then compute the translation distance.
Taking the translation along the X-axis as an example, the above process can
be mathematically described as follows.

α ∼ U [0, αmax] (8)
l = int(α×W ) (9)

Throughout all experiments, we set αmax to 0.5. Given the translation direction
and distance, the strategy assigns the corresponding value from the input fea-
ture maps to the output feature maps. Furthermore, to address the areas left
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Fig. 2: A toy sample for feature-level shearing perturbation.

vacant due to the translation operation, we utilize the average value outside the
legal region as padding, thereby avoiding significant information loss and en-
suring numerical stability. For a more intuitive understanding of the translation
operation, please refer to the toy example presented in Fig. 1.

1.4 Shearing

Similar to translation, the shearing operation randomly selects one direction
from a set of candidate directions, each with equal probability. The feature map
is then sheared along the chosen direction. The length of the shearing path
denoted as l can be calculated by rescaling the size of the input feature maps,
and intermediate distances can be obtained by linear interpolation. Specifically,
we first draw a random factor α from a uniform distribution between 0 and αmax

and then compute the shearing distance. Taking the shearing operation in the
X-axis as an illustrative example, the above process can be expressed as follows.

α ∼ U [0, αmax] (10)
l = int(α×W ) (11)

[l1, · · · , lW ] = torch.linaspace(0, l,W ) (12)

In all experiments, we set αmax to 1.0. Subsequently, the strategy assigns cor-
responding values from the input feature maps to the output feature maps and
employs the average value of the illegal region to pad the missing areas. Fig. 2
provides an example of the shearing operation.

1.5 Value Modification

The value modification operation aims to change the feature value while preserv-
ing the relationship within each feature map. To achieve this goal, we first employ
a random-sized group convolution to facilitate local smoothing in each feature
map. The random-sized configuration allows for various degrees of smoothness,
thus comprehensively exploring the feature perturbation space. The size of the
kernel k is randomly sampled from the set of all odd numbers within the range
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of 3 to min(H,W ) with equal probability. Subsequently, we adopt the average
smoothing convolution to encode the input feature maps. Finally, we draw a
random factor α from a uniform distribution between αmin and αmax and use
the weighted sum between the input and smoothed feature maps as the pertur-
bation results. Mathematically speaking, the above process can be expressed as
follows.

k ∼ {U [3,min(H,W )], odd number} (13)

K[i, j] =
1

k2
(14)

α ∼ U [αmin, αmax] (15)

fout = α× (K ∗ f in) + (1− α)× f in (16)

where ∗ denotes the convolution operation. In all experiments, we set αmin and
αmax to 0.50 and 0.95, respectively.

1.6 Conclusion for Strategies

The aforementioned perturbation strategies consider three distinct perspectives
(‘dropout’, ‘movement’, and ‘value’), thereby achieving diverse perturbation
forms and providing a collective exploration of the feature perturbation space.
Moreover, the parameter settings for each perturbation strategy are relatively
simple. For example, the first four perturbation strategies all involve one single
hyperparameter, and we set it to 0.5 on the first three, indicating satisfactory
consistency. Note that the configuration setting αmax to 1.0 in the shearing op-
eration leads to the same upper bound (half the size of the feature map) for the
missing area as the translation operation. Additionally, the value modification
operation introduces two hyperparameters, αmin and αmax, and our settings
keep consistent with the counterparts in strong image-level perturbation.

2 Visualization Analysis

2.1 High-Dimensional Features

To diagnose the proposed paradigm in a more intuitive manner, we visualize
the high-dimensional features on STL-10 with 40 labeled samples using T-SNE.
The results are presented in Fig. 3, wherein the first two and last two columns
respectively depict the performance of algorithms following the old and pro-
posed paradigms. To elaborate, algorithms adhering to the conventional ap-
proach typically generate loose and adjacent feature clusters. In contrast, the
proposed paradigm achieves more separable and tightly clustered features, in-
dicating the effectiveness of feature-level perturbation. Moreover, traditional
algorithms often overfit noisy pseudo-labels, while the proposed approach po-
sitions most ambiguous samples near the decision boundary, minimizing their
impacts on the model. Overall, the proposed image-level weak-to-strong consis-
tency paradigm (IFMatch) generates easy-to-distinguish features, laying a solid
foundation for a robust classifier.
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(a) FixMatch on unla-
beled set.

(b) FixMatch on test
set.

(c) IFMatch (Fix) on
unlabeled set.

(d) IFMatch (Fix) on
test set.

(e) FlexMatch on unla-
beled set.

(f) FlexMatch on test
set.

(g) IFMatch (Flex) on
unlabeled set.

(h) IFMatch (Flex) on
test set.

(i) SoftMatch on unla-
beled set.

(j) SoftMatch on test
set.

(k) IFMatch (Soft) on
unlabeled set.

(l) IFMatch (Soft) on
test set.

(m) FreeMatch on un-
labeled set.

(n) FreeMatch on test
set.

(o) IFMatch (Free) on
unlabeled set.

(p) IFMatch (Free) on
test set.

Fig. 3: Feature visualization of four algorithms when following the old and proposed
paradigms on STL-10 with 40 labeled samples.

2.2 Image-Level Perturbation and Feature-Level Perturbation

We present the visualization for image-level and feature-level perturbations in
Fig. 4, which serves as the supplement for the counterpart in the main paper.
The four parts (from left to right) in Fig. 4 correspond to the raw images, the
images subjected to AIs , and the feature maps that undergo AFw ◦ AIs and
AFs ◦ AIw , respectively. As we can observe, a significant proportion of samples
in the second part can be effortlessly classified, indicating the naive sample issue
caused by the exclusive reliance on AIs . In contrast, the combination of AI

and AF proposed by our paradigm effectively expand the perturbation space,
thereby boosting the utilization of unlabeled samples.
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Table 1: Running speed (sec/iter) analysis for different configurations of the proposed
paradigm. We use FixMatch’s threshold in the second student branch, i.e. the IF-
Match (Fix) model.

AFs in Branch I AFw in Branch II CIFAR-10-40 CIFAR-100-400 ImageNet-100k

0.1011 0.2058 0.3914
✓ 0.1029 0.2092 0.3983

✓ 0.1114 0.2596 0.4357
✓ ✓ 0.1140 0.2640 0.4423

Table 2: Performance on Cityscapes. Feature map translation and shearing (‘move-
ment’) are excluded from AF in segmentation tasks. The first line provides the pro-
portion of labeled samples to the total number of available samples.

Method (ResNet-50) 1/16 1/8 1/4 1/2

U2PL 70.6 73.0 76.3 77.2
UniMatch 75.0 76.8 77.5 78.6

IFMatch (Fix) 76.3 77.5 78.3 79.0

3 Running Speed Analysis

The proposed paradigm demonstrates substantial performance promotion when
compared to the traditional approach. However, the obtained improvement is ac-
companied by feature-level perturbation and a triple-branch structure, inevitably
resulting in a reduction in training speed. Consequently, we conduct a running
speed analysis for our paradigm. The evaluated training speed is provided in
Tab. 1. The baseline model, as presented in line 1, follows the old paradigm.
Moreover, the adaptive weak feature-level perturbation AFw (line 2) in the sec-
ond student branch introduces negligible costs, indicating the efficiency of imple-
menting feature-level perturbation. Additionally, the first student branch (line 3
and line 4) leverages strong feature-level perturbation AFs to comprehensively
explore the feature perturbation space, albeit incurring non-trivial costs. Over-
all, the proposed paradigm significantly improves the model’s performance at
the expense of acceptable additional computational costs.

4 Performance on Semi-Supervised Semantic
Segmentation

In addition to semi-supervised classification, we also test the performance of
the proposed paradigm on the semi-supervised semantic segmentation task. As
shown in Tab. 2, IFMatch (Fix) consistently outperforms U2PL and UniMatch
with varying numbers of labeled samples. The impressive performance on dif-
ferent tasks demonstrates the effectiveness and generalization capability of our
approach.
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Table 3: Detailed training settings for balanced SSL.

Datasets CIFAR-10 CIFAR-100 SVHN STL-10 ImageNet

Backbone WRN-28-2 WRN-28-8 WRN-28-2 WRN-37-2 ResNet-50

Weight Decay 5e-4 1e-3 5e-4 5e-4 3e-4

BL / BU 64 / 448 128 / 128

Initial Learning Rate 0.03

Learning Rate Scheduler η = η0cos(
7πk
16K )

SGD Momentum 0.9

Model EMA 0.999

λu 1.0

AIw / AIs Random Crop, Random Horizontal Flipping / RandAug

τ 0.95

Table 4: Detailed training settings for imbalanced SSL.

Datasets CIFAR-10-LT CIFAR-100-LT

Backbone WRN-28-2

Weight Decay 4e-5

BL / BU 64 / 128

Initial Learning Rate 2e-3

Learning Rate Scheduler η = η0cos(
7πk
16K )

Optimizer Adam

Model EMA 0.999

λu 1.0

AIw / AIs Random Crop, Random Horizontal Flipping / RandAug

τ 0.95

5 Implementation Details

The detailed training settings for balanced and imbalanced semi-supervised learn-
ing are presented in Table 3 and Table 4, respectively.
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Fig. 4: Visualization for image-level and feature-level perturbations. We provide the
feature maps for samples that undergo feature-level perturbation.
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