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A Further Discussions

By extensive experiments, we have demonstrated the promising potential of point-
based methods for NVS, especially the great generalizability and robustness of RPBG
on varying scenes, with perceptually satisfactory rendering results. We make a visual
comparison on Museum of T&T dataset [13] in Fig. 1 to demonstrate the varying sources
of rendering artifacts and thus further discuss the fundamental differences between
RF-based and point-based methods.

The privilege of adopting triangulated point clouds as the scene representation has
been partially discussed in the main paper, as the points have contained all the verified
co-visibility information across images. Besides, the point-based representation enables
certain editing of the target scene, which is more difficult for RF-based methods. Please
refer to Appendix C for the cases of scene editing.

We also consider the convolutional patch-wise rendering scheme by RPBG plays an
important role in achieving perceptually good renderings. A similar ideology is explored
in [29] by enforcing structural supervision on a group of rendered pixels.

As the framed area in Fig. 1(a) shows, the rendering noise is mainly caused by
under-representation of RF, which is further due to the sparsity of input views (lack of
ray intersections). RF-based methods aim to represent the target scene loyally, where
each inquiry is supposed to be a frank reflection of local optical properties. In this way,
RF-based methods render an image in pixels without considering the context information,
establishing better pixel-to-pixel correspondence (thus higher PSNR).

We would like to in particular mention a series of RF-based methods, e.g., MVS-
NeRF [7], DS-NeRF [8], Point-NeRF [30], DDP [19], which incorporate geometric prior
information for optimizing NeRFs. They either adopt more explicit 3D proxies [7, 30]
than RFs, or enforce supervision on the rendered depth [8, 19] to accelerate reconstruc-
tion or handle sparse views. However, their rendering scheme is still RF-based volume
rendering, leaving the relevant drawbacks remain. For the readers’ information, we also
include the evaluation of DS-NeRF [8] in Tab. 2.

B Dense Triangulation

We here elaborate the details of the dense triangulation procedure to obtain the point
clouds.

Recall that the NVS datasets consist of images and corresponding camera parameters
(intrinsics and extrinsics). To ensure the alignment between the poses and the recon-
structed point clouds, we first triangulate sparse SIFT [14] points with COLMAP [21],
where we only optimize the 3D coordinates, leaving the camera parameters frozen.

Based on the sparse triangulation, we follow the view selection strategy in [31],
and choose 4 neighboring images with the best co-visibility for each image. Then we
estimate a depth map for each image, by aid of the top-4 neighboring images, with
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(a) F2-NeRF (b) Gaussian Splatting

(c) Ours (d) Ground Truth

Fig. 1: Comparison on Museum of T&T dataset [13] to showcase the typically different sources of
noise due to the fundamental differences between different types of methods. Zoom in for best
view.

AA-RMVSNet [28]. The per-view depth maps are filtered and fused to obtain the final
3D point cloud. We select AA-RMVSNet for its high memory-efficiency that allows
a large batch size and RPBG is supposed to work fine with other off-the-self MVS
methods.

For the scene of Building, which consists of the most images among all the datasets
(1940 images) we apply for quantitative experiments, the reconstruction can be done
within one hour. With better engineering optimized algorithms, e.g., OpenMVS [5], the
point cloud densification can be even faster.

Note that we leverage a point cloud augmentation strategy to relax the requirements
of triangulated points. More details will be covered in Appendix C.

C Point Cloud

In addition to the ablation study, we provide some further analysis and results relevant
to the point-based proxy RPBG adopts, including the effectiveness of the point cloud
augmentation strategy, the analysis of RPBG applied with random initialized points,
RPBG’s additional properties of automatic handling dynamic objects and scene editing.

Point Cloud Augmentation The detailed augmentation steps are as Algorithm 1. On the
scene of Church, we study the impact of such strategy applied on sparsely triangulated
points multiple times. As is shown in Tab. 1, the first round of sampling and pruning
brings the largest performance gain, and a larger gain is observed when applying to the
SfM-initialized triangulation, which is much sparser compared to the MVS-initialized
one. Note that the augmentation is optional and thus not performed on well triangulated
scenes for the sake of time only.
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(a) Random Points (b) Pruned Points (c) Reference MVS Reconstruction

Fig. 2: The randomly initialized point cloud can be pruned to the coarse scene geometry. The
example is Courtroom from T&T dataset [13].

Algorithm 1 Point Cloud Augmentation

1: Input: The point cloud {X} to be augmented
2: for a given number of times do
3: Sample one existing point X = (x, y, z) randomly from {X}
4: Form a 3D Gaussian distribution G with its mean value µ = X
5: Sample a new point X ′ from G
6: end for
7: Train RPBG with the point cloud {X} ∪ {X ′}
8: for each Xi in {X ′} do
9: Retrieve its neural texture T(Xi)

10: Approximate its pseudo density σi =
∑

|T(Xi)|
11: if σi < σthreshold then
12: Discard Xi from {X ′}
13: end if
14: end for
15: Output: The augmented point cloud {X} ∪ {X ′}

Random Point Cloud Since we have demonstrated in the main paper that RPBG is able
to perform re-rendering even with a randomly initialized point cloud taken as input.
Empirically, we find that by applying the spatial pruning strategy to the random point
cloud (by thresholding point-wise σ > 180 in this case), the point cloud shrinks to a
shape similar to the actual geometry, as is illustrated in Fig. 2(b). It suggests that when
neurally re-rendering, the network is able to implicitly verify the occupancy of each
rasterized point and if a point is observed with poor multi-view consistency, it is more
likely to be considered as an invalid point. The attempt of pruning random points is
considered as an extreme case explaining how the point cloud augmentation strategy of
RPBG manages to alleviate the problem of patchy or erroneous triangulation.

Dynamic Objects The RF-based methods are sensitive to dynamic objects and require
either data pre-processing, e.g., masking by manual labeling and semantic segmentation,
or modeling of such ambiguity or uncertainty [20], to aid the RF’s optimization. As
for RPBG, the robustness against transient objects is trivially achieved since they are
typically not reconstructed in SfM or MVS for not satisfying the static scene assumption.
By experiments, we discover that RPBG is robust to such dynamic objects and able
to automatically such objects in the training views when re-rendering (Fig. 3), which
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Table 1: Quantitative metrics when applying the point cloud augmentation strategy on both the
sparsely and the densely triangulated points for different times.

#Iters
SfM Init. MVS Init.

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
0 21.41 0.750 0.318 23.16 0.809 0.243
1 21.86 0.759 0.302 23.33 0.818 0.239
2 21.85 0.761 0.303 23.36 0.814 0.241

∆0→2 +0.45 +0.011 -0.015 +0.20 +0.005 -0.002

(c) Rasterized Points(a) Re-rendering (b) Training View

Fig. 3: Automatic removal of dynamic objects with RPBG on self-collected data. The points of
the dynamic objects are not triangulated for they do not meet the static scene assumption.

suggests that multi-view consistency is implicitly enforced during training and the
renderer tends to restore the most consensual re-rendering.

Scene Editing As RPBG is a point-based pipeline, where an explicit 3D geometry is
adopted for re-rendering, similar to previous point-based alternatives [1, 35], it allows
certain scene editing and manipulation. We give two examples in Fig. 4. By removing
the points, along with the point-bounded features, RPBG manages to re-render the
edited scene, yet with some artifacts observed. It is because in RPBG, we enhance the
context exchange among rasterized points by DAC, where each point does not solely
represent its local optical property. Besides, it is also observed that FFC [10] may lead to
repetitive artifacts at incomplete regions, as also can be found in the inpainted images by
LaMa [22].

D More Quantitative Results

Traditional Reconstruction For a more comprehensive comparison, we also include
OpenMVS [5], as a traditional pipeline [2, 11, 25, 26] that reconstructs textured mesh
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(a) Before Editing (b) After Editing 

Fig. 4: Scene editing with RPBG on DayaTemple of GigaMVS dataset [33] and Ballroom of T&T
dataset [13].

Table 2: Additional quantitative results on Auditorium, Ballroom, and Courtroom of T&T
dataset [13]. The scores of F2-NeRF [27], NPBG [1], Gaussian Splatting [12] and RPBG are
provided for reference. PSNR↑/SSIM↑/LPIPS↓

Method Auditorium Ballroom Courtroom
OpenMVS [5] 16.81/0.688/0.404 14.69/0.336/0.486 14.92/0.472/0.430
DS-NeRF [8] 16.29/0.542/0.612 14.74/0.668/0.570 14.62/0.491/0.616
F2-NeRF [27] 20.36/0.843/0.329 22.21/0.706/0.328 20.13/0.672/0.425
NPBG [1] 22.05/0.814/0.375 21.04/0.681/0.330 20.99/0.681/0.386
Gaussian Splatting [12] 23.82/0.868/0.288 22.96/0.769/0.227 22.43/0.765/0.278
Ours 25.08/0.888/0.245 23.36/0.782/0.217 23.22/0.781/0.249

models to get rendered at arbitrary novel views. We compare the results on Auditorium,
Ballroom, and Courtroom (Tab. 2) as they are inside-out scenes to avoid the negative
impact of background.

Geometry-bounded NeRF In RPBG, the scene parameterization relies on the sparse/dense
triangulation which incorporates estimated depth maps by SfM/MVS. To analogize this
parameterization from the perspective of NeRF, we also evaluate DS-NeRF [8] on the
aforementioned inside-out scenes in Tab. 2.

Densely Captured Dataset Though RPBG targets more generic scenes with casual
settings, for the readers’ information, we also evaluate RPBG with a densely captured
dataset, NeRF-360 dataset [4], which is considered as ideal for training NVS, in Tab. 3.
Note that mip-NeRF-360 [4] is particularly designed for such cases and takes about 6×
time for training.
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building rubble Trade Center Louvre

Fig. 5: Results of RPBG on aerial scenes, i.e., Mill19 dataset [24] and OMMO dataset [15].

Table 3: Additional quantitative results on NeRF-360 dataset [4]. The provided methods [3, 4, 34]
are typical unbounded NeRF variants.

Method GPU NeRF-360 outdoor NeRF-360 indoor
Hours PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

mip-NeRF [3] 22 22.65 0.505 0.484 26.98 0.798 0.360
NeRF++ [34] 66 23.77 0.585 0.401 28.05 0.836 0.309
mip-NeRF-360 [4] 48 25.92 0.747 0.244 31.72 0.917 0.180
Ours 8 24.72 0.709 0.252 28.76 0.898 0.140

ScanNet++ Benchmark We also evaluate RPBG on the public benchmark of Scan-
Net++ [32] (Novel View Synthesis on DSLR Images). ScanNet++ contains a wide
variety of indoor scenes that are challenging for novel view synthesis for glossy and
reflective materials and unseen poses captured independently of the training trajectory.
The results are shown in Tab. 4. Note that the scores are all retrieved from the leaderboard.
RPBG outperforms all the baselines listed by the benchmark, with a particular good
perceptual quality (LPIPS).

E More Qualitative Results

Mill19 and OMMO Results For the scenes in Mill19 [24] and OMMO [15], we provide
the triangulated points and visualized re-renderings in Fig. 5. Since RPBG represents
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Table 4: Benchmarking results on ScanNet++ [32]. The scores are retrieved by the evaluation
system of the public benchmark.

Method PSNR↑ SSIM↑ LPIPS↓
Nerfacto [23] 24.05 0.861 0.342
Instant-NGP [17] 23.81 0.859 0.375
Gaussian Splatting [12] 23.89 0.871 0.319
Ours 24.36 0.873 0.280

the scene appearance with point-bounded features, it relieves users from partitioning
large-scale data into smaller chunks, revealing the great scalability. Besides, the DAC
module is well suited to capture periodic structures, which are common in human-made
environments [22].

ETH-MS Results We also test RPBG’s capability of handling super-large-scale scenes
on ETH-MS dataset [9], which is for visual localization in AR applications. Its mapping
set is captured by the 6-camera rig of a NavVis M6 mobile scanner, and contains 4914
images captured at the HG building of the campus of ETH Zurich, both in the main halls
and on the sidewalk. The dataset is extremely challenging for NVS as its observations
are very sparse and it exhibits many self-similarities and symmetric structures. The
triangulated dense point cloud as well as three novel views absent in the training set
is demonstrated in Fig. 6. Note that, RPBG also adopts the exactly identical settings
without any partition of data. RPBG achieves visually pleasing results even when the
scene is extremely complicated, indicating that our re-rendering is robust to point sparsity
and occlusion.

F Use of Existing Assets

We here list all the existing assets used in this manuscript and would like to sincerely
appreciate the maintainers of these open-source projects:

– NeRF [16], NeRF++ [34], and TensoRF [6]: https://github.com/ashawkey/
torch-ngp

– Mega-NeRF and Mill19 Dataset [24]: https://github.com/cmusatyalab/
mega-nerf

– F2-NeRF and Free Dataset [27]: https://github.com/Totoro97/f2-
nerf

– NPBG [1] and NPBG++ [18]: https://github.com/rakhimovv/npbgpp
– Gaussian Splatting [12]: https://github.com/graphdeco-inria/gaussian-
splatting

– COLMAP [21]: https://colmap.github.io
– OpenMVS [5]: https://github.com/cdcseacave/openMVS
– AA-RMVSNet [28]: https://github.com/QT-Zhu/AA-RMVSNet
– Tanks and Temples Benchmark [13]: https://www.tanksandtemples.org
– OMMO Dataset [15]: https://ommo.luchongshan.com
– GigaMVS Benchmark [33]: https://www.gigavision.cn

https://github.com/ashawkey/torch-ngp
https://github.com/ashawkey/torch-ngp
https://github.com/cmusatyalab/mega-nerf
https://github.com/cmusatyalab/mega-nerf
https://github.com/Totoro97/f2-nerf
https://github.com/Totoro97/f2-nerf
https://github.com/rakhimovv/npbgpp
https://github.com/graphdeco-inria/gaussian-splatting
https://github.com/graphdeco-inria/gaussian-splatting
https://colmap.github.io
https://github.com/cdcseacave/openMVS
https://github.com/QT-Zhu/AA-RMVSNet
https://www.tanksandtemples.org
https://ommo.luchongshan.com
https://www.gigavision.cn
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Fig. 6: Results of RPBG on ETH-MS dataset [9]. The location and orientation of the sampled
cameras are marked with different colors in the densely triangulated point cloud respectively.

– ScanNet++ Benchmark [32]: https://kaldir.vc.in.tum.de/scannetpp/
benchmark/nvs

– ETH-MS Dataset [9]: https://github.com/cvg/visloc-iccv2021

https://kaldir.vc.in.tum.de/scannetpp/benchmark/nvs
https://kaldir.vc.in.tum.de/scannetpp/benchmark/nvs
https://github.com/cvg/visloc-iccv2021
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