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Abstract. Point-based representations have recently gained popularity in novel
view synthesis, for their unique advantages, e.g., intuitive geometric representation,
simple manipulation, and faster convergence. However, based on our observation,
these point-based neural re-rendering methods are only expected to perform well
under ideal conditions and suffer from noisy, patchy points and unbounded scenes,
which are challenging to handle but defacto common in real applications. To this
end, we revisit one such influential method, known as Neural Point-based Graphics
(NPBG), as our baseline, and propose Robust Point-based Graphics (RPBG).
We in-depth analyze the factors that prevent NPBG from achieving satisfactory
renderings on generic datasets, and accordingly reform the pipeline to make it
more robust to varying datasets in-the-wild. Inspired by the practices in image
restoration, we greatly enhance the neural renderer to enable the attention-based
correction of point visibility and the inpainting of incomplete rasterization, with
only acceptable overheads. We also seek for a simple and lightweight alternative
for environment modeling and an iterative method to alleviate the problem of
poor geometry. By thorough evaluation on a wide range of datasets with different
shooting conditions and camera trajectories, RPBG stably outperforms the baseline
by a large margin, and exhibits its great robustness over state-of-the-art NeRF-
based variants. Code available at https://github.com/QT-Zhu/RPBG.
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1 Introduction

Novel view synthesis (NVS) aims to synthesize novel views under given camera poses
by aid of a series of already posed images, which is a fundamental task in both computer
vision and computer graphics and has been studied for decades.

Among the feasible solutions, NeRF (Neural Radiance Field) [26] approximates an
implicit scene representation, i.e., a radiance field (RF), encoded by a neural network
mapping 3D coordinates and view directions to colors and densities. When rendering,
the fitted RF is queried multiple times along a ray to volume-render the corresponding
pixel for a novel view. Subsequent variants of NeRF follow a case-by-case design and
⋆ Work done during Q. Zhu’s internship at XREAL.
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Fig. 1: Left: RPBG manages to achieve all-round good re-renderings (PSNR plotted) across
generic datasets over the baseline [1] as well as state-of-the-art RF-based methods [42, 44]. Right:
We demonstrate the point clouds (with camera trajectories visualized) and corresponding re-
rendered novel views of the representative scenes, revealing the great robustness and scalability of
RPBG. Zoom in for best view.

adopt different parameterization techniques specifically for different scene types, e.g.,
object-centric [3, 54], free-trajectory [44], and large-scale scenes [38, 42]. Therefore,
putting forward one robust method that can work stably across varying scene types with
a unified parameterization technique is considered as challenging.

Recently, point-based alternatives [1, 18, 30, 33] have gained substantial attention
for their unique advantages over implicit representations, e.g., ease of manipulation and
faster training. The practice of employing point-based parameterization for rendering
can be traced all the way back to [16, 20], and is intuitive especially under the context of
NVS. Analogue to NeRF and its variants (collectively referred to as RF-based methods),
whose optimization and convergence heavily rely on the inherent co-visibility among
images, the 3D points triangulated from a series of 2D images according to epipolar
geometry have already contain all the verified co-visibility information. In this way,
by enforcing the triangulated points as strong prior knowledge for NVS, the expected
freedom of optimization is greatly constrained, leading to faster training as well as better
robustness. Recent attempts have achieved promising results in terms of fast optimization
and rendering [18, 30] and accurate geometric representation [56]. Concretely, we focus
on the specific category of methods that manage to integrate CNN-based neural renderers
to yield re-renderings with featuremetric neural buffers [22,30], for their concise pipeline
and the potential capability of obtaining visually pleasing re-renderings.

However, by evaluating the representative baseline, NPBG (Neural Point-based
Graphics) [1], with generic datasets, we realize that the original design only intends
for ideal conditions, e.g., synthetic data [26] and well-captured human heads [31].
When synthesizing novel views under more general conditions, the performance of
NPBG degrades severely. In this paper, we strive to boost the robustness of NPBG-like
point-based neural re-rendering pipelines and reveal the true potential to achieve state-
of-the-art performance across varying datasets in-the-wild, by analyzing the reasons for
performance degradation and seeking for remedies.

Generally speaking, the major difficulties that the vanilla NPBG is faced up with
include handling the background, handling patchy point clouds, and identifying correct
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point visibility. We reform the CNN-based neural renderer, with an inspiration from
image restoration algorithms [6, 8, 52] that are able to identify downgraded patterns and
restore the corresponding high-quality images. To make sure the neural renderer can
capture sufficient and valid context information with extremely sparse rasterizations,
we particularly leverages a Downgrade-aware Convolution (DAC) module to determine
the correct point visibility with regard to a given camera pose and performs a pseudo
point-wise back-face culling operation with visual self-attention. The background is
also modeled in a lightweight manner. Instead of incorporating a massive environment
map [33], a simple default trainable feature vector can reach similar quantitative results
when working with the stronger neural renderer. We also discover the pseudo density
calculated from the neural textures can roughly verify the existence of a given 3D
position, which can be used to augment the poorly triangulated point clouds. In addition,
we also simplify the phased training paradigm in [1, 30] and optimize the parameters of
both the neural textures and the renderer end-to-end collaboratively. We term our version
of point-based re-rendering as RPBG (Robust Point-based Graphics), to emphasize its
great robustness across different generic datasets.

For thorough qualitative and quantitative evaluation, we collect 4 typical challenging
scene types as the benchmark for robust NVS, i.e., 360° unbounded scenes (with free
trajectories), inside-out scenes, large-scale scenes (at the scale of a block or campus),
and sparse-view scenes. As a result, RPBG exhibits great robustness with perceptually
satisfactory synthesis across the aforementioned typical scenes types as showcased
in Fig. 1, where the high-quality re-renderings are obtained with an exactly identical
parameterization strategy without any manual configuration, relieving the practitioners
from the exhaustive per-scene search of hyper-parameters. Its stable superiority over
state-of-the-art NVS methods, we believe, is of great significance especially for real
applications.

The main contributions are three-fold as follows:
– We put forward RPBG, as a more robust and practical alternative for re-rendering

high-quality images from triangulated 3D points.
– According to our in-depth analysis, we enhance the neural re-rendering pipeline

regarding the neural renderer, environment modeling, point cloud augmentation, and
the training paradigm.

– RPBG manages to greatly boost the performance of neural point re-renderer by
a large margin, and exhibits stably greater robustness and generalizability over
RF-based methods with even better perceptual rendering quality.

2 Related Work

Radiance Fields for NVS Along with the proposed NeRF [26], the scene representation
of RF is becoming popular for its ease of optimization by the differentiable volume
rendering. In a RF, each position is assigned with an anisotropic color and a density,
and to render a pixel of a novel view, one needs to sample the trained field and conduct
ray marching. The original NeRF [26], together with its variants [2, 3, 39, 54], employs
an MLP to represent the functional mapping from coordinates and view directions to
the radiance values. Several attempts have been made to encode RFs with different
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data structures for faster training and inference, e.g., grid voxels [12, 36], decomposed
tensors [5], hash grids [27].

In practice, the parameterization strategies have a great impact on the rendering
quality when reconstructing different types of scenes, e.g., forward-facing ones, 360° un-
bounded ones, and large-scale ones. For unbounded scenes, NeRF++ [54] applies sepa-
rate networks and different parameterization to model near and distant objects; mip-NeRF
360 [3] designs a smooth contraction operator to parameterize the whole unbounded
scene into a ball; Mega-NeRF [42] and Block-NeRF [38] partition 3D scenes explicitly
and use different networks to represent each scene partition; F2-NeRF [44] proposes
to use perspective warping to handle sequential data with arbitrary trajectories. The
varying case-by-case parameterization strategies of RF-based NVS greatly constraint the
generalizability of methods.

Point-based Graphics A point cloud is a collection of 3D coordinates that is usually
used as a topology-agnostic coarse shape representation of the 3D geometry and favored
for its flexibility and sparsity for storage. The development of techniques of employing
points as modeling primitives for rendering (referred as point-based graphics [15]) can
be traced back to [16, 20], the best practice of which is to replace each point with an
oriented circular disk (a surfel) and reply on splatting to blend overlapping surfels [28].

In contrast to conventional physically based rendering (PBR) techniques, neural
rendering [40] learns to render high-quality images in a data-driven manner. Particularly,
we focus on the methods that conduct neural re-rendering with point clouds. Bui et
al. [4] propose to enhance the coarse point-based rendering by a GAN for image super-
resolution. NRW [25] and InvSFM [29] attempt to re-render the reconstructed point cloud
with respective auxiliary buffers, e.g., latent appearance vectors, semantic masks and
SIFT descriptors [23]. NPBG [1,30] adopts a U-Net-like [32] CNN to render neural point
textures as RGB images, and exhibits better flexibility over mesh-based proxies [41].
The practical applications in the context of autonomous driving, e.g., scene editing
and stitching, and large-scale training, are further explored in READ [21]. Recently,
ADOP [33] and Gaussian Splatting [18] have demonstrated notable accomplishments.
However, the differentiable rendering/splatting scheme employed requires an extensive
amount of memory to maintain the computational graph and gradients during training.
This limitation hinders their application on large-scale scenes.

3 Neural Point-based Graphics Revisited

In this section, we revisit the pipeline of NPBG [1], analyze the existing drawbacks
when attempting to re-render generic scenes, and attempt to explain why NPBG finds it
difficult to handle the background and patchy points, and identify correct point visibility.
We hope these discussions be of sufficient insights to support our modifications.

3.1 Preliminaries

Inputs As the common practice in NVS, the inputs are a series of images with respective
camera parameters (both intrinsics and extrinsics), and specifically for point-based
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(a) Rasterized Points (b) Ground Truth (c) NPBG (d) Ours

Fig. 2: Typically challenging scenes in T&T dataset [19] for NPBG. Top: Auditorium, where the
walls and ceilings are extremely sparse. Bottom: Museum, where the point sparsity makes the
occlusion and visibility complicated.

methods [1, 18, 30], the very first step is supposed to be the triangulation of 3D points
from 2D observations. The original NPBG-like pipelines [1, 30] mainly consider this as
a pre-processing without much attention.

Point Rasterization NPBG [1] and NPBG++ [30] apply a non-differentiable hard point
z-buffering operation as an approximated back-face culling when rasterizing points as
2D fragments, where the fragment is updated when and only when the newly projected
point has a smaller z-depth than the current one. After a traversal of all the points, the
fragment keeps the record of the indices of rasterized points. Then tensor scattering
is performed to index the neural texture at the corresponding positions. Compared to
differentiable rendering/splatting alternatives [18, 33], we consider the most significant
advantage is its memory efficiency and thus better scalability, since the computation
graph required to keep is much smaller for NPBG. We also want to keep this scalability
without interfering the elegant rasterization paradigm.

Neural Renderer The renderer RΘ : RH×W×C → RH×W×3 of NPBG [1] follows
a vanilla U-Net-like architecture [32]. Since the target point clouds for rendering are
supposed to be well-constructed, the vanilla U-Net is expressive enough to complete the
assigned task of mapping higher dimensional features from the neural texture T to RGB
values. Empirically, we find the expected properties of RΘ have much in common with
a network for low-level vision tasks, e.g., image restoration.

3.2 Problems

Patchy Triangulation Consider the inputs, for a NVS system aiming to synthesize images
for generic scenes, the triangulation of points is not trivial. The point triangulation step to
perform is similar to the step of multi-view stereo (MVS) reconstruction [14,48], the key
of which is to identify co-visible pixels across images and lift the 2D pixels to a 3D points
according to epipolar geometry. Such algorithms suffer from non-Lambertian surfaces
and textureless regions, both of which are very common and lead to poor triangulated
and patchy points. We attach two typical scenes that NPBG fails to yield good renderings
in Fig. 2.
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Wrong Point Visibility As can be imagined, such point visibility can be erroneous due to
the poor quality of triangulated points, and also due to the inherent sparsity of points as
a 3D representation. In this way, the points belonging to back faces, which should be
considered as occluded, are rasterized as the fragment for further processing. Manually
setting a depth threshold for bound check could not be helpful either, since being far
from the camera does not necessarily indicate they should be occluded — they could
be parts of the environment. While NHR [47] proposes to take the depth buffer as an
additional rendering condition, we find its effectiveness not significant for generic scenes
other than well-masked human captures.

Lack of Context for Re-rendering Similarly, when re-rendering an incomplete point
cloud, where the neural buffers are usually with significant flaws, the whole receptive
field of a kernel at a given position may only capture the downgraded regions, leading to
failure to yield reasonable restoration, especially for a high target resolution. It is worth
noting that, though the relationship between the number of network layers and rendering
quality has been discussed in [30, 33], there is still huge room for the improvement of
the renderer.

Failure to Effectively Model the Environment Unbounded scenes are a typical challenging
scene type for NVS. RF-based methods that are designed on purpose to handle such
scenes [3, 54] typically employ different parameterization to encode the areas outside
a certain bounding sphere. For point-based methods, ADOP [33] proposes to apply an
environment map of H × W × C to model the environment, which is equivalent to
wrapping the triangulated points with a sphere with H ×W points, resulting in more
than 5× 105 points as overheads, according to the default configuration.

Summary To summarize, we attribute the observed problems to two main causes: poor
geometry and weak, local renderer. The two causes are to some extent coupled for a
better geometry will relieve the difficulty of the renderer and vice versa.

4 Robust Point-based Graphics

We are strongly convinced that the pipeline of point-based neural re-rendering has
the great potential to outperform popular RF-based solutions, for its unified point-as-
parameterization fashion and the incorporation of neural networks to yield visual details.
Therefore in this section, we introduce Robust Point-based Graphics (RPBG), as an
enhanced version of NPBG, with a particular focus on robustness under generic scenes.
We will elaborate the modifications made and shed light on the underlying insights and
motivation. The overall pipeline of RPBG as well as the training paradigm is briefly
illustrated in Fig. 3.

4.1 Downgrade-aware Neural Renderer

As is attributed as one key problem in NPBG, the U-Net-based neural renderer is
considered as too naive to handle the challenging situations in generic scenes. The
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Fig. 3: The overall pipeline of RPBG. Point Triangulation: We first triangulate a 3D proxy
for re-rendering with posed images, with its geometry-bounded neural texture initialized. Point
Rasterization: The points are raterized to the given camera in a non-differentiable manner. By
indexing the texture with the fragment, we obtain the neural buffer. A learnable point-size neural
texture Tenv is also optimized. Neural Rendering: The restoration from downgraded neural buffer
to photo-realistic images is performed by a CNN. The network and the neural texture are optimized
end-to-end by image-level losses. An offline point cloud augmentation strategy is introduced to
alleviate the problem of patchy triangulation under challenging conditions.

modifications made are deeply inspired by low-level vision tasks, where networks can
adaptively determine downgraded parts, e.g., the deblurring/deraining networks are
able to identify the blurring/raining pixels from the whole image, and correct them
accordingly. We expect the neural renderer RΘ can benefit from relevant restoration-
targeting techniques, and become able to decode high-quality visual information from
patchy buffers.

After evaluating three state-of-the-art fundamental architectures for image restoration,
i.e., multi-scale fusion [8], multi-stage [52], and U-Net [6], following the taxonomy
in [6]. According to the reported experiments in Sec. 5.4, we opt the paradigm in [8] for
it achieves the best balance between performance and time/memory efficiency. However,
the convolution layers in such paradigm is still with a fixed receptive field, lacking in
robustness against point sparsity. We would like to further enlarge the receptive field to a
global scale and attempt to explicitly model the visual attention to weigh the observed
points.

Transformer-based architectures for image restoration, e.g., Restormer [51], brings
unacceptable memory overheads, so we rely on the frequency-domain alternative, Fast
Fourier Convolution (FFC) [7], which can theoretically capture global contexts, to
determine the correct point visibility adaptively. FFC performs channel-wise real 2D
FFT (Fast Fourier Transform) and inverse real 2D FFT on 2D tensors. Real FFT uses
only half of the spectrum and by convolving the transformed frequency-domain tensors.
In this way, a receptive field covering the entire image is considered.
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Fig. 4: The architecture of the downgrade-aware neural renderer in RPBG, with some conventional
modules omitted. From the visualized attention map, DAC manages to adaptively handle the
severely erroneous point visibility.

Inspired by [37], we apply FFT (as the global branch) in parallel to conventional
convolution layers (as the local branch) and rely on the fused features of both branches
to determine the downgraded regions for the gated convolution [50] to filter. Based on
the common practice in image inpainting, we leverage gated convolutions at the early
stage of the renderer, to help locate the downgrade by wrong point visibility. We name
such customized gated convolution module as the Downgrade-aware Convolution (DAC)
module, and as can be inferred from the point attention maps before and after DAC in
Fig. 4, DAC manages to determine complicated point visibility with patchy triangulation.

4.2 Point Triangulation

Though there are advances in MVS empowered by deep learning [43, 45, 46], recovering
a complete, accurate, and dense point cloud for certain regions remains a challenging.
For RPBG, we adopt an off-the-shelf MVS method [46] to perform point triangulation
for its memory efficiency to allow large-batch inference.

As for problem the poor triangulation, we partially leave it to the neural renderer
RΘ, relying on a stronger renderer to recover the re-rendering from downgraded buffers.
Inspired by the point cloud extraction method of RF-based implementations [39], where
the estimated radiance density σ can be a rough indicator for surface, we propose a point
cloud augmentation technique to densify the initial triangulation.
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The point cloud augmentation follows a trial-and-error paradigm by first assuming
the existence of newly sampled points and then verify them by estimated pseudo densities
σi =

∑
|Ti|. It is empirically observed that the absolute activation of the point-wise

neural texture can roughly represent the reliability of the 3D position — it is reasonable
since an outlier will be less distinguishable by the neural renderer and thus less visual
attention will be given.

Note that this strategy is optional, and we only apply such strategy to scenes with
extremely poor triangulation. Please refer to the Supplementary Material for more
discussions regarding the self-pruning.

4.3 Environment Modeling

As a result of the incorporation of a stronger neural renderer, we find that given a neural
texture with C = 8, the dense environment map suggested in [33] is redundant. Instead,
we shrink the overheads for environment modeling from H ×W × C to 1 × C, and
relying on the stronger neural renderer to decode the background.

When rasterizing, we employ a tunable feature vector Tenv aside the neural point
texture T, as the default value for vacant pixels in the fragment, which is also involved in
the end-to-end training. By experiments in Sec. 5.4, we demonstrate that the lightweight
modeling strategy reaches the quantitative performance equivalent to applying an envi-
ronment map, yet with a negligible overhead.

4.4 Collaborative Optimization

Recall that the point rasterization procedure is completely parameter-free. The overall
collaborative optimization scheme can be thus formulated as

T∗, Θ∗ = argmin
T,Θ

∑
k

L(Ik, Îk) = argmin
T,Θ

∑
k

L(Ik,K,Rk, tk|T,RΘ), (1)

where T and Θ stand for the tunable parameters, i.e., the neural point texture (alongside
the globally shared Tenv) and the parameters of the renderer RΘ for neural re-rendering,
while Ik is the target image whose calibration is K and [Rk|tk] and Îk is the re-rendering.

Note that, we also discard all the typical tossing sampling [21] and optimization
steps [30, 33] of point-based neural re-rendering, and manage to tune all the parameters
involved in a simple but effective collaborative end-to-end way. The neural texture is
initialized with all zeros while the rendering CNN is trained from scratch for each scene.

Loss Function Since the rendering scheme in both NPBG and RPBG is convolutional,
where images are rendered in patches, we are able to apply patch-aware losses to enforce
the involvement of neighboring pixels to ensure patch-to-patch consistency, offering
perceptually good renderings. To this end, in addition to the pixel-wise Huber norm Lhuber
providing the basic supervision and numerical stability, we apply two patch-aware losses
to the collaborative optimization of RPBG, namely the perceptual VGG loss [10, 17]
Lvgg, and the FFT loss [8, 13] Lfft. VGG loss compares the rendered image and the
target ground-truth image in a high-dimensional feature space by a pre-trained VGG-19
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network [35]. It reveals the perceptual similarity between images that pixel-wise metrics
fail to measure. FFT loss measures the image-to-image distance in the frequency domain
by carrying out 2D FFT towards images. The frequency components are considered to
be crucial in terms of the perceptual quality [13].

The final loss function applied in RPBG is composed as

L = λhuberLhuber + λvggLvgg + λfftLfft. (2)

5 Experiments

5.1 Datasets
We conduct experiments covering a diverse range of scene types to quantitatively exam-
ine the generalizability and robustness of NVS methods, including the Free dataset [44]
(7 free-trajectory scans with long camera trajectories), Tanks and Temples (T&T)
dataset [19] (4 unbounded scans and 5 inside-out scans, without salient dynamic objects),
Mill19 dataset [42] (2 large-scale aerial scans with over 1600 images in each scan), and
GigaMVS dataset [53] (8 sparse-view outdoor scans). Note that for T&T, we use the raw
undistorted images provided by the benchmark without any masking [22]. We follow
the common split protocol, that 1 frame out of every 8 frames is evaluated, for the Free
dataset, T&T dataset, and GigaMVS dataset. For Mill19 dataset, we apply the officially
recommended split to align with the experiments in [42].

We also include some other challenging datasets for a thorough evaluation, e.g., Scan-
Net++ dataset [49], a challenging indoor benchmark, OMMO dataset [24], a multi-modal
aerial NVS dataset and ETH-MS dataset [11], a super-large-scale dataset (around 5k
images). Please refer to the Supplementary Material for more quantitative and qualitative
results.

5.2 Implementation Details
Data Preparation To obtain the per-scene point cloud representation for re-rendering,
we follow the mapping procedure of COLMAP [34] for sparse triangulation and the
MVS reconstruction with a trained network [46] for dense triangulation. Note that the
reconstruction only takes a small proportion of time over the whole training phase and we
conduct ablation experiments to show that RPBG is robust against different triangulation
configurations. Please refer to Sec. 5.4 as well as the Supplementary Material for more
information.

Training Settings We randomly crop images to square patches of 256 × 256, with a
batch size of 8. The learning rate for the neural point textures is 10−1, and 10−4 for
the rendering networks, which will decay by a factor of 0.5 if 5 consequent epochs
witness no drop in the loss function. A dimension of 8 is applied for any neural texture
regardless of the scene scale or complexity. For the weights of loss functions, we globally
set λhuber = 103, λvgg = 1, and λfft = 1. The training is performed on one NVIDIA
GeForce RTX 3090, with a GPU memory consumption of up to 23 GB. It takes around 8
to 30 GPU hours for training, depending on the data scale. We would like to emphasize
that, RPBG does not require case-by-case scene parameterization or grid search of
training hyper-parameters for all the scenes covered in the experiments.
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Ground Truth Ours F2-NeRFGaussian Splatting NPBG

Fig. 5: Visualized comparisons over varying scenes. From top to bottom: sky and hydrant of the
Free dataset [44], Courtroom and Train of T&T dataset [19], and DayaTemple and MemorialHall
of GigaMVS dataset [53]. We include the results of RPBG (Ours), Gaussian Splatting [18],
NPBG [1], and F2-NeRF [44] for comparison. Zoom in for best view.

Evaluation Metrics We adopt the metrics of PSNR, SSIM and LPIPS (VGG) [55] for
the evaluation between the synthesized and the target images. According to [55], PSNR
does not faithfully measure image sharpness and so cannot properly account for the
nuances of human visual perception.

5.3 Results

In Fig. 5, we demonstrate several typical groups of visual comparisons of NVS results
by RPBG, two representative point-based methods, i.e., Gaussian Splatting [18] and
NPBG [1], and a state-of-the-art NeRF variant for unbounded scenes, F2-NeRF [44]. We
group the datasets by category and report the corresponding scene-averaged quantitative
scores in Tab. 1. Note that RPBG achieves the best SSIM and LPIPS, which are more
relevant to the high-frequency components of images, across all datasets.

Free-trajectory/Unbounded Scenes Compared with NVS methods designed in particular
for unbounded scenes, NeRF++ [54] and F2-NeRF [44], RPBG achieves the best SSIM
and LPIPS and comparable PSNR. For visual effects showcased in Fig. 5, since RPBG
involves a neighborhood for rendering, its results appear more visually harmonious,
especially than Gaussian Splatting [18] and F2-NeRF [44]. It is necessary to mention
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Table 1: Quantitative evaluation of state-of-the-art NVS methods [1, 5, 18, 26, 30, 42, 44, 54] and
RPBG across diverse scenes grouped by category, including free trajectory/unbounded scenes,
inside-out scenes, large-scale scenes, and sparse-view scenes. The figure following the dataset
name stands for the number of scenes the dataset contains.

Method
Free-trajectory/Unbounded Inside-out Large-scale Sparse-view

Free Dataset-7 T&T-4 T&T-5 Mill19-2 GigaMVS-8
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF [26] 17.75 0.405 0.597 16.84 0.396 0.731 19.82 0.615 0.526 20.34 0.524 0.529 18.29 0.632 0.499
TensoRF [5] 21.74 0.549 0.600 20.73 0.643 0.566 19.43 0.634 0.570 20.07 0.497 0.597 18.70 0.653 0.506
NeRF++ [54] 23.47 0.603 0.499 21.66 0.658 0.529 19.25 0.610 0.585 20.19 0.520 0.531 18.38 0.632 0.495
F2-NeRF [44] 26.32 0.779 0.276 23.66 0.764 0.303 20.12 0.706 0.394 N/A N/A N/A 17.44 0.540 0.470
Mega-NeRF [42] 22.60 0.570 0.562 18.73 0.578 0.478 19.16 0.617 0.451 22.49 0.550 0.510 18.25 0.581 0.394
NPBG [1] 21.40 0.639 0.340 19.85 0.698 0.376 20.57 0.696 0.371 16.21 0.357 0.644 18.34 0.620 0.405
NPBG++ [30] 20.06 0.592 0.445 17.23 0.653 0.474 18.30 0.684 0.411 17.04 0.400 0.648 19.30 0.663 0.443
Gaussian Splatting [18] 25.23 0.740 0.290 23.51 0.782 0.293 23.46 0.783 0.277 N/A N/A N/A 16.84 0.530 0.391
Ours 26.33 0.832 0.177 22.50 0.782 0.276 23.29 0.804 0.242 22.62 0.596 0.368 20.54 0.686 0.317

that, for RF-based methods [5, 26, 42, 44], we have manually adjusted the scene-specific
hyper-parameters to achieve better results.

Inside-out Scenes The inside-out indoor scenes are strictly bounded, but lack high-quality
ray intersections required for optimization, which will lead to under-fitting of the RF
(Courtroom in Fig. 5). Similar to free-trajectory/unbounded scenes, RPBG outperforms
state-of-the-art methods in SSIM and LPIPS.

Large-scale Scenes We mainly evaluate RPBG against Mega-NeRF [42] on the massive
imagery of Mill19 dataset [42]. Our method outperforms Mega-NeRF [42] in every
metric. It is worth noting that Mega-NeRF takes 240 GPU hours for training while RPBG
only takes 29 GPU hours. Notably, our system with 256 GB RAM and RTX 3090 fails
to afford the training of F2-NeRF [44] and Gaussian Splatting [18] (marked as N/A in
the table). In contrast, RPBG proves to be viable for large-scale scenes under the same
hardware constraint.

Sparse-view Scenes Sparse-view inputs are considered to be extremely challenging for
NVS methods. Since RPBG, NPBG [1], and NPBG++ [30] incorporate a point-based
3D proxy for re-rendering, they showcase better robustness over RF-based methods. As
revealed in Fig. 5, Gaussian Splatting [18] fails to regularize the strong approximation
power of point-wise Gaussians at training views, and yields obvious needle-like artifacts
at novel views.

5.4 Ablation Study

(a) w/o Env. Modeling (b) w/ Env. Modeling

Fig. 6: The impact of leveraging the default feature vector
for environment modeling in an unbounded scene.

Environment Modeling We study
different strategies of environ-
ment modeling for NVS in-the-
wild, namely leaving the blank
pixels with zeros, filling the
blanks with a default learnable
feature (as is done in RPBG), and
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Table 2: Ablation on network designs on T&T
dataset [19]. The reported inference time and
memory consumption is tested with a target res-
olution of 1920× 1080.

Method Time(s) Mem.(GB) PSNR↑ SSIM↑ LPIPS↓
Baseline 1.03 5.49 20.01 0.666 0.390
+Multi-scale fusion 1.62 12.67 21.88 0.701 0.337
+DAC 1.67 13.01 22.92 0.769 0.320
+FFT loss – – 22.94 0.794 0.257

+Multi-stage 1.77 17.14 21.75 0.713 0.338
+U-Net 1.58 10.32 20.85 0.692 0.364

Table 3: Ablation on environment modeling on
two unbounded scenes, namely Caterpillar of
T&T dataset [19] and sky of Free dataset [44].
#Points (×106) represent the equivalent over-
heads when applying different strategies.

Env. Caterpillar sky
#Points PSNR↑ SSIM↑ LPIPS↓ #Points PSNR↑ SSIM↑ LPIPS↓

Zeros 7.95 19.89 0.456 0.403 17.49 21.77 0.598 0.315
Learnable 7.95 21.78 0.687 0.289 17.49 24.81 0.866 0.199

Sphere 8.95 21.68 0.686 0.283 18.49 25.15 0.869 0.179

(a) Rasterized Points (b) Ground Truth

(c) w/o DAC (d) w/ DAC

Fig. 7: A challenging case in Train, which is
a zoomed-in view with complex occlusion and
thin objects (e.g., the handrails).
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Fig. 8: Re-rendering quality (PSNR) with points
of different quality on Church. RPBG manages
to maintain its robustness against different lev-
els of point sparsity with a 14% drop in PSNR
(NPBG [1]: 25%; NPBG++ [30]: 14%).

wrapping the points with a sphere of 106 points (equivalent to an environment map
in [33]). The quantitative results are in Sec. 5.4, where the strategy incorporated by
RPBG boosts the performance by a large margin, with almost no additional overhead.

Network Architecture and Loss We study the key components in the rendering network
in Sec. 5.4. The baseline refers to NPBG [1] trained per-scene from scratch with L1

and VGG loss. We compare three fundamental architectures for image restoration (with
necessary modifications on the first several layers), i.e., multi-scale fusion [8], multi-
stage [52], and U-Net [6] following the taxonomy in [6]. Compared to the baseline, all
modern restoration-oriented architectures bring remarkable improvement to the overall
performance, and [8] is opted for a better balance between performance and time/memory
efficiency. The gain by DAC is also considerable while the FFT loss mainly improves
the perceptual quality. By the case in Fig. 7, we show the necessity of the DAC module
when re-rendering challenging cases without in particular handling the erroneous point
visibility.

Triangulation Configurations We also evaluate RPBG with different triangulation
configurations. Indicated by the results in Fig. 8, RPBG witnesses a total drop of
3.29 dB in re-rendering PSNR when switching the triangulation from ground truth
(GT) to randomly initialized points (Random). Note that even with sparse points (SfM),
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which are usually yielded as a by-product when computing camera parameters, RPBG
(21.41 dB) still outperforms F2-NeRF (20.57 dB).

6 Discussion

Effectiveness of RPBG We would like to shed some light on the effectiveness of RPBG.
The first factor should be the point representation. The triangulated 3D points have
already contained all the verified co-visibility that is required for NVS. Compared
to RF-based methods, which often struggle at local minima, such triangulation-as-
parameterization paradigm greatly lower the complexity of searching, and is unified
across different scene types. Besides, the patch-wise rendering scheme mentioned in
Sec. 4.4 also improves the perceptual quality of re-rendering while RF-based methods
apply pixel/ray-wise volume rendering, where the correlation between pixels are not
modeled explicitly. For more discussions on the insights, we strongly refer the readers to
the Supplementary Material.

Limitations An obvious problem with point-based re-rendering (RPBG and NPBG [1])
is that compared to lightweight RF-based variants [5, 27], they take more space to store
the CNN parameters and the neural texture. Although it makes the scaling-up easier,
the number of parameters grows linearly with the point cloud scale. Besides, due to
the non-local neural renderer we employ, each point is encoded with visual context
of a larger range, hindering the editability of RPBG. We have also noticed that, the
CNN-based rendering scheme can lead to unsatisfactory temporal consistency especially
when the triangulation is patchy so that we mainly count on the inpainting ability of
the neural render for yielding re-renderings. Such flicker issue, as well as its potential
solutions, has been discussed in [9].

7 Conclusion

In this paper, we present RPBG as a robust and practical alternative to NPBG, a baseline
of point-based NVS methods, performing neural re-rendering on triangulated points.
We analyze the key problems in NPBG, when attempting to generalize to more generic
scenes other than the well-captured scans, and reform the pipeline to reveal the real
potential of point-based graphics. Respectively motivated and inspired by RF-based
methods and low-level image restoration methods, we reform the pipeline according
to our analysis. By extensive experiments on diverse datasets, RPBG achieves stably
superior results over state-of-the-art RF-based and point-based NVS methods, especially
on the metrics with more attention paid to the nuances of human visual perception,
without case-by-case parameterization across all scenes, indicating its robustness and
generalizability.
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