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Abstract. Point cloud registration is a fundamental problem for large-
scale 3D scene scanning and reconstruction. With the help of deep learn-
ing, registration methods have evolved significantly, reaching a nearly-
mature stage. As the introduction of Neural Radiance Fields (NeRF),
it has become the most popular 3D scene representation as its powerful
view synthesis capabilities. Regarding NeRF representation, its registra-
tion is also required for large-scale scene reconstruction. However, this
topic extremly lacks exploration. This is due to the inherent challenge to
model the geometric relationship among two scenes with implicit repre-
sentations. The existing methods usually convert the implicit represen-
tation to explicit representation for further registration. Most recently,
Gaussian Splatting (GS) is introduced, employing explicit 3D Gaussian.
This method significantly enhances rendering speed while maintaining
high rendering quality. Given two scenes with explicit GS representations,
in this work, we explore the 3D registration task between them. To this
end, we propose GaussReg, a novel coarse-to-fine framework, both fast
and accurate. The coarse stage follows existing point cloud registration
methods and estimates a rough alignment for point clouds from GS. We
further newly present an image-guided fine registration approach, which
renders images from GS to provide more detailed geometric information
for precise alignment. To support comprehensive evaluation, we carefully
build a scene-level dataset called ScanNet-GSReg with 1379 scenes ob-
tained from the ScanNet dataset and collect an in-the-wild dataset called
GSReg. Experimental results demonstrate our method achieves state-of-
the-art performance on multiple datasets. Our GaussReg is 44× faster
than HLoc (SuperPoint as the feature extractor and SuperGlue as the
matcher) with comparable accuracy.
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1 Introduction

In traditional 3D scene scanning and reconstruction, a large-scale scene is usually
divided into different blocks, resulting in many independent sub-scenes that may
† Corresponding author.
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Fig. 1: The purpose of our method is to register scenes A and B with Gaussian Splat-
ting [17] models, and then combine A with B to get the fused Gaussian Splatting model.
The first row is the visualization of the 3D Gaussians.

not in the same coordinate system. Therefore, the registration between them
plays a crucial role. Currently, point cloud registration has been widely studied
and reached a relative mature stage, with several representative works such as
ICP [4], D3Feat [1], Geotransformer [27], etc. The mainstream methods typically
involve extracting features from point clouds and locating matching points to
calculate the transformation between the two input scenes.

Recently, a new 3D representation - Neural Radiance Fields (NeRF) has
been introduced and quickly gained attention due to its powerful capability in
view synthesis, and it has been widely used in representing 3D scenes. When
considering large-scale scene reconstruction based on NeRF, there are two main
challenges: 1) Due to the complex occlusions present in real-world scenes, lots
of images or videos are often required to capture for large-scale reconstruction,
leading to a time-consuming data collection process. 2) Optimizing NeRF with
numerous images is computationally intensive. Therefore, a direct approach is to
divide a large-scale scene into some smaller scenes, reconstruct them separately,
and then use registration to combine all these small scenes together.

Consider two overlapping scenes, each with its own NeRF model. Currently,
the methods for registering two reconstructed NeRF scenes can be generally
categorized into two types: 1) As the method proposed in NeRFuser [11], we
can render a large number of images for each scene, then recover poses of all
these images together from structure-from-motion (SfM). However, this method
is very time-consuming; 2) As in the method DReg-NeRF [7], we can convert
the implicit radiance field to explicit voxel by querying voxel grids from NeRF
of two scenes, and extract features to establish their matching relationship for
registration. But this method faces two issues: a) it is difficult to turn NeRF of
unbounded scene to bounded voxel; b) the resolution limitation of the voxel grid
makes this method unsuitable for larger scenes.

Most recently, Gaussian Splatting (GS) [17] has been proposed, which intro-
duces an explicit representation of 3D Gaussians, ensuring high-quality render-
ing while speeding up the rendering process. Then, an interesting question comes
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up: “As GS provides a point-like representation, can we conduct GS registration
resorting to point-cloud registration methods? ”

In this work, we explore fast and accurate 3D registration with GS to answer
the question. Taking GS models of the two scenes as input, we first extract their
point clouds from GS. Thus, the straightforward approach is to adapt point
cloud registration methods to the registration between these GS point clouds.
To this end, a coarse registration method is designed which follows standard
point cloud registration pipeline, such as GeoTransformer [27], but with special
consideration of extra attributes (e.g., opacity) in 3D gaussians.

Compared with traditionally collected point cloud data, point clouds from
GS only capture rough geometric structure and are usually noisy. Thus, a coarse
registration can not achieve precise results with sufficient accuracy. We further
propose a novel image-guided fine registration pipeline built upon the coarse reg-
istration result. Our main idea is from the observation that GS not only contains
geometry information but also inherently detailed image information, which can
support more accurate alignment. Therefore, we first locate the overlapping re-
gions with the help of coarse registration, where a few images are rendered with
the help of GS. Then, the fine registration pipeline projects images into 3D
volumetric features for final matching and transformation estimation.

Ultimately, we propose a novel coarse-to-fine GS registration framework:
GaussReg. However, it still lacks evaluation benchmarks of scene-level regis-
tration with GS. To support this, we construct a dataset called ScanNet-GSReg,
comprising 1379 scenes from the ScanNet [8] dataset. In addition, we collect a
dataset named GSReg, comprising 6 indoor and 4 outdoor scenarios, to assess the
generalization capability of our method. We conduct extensive experiments on
the ScanNet-GSReg dataset, the Objaverse [9] dataset used in DReg-NeRF [7],
and the GSReg dataset, demonstrating the effectiveness of our method.

The main contributions can be summarized as:
• To the best of our knowledge, we are the first to explore the registration of

3D scenes considering Gaussian Splatting representations.
• We carefully designed a novel coarse-to-fine pipeline that fully considers the

characteristics of 3D gaussians, which performs both fast and accurate.
• An image-guided fine registration is newly presented that takes rendered im-

ages of GS into account for fine-level alignment. We also believe this strategy
opens minds fro GS-related researches.

• A benchmark is also newly built for the proposed new task, which includes
scenes from ScanNet and several self-collected in-the-wild scenes.

2 Related Work

3D point cloud registration Given two overlapping point clouds with different
coordinate systems, the target of 3D point cloud registration is to find the trans-
formation between them. Traditional methods [4,18,19,22,24,41,43] divide this
process into two parts: correspondence searching and transformation estimation.
These two stages will be conducted iteratively to find the optimal transforma-
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tion. However, these methods require many complex strategies [18, 19, 24, 43] to
overcome noise, outliers, or density variations. To overcome these problems, deep
feature extractors [14, 36, 42] are proposed to find more robust correspondences
between two point clouds. 3DRegNet [23] goes one step further to learn trans-
formation between point clouds end-to-end. Recently, REGTR [39] incorporate
attention mechanism and MAC [44] utilizes graph networks to further improve
the robustness of end-to-end point cloud registration. GeoTransformer [27] pro-
poses a geometric transformer to match superpoint [10] features and utilizes an
overlap-aware circle loss for better convergence. New approaches are constantly
being proposed, proving the importance of this task in scene reconstructions.

3D scene representation Furukawa [12] provides a comprehensive classifi-
cation of 3D reconstruction methods, categorizing them into four representa-
tions: volumetric fields [25, 31], point clouds [30], 3D meshes [16, 40], and depth
maps [13, 32, 38]. Except for these representations, NeRF [20] introduces an in-
novative approach by leveraging a neural implicit field to model the scene. NeRF
utilizes an MLP network with 3d position and 2d view direction to implicitly
model the scene from a set of training images. It has shown impressive results in
image reconstruction and novel view synthesis and is widely recognized as the
first photorealistic 3D reconstruction method. Various types of NeRFs have been
proposed for acceleration [5,21,33] and better rendering quality [2,3,35]. Another
recent advancement, 3D Gaussian splatting [6,17] utilizes explicit 3D Gaussians
to represent the scene. Each Gaussian is characterized by position, opacity and a
covariance matrix for a flexible optimization regime. The efficient differentiable
rasterization implementation and well-designed architecture enable rapid train-
ing and real-time rendering. Despite the fast innovation of scene representations,
3D registration remains to be an important issue for large-scale reconstruction,
thus developing new registration methods for different representations is crucial.

NeRF Registration Neural Implicit Field [20] has been widely accepted as a
new scene representation, several methods have been proposed to do NeRF regis-
tration. NeRF2NeRF [15] utilizes human-annotated key points to obtain an ini-
tial transformation and refines it using a surface field distilled from a pre-trained
NeRF. DReg-NeRF [7] extracts features from the occupancy grid of NeRF and
applies a decoupling model [39] for NeRF registration, eliminating the need for
human interaction in the registration process. However, it’s hard to generalize
to larger scenes due to its global feature-extracting strategy. NeRFuser [11] di-
rectly uses the structure from motion method to estimate the transformation
using rendered images from NeRF which is very time-consuming. CL-NeRF [37]
concentrates on the continual learning of NeRF models and proposes an expert
adaptor for learning newly changed scenes without finetuning the whole net-
work. Most recently, 3D Gaussian splatting has been proposed as a promising
scene representation, to the best of our knowledge, we are the first to propose
registration methods for 3D Gaussian Splatting and achieve SOTA performance
with faster registration speed and better rendering quality. Moreover, continual
learning and modifying scenes can be naturally done using our pipeline.
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3 Method

In this section, we present our proposed GaussReg for 3D Registration with
Gaussian Splatting (GS). The overall architecture is illustrated in Figure 2.
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Fig. 2: The architecture of GaussReg. Please refer to the text for detailed architecture.

3.1 Overview

As shown in Figure 2, the proposed GaussReg mainly consists of two stages, in-
cluding the Coarse Registration, and the Image-Guided Fine Registration. Here
we give a brief introduction to the entire process. Assuming two overlapping
scenes A and B, each with its own GS model, the camera poses of training im-
ages are saved and accessible. We denote the camera poses of training images as
{CA

i = (RA
i , T

A
i )}Ni=0 and {CB

j = (RB
j , T

B
j )}Mj=0 for A and B respectively. The

GS models are denoted as GaussianA and GaussianB and the derived point
clouds from GS models are termed as PointsA and PointsB . Our goal is to
discover the rigid transformation {s,R, T} that makes scene B align with A,
where s ∈ R is scale factor, R ∈ R3×3 is rotation matrix, and T ∈ R3 is trans-
lation vector. The coarse registration accepts PointsA and PointsB as input,
and output a coarse transformation {sc, Rc, Tc}. Since the extracted point cloud
from a GS model tends to be noisy and distorted, the coarse alignment needs to
be more accurate. Then, in the image-guided fine registration, we first locate a
highly overlapping region based on the coarse registration. Around this region,
two subsets of cameras are selected from {CA

i } and {CB
j } respectively, from

which we render several images. After that, an Image-Guided 3D (I3D) Feature
Extraction is adopted to obtain volumetric features from images, which are used
for subsequent matching, achieving the final transformation {sf , Rf , Tf}.

3.2 Coarse Registration

As we all know, the GS model is stored in the form of 3D gaussians. Each 3D
gaussian stores the position (x, y, z), opacity α, rotation, scale, and coefficients
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Fig. 3: The illustration of our overlap image selection and I3D feature extraction.

of spherical harmonics. First, we select confidence points whose opacity α is
greater than a threshold (0.7 is chosen empirically). For each sampled point, the
color (r, g, b) is determined via spherical harmonic functions. For every point in
PointsA or PointsB , we use (x, y, z, α, r, g, b) as the input channel to feed into
the coarse registration pipeline. As shown in Figure 2, the Coarse Registration
follows the workflow as GeoTransformer [27], we extract multi-scale features of
each point cloud through a shared KPConv-FPN [34]. The coarsest level point
features F low

A and F low
B are used for Superpoint Match and the finest level point

features Fhigh
A and Fhigh

B are used for Point Match. Noted that in Point Match,
we directly utilize the ICP [4] algorithm to obtain the coarse registration result.

Training Strategy and Loss Function Due to the scale uncertainty in
monocular video reconstruction, we performed data augmentation not only on
rotation and translation but also on scaling for the input Gaussian point cloud.
Even though we normalized the scale of input point clouds within a certain range,
such data augmentation still preserves the diversity of relative scale differences.

We apply two loss functions (overlap-aware circle loss and point matching
loss) from the GeoTransformer [27] to constrain our coarse registration network.

3.3 Image-Guided Fine Registration

Since the GS model doesn’t impose specific geometric constraints during train-
ing, resulting point clouds may exhibit some distortion. Relying solely on GS
models might not guarantee accurate registration results. Considering that GS
inherently contain image information, an image-guided fine registration is pro-
posed. Our key idea is to first locate overlapping region between scene A and
B and render some training images covering the region to support more precise
geometric features for fine alignment. Specifically, in Figure 2, our Image-Guided
Fine Registration primarily involves two steps: 1) Efficiently and accurately se-
lecting highly overlapping cameras and rendering images accordingly; 2) Utilizing
these images to construct volumetric features for further fine registration.

Overlap Image Selection As shown in Figure 3, the main goal of this part is
to find two small subsets of cameras from {CA

i } and {CB
j } respectively, which
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share as large common perspective area as possible. Before selection, we first
uniformly sampled two subsets {Ca

i } and {Cb
j} to reduce computational cost,

and then apply {sc, Rc, Tc} on {Cb
i } for a coarse alignment, causing {Ĉb

i }. Each
subset contains 30 images in our experiments. Our selection follows 3 steps: 1)
For every pair (Ca

i , Ĉ
b
j ), we calculate the cosine value of the angle between their

camera orientations. Finally, top-k closest pairs will be kept. Thanks to the coarse
alignment, this step can accurately and quickly removes many useless pairs; 2) To
achieve more accurate selection, for each pair (Ca

p , Ĉ
b
q) remained after step 1, we

further calculate the area of their perspective sharing. Two low-resolution depth
maps dap and dbq are rendered from GaussianA and GaussianB respectively.
Then, we calculate how portion of points derived from dap can be seen from
Ĉb

q and how portion of points derived from dbq can be seen from Ca
p . With the

evaluation of the averaged portion, we find the closest pair (Ca
i0, Ĉ

b
j0). 3) We

finally pick two subsets of training cameras respectively in the neighborhood of
Ca

i0 and Ĉb
j0. Under the selected cameras, the image sets IA and IB are rendered

from GaussianA and GaussianB to be fed into the next feature extraction stage.

Image-Guided 3D Feature Extraction As shown in Figure 3, we adopt the
principle of multi-view stereo (MVS) to estimate depth and extract volumetric
features. Without loss of generality, we use scene A as an example in the following
description. First, we input IA into a 2D CNN to get features RefA, {SrckA}nk=0,
which turn into the cost volume CostA according to the depth hypotheses {dl}Dl=0

by differentiable homography. Building the cost volume requires the minimum
and maximum distances, which can be automatically computed from the ren-
dered depth map of the reference image. Followed by the 3DCNN regularization,
the probability volume PA ∈ RD×H×W and feature volume FA ∈ RC×D×H×W

are obtained from the cost volumes, where C is the number of feature channels,
and (H,W ) is the resolution of RefA. For any pixel p on RefA, our network
predicts a probability distribution {P l

A(p)}Dl=0. We pick out l0 satisfying:

l0 = argmax
l=0,1,...,D−1

{P l
A(p) + P l+1

A (p)}, (1)

where P l
A(p) represents the probability of the pixel p being at depth dl. The

feature from cost volume FCost
A (p), predicted depth DepthA(p) and confidence

map ConfA(p) are calculated by:

FCost
A (p) = F l0

A (p) · P l0
A (p)

P l0
A (p) + P l0+1

A (p)
+ F l0

A (p) · P l0+1
A (p)

P l0
A (p) + P l0+1

A (p)
,

DepthA(p) = dl0 · P l0
A (p)

P l0
A (p) + P l0+1

A (p)
+ dl0+1 ·

P l0+1
A (p)

P l0
A (p) + P l0+1

A (p)
,

ConfA(p) = P l
A(p) + P l+1

A (p).

(2)

Then we concatenate RefA, FCost
A , and DepthA, and pass them through convo-

lutional layers. After confidence-based filtering, we obtain high-resolution feature
fhigh
A and low-resolution feature f low

A . This process can be described as
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fhigh
A = Conv(Concate(RefA, F

Cost
A , DepthA))[ConfA > Mean(ConfA)],

f low
A = Conv(fhigh

A )[ConfA > Mean(ConfA)],
(3)

fhigh
B and f low

B are obtained in the same manner. Next, we project the features
into the coordinate system of GaussianA according to the corresponding depth
maps. Finally, following the same procedure as in coarse registration, we obtain
the fine registration result {sf , Rf , Tf}.

Training Strategy and Loss Function Overlap Image Selection is not in-
volved in the training of the fine registration network. We randomly sample
pairs of multi-view images with overlap from ScanNet dataset for training. Dur-
ing training, we also apply data augmentation to the camera extrinsic.

Our loss function mainly consists of two parts, depth loss and registration
loss. Depth loss is a cross-entropy loss to supervise the probability volume:

Ldepth =
∑
p∈ΩA

−P gt
A (p)logPA(p) +

∑
p∈ΩB

−P gt
B (p)logPB(p), (4)

where ΩA and ΩB are the sets of valid points. P gt
A (p) and P gt

B (p) denote the
one-hot labels from the ground-truth depth of p. PA(p) and PB(p) denote the
predicted probability distribution of p. Registration loss Lregis is the same as
loss function used in coarse registration. Therefore, our total loss is:

Ltotal = λLdepth + Lregis, (5)

where λ = 10 in our experiments.

3.4 Gaussian Splatting Fusion and Filtering

After obtaining the final registration result, it is time to merge the two GS mod-
els. To transform GaussianB into the coordinate system of GaussianA, denoted
as GaussianB→A, we start by transforming the position of the 3D gaussian:

(xB→A, yB→A, zB→A)
T = sfRf (xB , yB , zB)

T + Tf . (6)

The opacity is invariant to the transformation αB→A = αB . The rotation RB→A ∈
R3×3 and scale SB→A ∈ R3 of the 3D gaussian can be computed as:

RB→A = RfRB , SB→A = sfSB . (7)

From the properties of spherical harmonics (SH) coefficients, we know that the
rotation of SH coefficients is a linear transformation of the SH coefficients, and
the rotation of each order of SH coefficients can be performed separately. Hence,
for the i-th order of SH coefficients, we can obtain the transformation of SH
coefficients as follows: 1) Select any 2i+ 1 unit vectors u0, ..., u2i+1, let Q =
(SH(u0), ..., SH(u2i+1)), where SH is the function that projects the direction
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Fig. 4: Visualization of our final registration results on ScanNet-GSReg and GSReg.
The first two columns are visualizations of GS point clouds to be registered. The last
two columns are visualizations of our final registration and ground-truth results.

vector to the corresponding SH values; 2) Apply transformation {sf , Rf , Tf}
to vectors u0, ..., u2i+1 to yield û0, ..., ˆu2i+1; 3) (SH(û0), ..., SH( ˆu2i+1))Q

−1 is
the transformation matrix of SH coefficients. Note that, it is difficult to choose
vectors u0, ..., u2i+1 to ensure that Q is invertible, so in our experiments, we use
the pseudo inverse as an approximation to inverse while calculating Q−1. Finally,
we merge the 3D gaussians in GaussianA closer to the center of A with the 3D
gaussians in GaussianB closer to the center of B to get GaussianA+B .

4 Experiment

4.1 Experiment Setup

Dataset As there is currently no scene-level dataset available for our task, it is
necessary for us to create a dataset in order to evaluate GS registration. Scan-
Net [8] is a frequently used 3D dataset for indoor scenes, consisting of 1513
training scenes and 100 test scenes. Each scene in ScanNet includes camera in-
trinsics, a sequence of images, along with the corresponding camera extrinsics
and depth maps. Therefore, we decide to build a dataset based on ScanNet,
called ScanNet-GSReg dataset. First, we randomly sample two continue im-
age sequences from each scene. Each sequence contains 80 to 120 images, and
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Table 1: Evaluation on the ScanNet-GSReg dataset. ↓ means lower is better, and ↑
means higher is better. We include the time of obtaining point cloud from GS in the
time reported. Here HLoc [28]* means HLoc [28] (SuperPoint [10] + SuperGlue [29]).

Methods RRE↓ RTE↓ RSE↓ Succss Ratio↑ Time(s)↓
HLoc [28]* 2.725 0.099 0.098 0.756 212.3
FGR [45] 157.126 3.328 0.268 1.000 3.4

REGTR [39] 80.095 2.768 0.408 1.000 3.5
Ours 2.827 0.042 0.032 1.000 4.8

the sampling interval ranges from 1 to 5. The overlap ratio, calculated as the
proportion of repeated images between two sequences, ranges from 0.2 to 0.8.
Then, we apply random transformations to each set of camera extrinsics inde-
pendently to simulate the inconsistency between the world coordinates of the
two sequences and record these two transformations as the ground-truth trans-
formation. Using these image sequences and corresponding camera parameters,
we reconstruct the GS models separately. Each model undergoes 10000 iterations
of training. Eventually, after excluding cases of failed initial point cloud genera-
tion or unsuccessful GS reconstruction, we obtain 1297 training samples and 82
test samples. Furthermore, to validate the generalization of our method, we col-
lected 10 real-world scenes for testing, called GSReg dataset, which includes
6 indoor and 4 outdoor scenes. For each scene, we record two videos. First, we
use HLoc [28] (SuperPoint [10] as the feature extractor and SuperGlue [29] as
the matcher) to obtain the camera poses individually for each video, and then
combine the two videos for a joint camera pose estimation to obtain the ground-
truth transformation between the two GS models. To evaluate the performance
of GaussReg on objects, we also conduct tests on the Objaverse dataset [9]
used in DReg-NeRF [7], whose test set contains 44 objects.

Metric We refer to metrics of point cloud registration as in [27] and modify
them to account for scale factors. Finally, we evaluate GaussReg on the ScanNet-
GSReg and GSReg datasets with three metrics: 1) Relative Rotational Error
(RRE), the geodesic distance between the estimated and ground-truth rotation
matrix; 2) Relative Translation Error (RTE), the ratio of the Euclidean distance
between the estimated and ground-truth translation vectors to the norm of the
ground-truth translation vector; 3) Relative Scale Error (RSE), the ratio of the
Euclidean distance between the estimated and ground-truth scale factors to the
ground-truth scale factor. For a fair comparison, we follow DReg-NeRF [7] to
evaluate GaussReg on the Objaverse dataset with two metrics: 1) Relative Ro-
tational Error (RRE); 2) Absolute Translational Error (ATE), the Euclidean
distance between the estimated and ground-truth translation vectors.

Implementation Details Our GaussReg is merely trained on the ScanNet-
GSReg training set and evaluated on the ScanNet-GSReg test set, Objaverse
test set, and GSReg dataset. Our method was implemented with PyTorch [26].
In the coarse registration network, we limit the number of input points to 30000
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Table 2: Evaluation on the Objaverse
dataset. ↓ means lower is better.

Methods RRE↓ ATE↓
FGR [45] 61.59 13.50

REGTR [39] 113.78 43.31
Dreg-NeRF [7] 9.67 3.85

Ours w/o. fine 2.47 3.46

Table 3: Evaluation on the GSReg
dataset. ↓ means lower is better.

Methods RRE↓ RTE↓ RSE↓
Ours w/o. fine 6.904 0.074 0.051

Ours 2.989 0.065 0.047

during training. In the image-guided fine registration network, we render n = 5
images per GS model as input and set the number of depth hypotheses to D = 64.
Both networks are trained separately for 40 epochs with a batch size of 1. The
learning rate starts from 1e− 4 and decays exponentially by 0.05 every epoch.

4.2 Comparison with Other Methods

Evaluation on the ScanNet-GSReg Dataset Due to the maturity of Struc-
ture from Motion (SFM) technology, a natural approach for 3D registration with
GS is to render a large number of images and utilize SFM for joint registration.
Therefore, we select the current SOTA method, HLoc [28] (SuperPoint [10] +
SuperGlue [29]), as the baseline for comparison on ScanNet. In the subsequent
discussion, we refer to HLoc [28] (SuperPoint [10] + SuperGlue [29]) as HLoc for
brevity. For the two GS models to be registered, we uniformly sample 30 training
poses each to render images, and use 60 images in total for HLoc to estimate
pose. We can obtain the registration result of the two GS models following the
procedure described in NeRFuser [11]. We also evaluate traditional point cloud
registration method Fast Global Registration (FGR) [45] and deep point cloud
registration method REGTR [39] (retrained on 3DMatch) by inputting the point
cloud from GS. FGR and REGTR are also followed by the ICP solver with scal-
ing to output the transformation results, and we also limit the number of input
points to 30000. The quantitative results are shown in Table 1, where the Success
Ratio indicates the portion of successful registrations. As shown in Table 1, for
82 scenes in ScanNet-GSReg, HLoc only registers 75.6% of them successfully,
while our method achieves a 100% success ratio. For indoor scenes in ScanNet-
GSReg, SuperPoint [10] sometimes fails to extract effective keypoints, leading to
registration failures. Our method outperforms HLoc in RTE and RSE metrics
and is comparable in RRE. Notably, our method was significantly faster than
HLoc (4.8s vs. 212.3s). FGR and REGTR are slightly faster than our GaussReg,
however, they perform much worse than ours. We think the reason is that the
point cloud from GS is much noisier than scanning data. Visualizations of our
method on the ScanNet-GSReg test set are presented in the first two rows of
Figure 4. More visual results can be found in Supplementary Material. These
experiments fully demonstrate the efficiency and accuracy of our method.

Evaluation on the Objaverse Dataset For a fair comparison on the Ob-
javerse dataset [9], we assume there is no scale difference between the two GS
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Table 4: Ablation study of image-guided fine registration on the ScanNet-GSReg
dataset. ↓ means lower is better, and ↑ means lower is better.

Index Methods RRE↓ RTE↓ RSE↓ Succss Ratio↑ Time(s)↓
1 Hloc [28] 2.725 0.099 0.098 0.756 212.3
2 Ours w./o. fine 3.403 0.061 0.034 1.000 3.7
3 Ours w./o. fine + HLoc 1.104 0.186 0.278 0.512 206.8
4 Ours 2.827 0.042 0.032 1.000 4.8

models as in DReg-NeRF [7]. In addition, we do not adopt training poses, and
only use our proposed coarse registration for comparison. In Table 2, our coarse
registration method (ours w/o. fine) outperforms other methods without fine-
tuning, demonstrating its strong generalization capability to objects.

Evaluation on the GSReg Dataset The ground-truth registration results
of our GSReg dataset are obtained when HLoc was successful. As shown in Ta-
ble 2, our method achieves registration results close to HLoc without fine-tuning,
proving the strong generalizability of our approach. Moreover, our method (ours)
significantly outperforms our coarse registration (ours w./o. fine), proving the
effectiveness of our fine registration. Visualizations of our method on the GSReg
dataset are presented in the last two rows of Figure 4.

4.3 Ablation Study

To deeply analyze GaussReg, we conduct detailed ablation studies on the ScanNet-
GSReg dataset to evaluate the effectiveness of the proposed components.

Effectiveness of Image-Guided Fine Registration HLoc can also utilizes
image information to refine the coarse registration. Therefore, to validate the
effectiveness of image-guided fine registration, we directly combine coarse regis-
tration with HLoc. After obtaining the coarse registration result, we use overlap
image selection to select two sets of multi-view images, ImagesA and ImagesB ,
and jointly estimate poses of them with HLoc. In Table 4, by comparing Index-2
with Index-4, we can see that the performance is improved, which demonstrates
the effectiveness of our image-guided fine registration. Comparing Index-2 and
Index-3, we find that although HLoc shows lower RRE, its success ratio is very
low (51.2%), whereas our fine registration not only outperforms HLoc in RTE
and RSE metrics but also has a higher success ratio (100%). Meanwhile, our fine
registration is faster than HLoc (4.8s vs. 206.8s). In addition, we explore the
effect of the top-k pairs of cameras we kept in overlap image selection. Hence,
we vary k from 5 to 30. In Table 5, there is almost no change in performance
when k is larger than 10 and the performance drops when k is smaller than 10.
For the sake of accuracy and efficiency, we believe that 10 is enough for k.

Effectiveness of Image-Guided 3D Feature Extraction Here, we also re-
port the Relative Depth Error (RDE), which is the ratio of the Euclidean dis-
tance between the estimated and ground-truth depth to the ground-truth depth.
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Table 5: Ablation study with different
k in overlap image selection on ScanNet-
GSReg. ↓ means lower is better.

Top-k RRE↓ RTE↓ RSE↓
5 3.677 0.115 0.079
10 2.827 0.042 0.032
20 2.604 0.063 0.044
30 2.311 0.091 0.028

Table 6: Ablation study of image-guided
3D feature extraction on ScanNet-Reg. ↓
means lower is better.

Index Method RRE↓ RTE↓ RSE↓ RDE↓
5 Ours w/o. I3D 3.169 0.036 0.061 0.066
6 Ours 2.827 0.042 0.032 0.080

As shown in Table 6, in Index-5, we remove the image-guided 3D (I3D) feature
extraction. Instead, we use MVSNet [13] to calculate depth and project depth
maps to obtain two point clouds, which serve as input to KPConv-FPN [34] to
extract features for registration refinement. Comparing Index-5 and Index-6, we
observe that although Index-5 has better depth estimation accuracy, the reg-
istration results are poor, proving that extracting geometric information from
images complements feature descriptors extraction.

4.4 Results of Gaussian Splatting Fusion and Filtering

In Figure 5, we present some quantitative results on GSReg dataset to demon-
strate the effectiveness of our GS fusion and filtering. Please refer to the video
attachment in Supplementary Material for the dynamic presentation. Our GS
fusion and filtering strategy successfully merges the two GS models.

5 Discussion

Limitations and Future Work We only adopt a simple strategy to fuse and
filter two GS models. For some more complex situations, the fusion in our way is
imperfect. For instance, when two scenes are captured at different times, changes
in lighting can result in differing appearances for two scenes. Consequently, the
fused GS model obtained through our strategy may exhibit inconsistencies at
the fusion boundary. Future work can further explore to address this issue.

Conclusion The advent of NeRF has transformed the landscape of 3D scene
representation, necessitating advancements in registration methodologies. How-
ever, the registration of NeRF representations for large-scale scenes remains
underexplored due to the inherent complexities of implicitly modeled geometric
relationships. The recent introduction of Gaussian Splatting (GS) has signifi-
cantly enhanced NeRF by introducing explicit 3D gaussians, facilitating rapid
rendering while maintaining high quality. In this study, we introduce GaussReg, a
pioneering coarse-to-fine framework that utilizes GS for 3D registration with GS.
The coarse phase leverages existing point cloud registration methods to establish
a preliminary alignment for input GS point clouds. We innovatively devise an
image-guided fine registration strategy that incorporates rendered images from
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Scene A Scene A+B Scene B Scene A+B

Fig. 5: Quantitative Results on the GSReg dataset. The first two rows are indoor
scenes, and the last two rows are outdoor scenes. The first and third columns are
rendering images from GS [17] models of Scene A and Scene B. The second and last
columns are rendering images from our fused GS model.

these Gaussian points, enriching geometric details for accurate alignment. To
comprehensively evaluate our approach, we construct a benchmark consisting
of scenes from ScanNet and several in-the-wild scenes. Our experimental results
show GaussReg’s state-of-the-art performance across multiple datasets.
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