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Abstract. This paper identifies significant redundancy in the query-key
interactions within self-attention mechanisms of diffusion transformer
models, particularly during the early stages of denoising diffusion steps.
In response to this observation, we present a novel diffusion transformer
framework incorporating an additional set of mediator tokens to engage
with queries and keys separately. By modulating the number of medi-
ator tokens during the denoising generation phases, our model initiates
the denoising process with a precise, non-ambiguous stage and gradu-
ally transitions to a phase enriched with detail. Concurrently, integrat-
ing mediator tokens simplifies the attention module’s complexity to a
linear scale, enhancing the efficiency of global attention processes. Ad-
ditionally, we propose a time-step dynamic mediator token adjustment
mechanism that further decreases the required computational FLOPs
for generation, simultaneously facilitating the generation of high-quality
images within the constraints of varied inference budgets. Extensive ex-
periments demonstrate that the proposed method can improve the gen-
erated image quality while also reducing the inference cost of diffusion
transformers. When integrated with the recent work SiT, our method
achieves a state-of-the-art FID score of 2.01. The source code is available
at https://github.com/LeapLabTHU/Attention-Mediators.

Keywords: Diffusion Transformer · Dynamic Neural Network

1 Introduction

Exhibiting unprecedented capabilities in the fields of language processing [1, 6,
14,62,70] and visual recognition [18,42,45,55,61], Transformers [71] have recently
achieved remarkable performance in visual generation as backbones in diffusion
models [5, 57]. The inherent simplicity, effectiveness, and scalability of these
Diffusion Transformers (DiTs) position themselves as appealing alternatives to
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previously prominent U-Net structures [63–66], promoting the emergence of high-
resolution and high-quality image/video generation applications, such as Stable
Diffusion V3 [17], Pixart-α/Σ/δ [9–11], Hunyuan-DiT [44] and Sora [5].

Despite the rapid progress of Diffusion Transformers, widespread criticism
has arisen due to their substantial consumption of computing resources and
the associated inference time overhead [11, 54, 83] resulting from the global at-
tention mechanism. This obstacle impedes the practical deployment of Diffu-
sion Transformers for large-scale client usage, particularly when dealing with
high-resolution images [11, 50] and relatively long videos [48, 52]. While several
works [12,19,89] have been proposed to accelerate the attention process in visual
recognition tasks, this topic remains largely unexplored in the realm of visual
generation. Therefore, it is crucial to develop an efficient Diffusion Transformer
to address high resource consumption concerns and enhance overall usability.

In this paper, we expedite the diffusion generation process by leveraging the
inherent structural redundancy [53, 69, 79, 88] in Diffusion Transformers across
different denoising time steps. We start by identifying the redundancies in the
query-key interaction process during the self-attention operation at each layer in
Transformer diffusers. To analyze quantitatively, we design a Jensen–Shannon
divergence-based metric to measure the query-key interaction redundancy, i.e.,
comparing the attention distribution similarities among each query. We come
up with two key findings: (1) Extensive query-key redundancy is evident in
all of the self-attention layers, indicating many tokens would be homogeneous
after self-attention; (2) The redundancy is particularly pronounced in the initial
steps while gradually diminishing in the subsequent steps as denoising goes on,
suggesting the fully one-to-one attention in the early steps be dispensable.

To fully take advantage of this redundancy, we introduce an extra set of
tokens in the conventional self-attention layers, dubbed attention mediators,
to streamline the interaction process between queries and keys, condensing the
actual interactions in the attention between queries and keys. To be specific,
the number of mediator tokens is set lower than that of queries and keys, e.g .,
less than 10% of the original tokens. These mediator tokens first aggregate the
information from keys with softmax attention, forming packed representations.
Then, the compressed information is propagated to queries in another softmax
attention as the final output. The abbreviated mediators bottleneck the attention
and hence confine its redundancy, further reducing the computation cost via
interchanging the attention computation order.

In addition to attention mediators, the redundancy variations across time
steps elicit a new dynamic strategy for adjusting the number of mediator tokens
at different time steps. Specifically, during the early steps where the redundancy
is prominent, we utilize a smaller number of mediator tokens to reduce simi-
lar information aggregation effectively. When redundancy gradually diminishes
during the later steps, we dynamically increase the number of mediator tokens
to generate more detailed and diversified features. In practice, the schedule of
switching mediators is determined by the samples’ latent distance between each
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pair of adjacent denoising steps. This dynamic strategy maintains mediator to-
ken efficiency while enhancing generation quality and diversity.

We evaluated our proposed method using the very recent SiT [51] model.
Extensive experimental results demonstrate that our approach achieves superior
generation quality (as indicated by a lower FID [32]) and reduces computational
complexity (measured in FLOPs) during generation. When combined with the
SiT-XL/2 model, our method achieves a state-of-the-art FID score.

2 Related Works

2.1 Diffusion Transformers

Recent advancements in diffusion models [2,15,21,33,46] have typically utilized
the U-Net architecture [65]. However, a growing body of research [3, 57, 86] has
begun to explore the potential of employing the Vision Transformer (ViT) [16]
as an alternative backbone for such models. U-ViT [3] interprets various in-
puts (e.g ., time, conditions, and noisy image patches) as tokens while draw-
ing inspiration from U-Net to implement skip connections between the model’s
shallow and deep layers. DiT [57] demonstrates the scalability of ViT for dif-
fusion models, surpassing the performance of U-Net-based diffusion models on
ImageNet. Building upon DiT, SiT [51] introduces an interpolant framework,
moving from discrete to continuous time and exploring various diffusion coef-
ficients, thereby achieving superior results. MaskDiT [89] pioneers the use of
masked training to reduce the computational expense of training diffusion mod-
els. MDT [19] additionally proposes a masked latent modeling technique, and
MDTv2 further refines this approach with a more efficient macro network archi-
tecture and training strategy, improving the FID and accelerating the learning
process. HDiT [12] leverages transformers to devise a high-resolution training
methodology that scales linearly with pixel count. FiT [89] conceptualizes im-
ages as sequences of dynamically sized tokens to generate images, facilitating
image generation at varying resolutions and aspect ratios. These investigations
confirm that transformer-based models are effective in visual generation tasks
and can be scalable. Although these works have demonstrated the effectiveness
of transformers in diffusion models and have further improved the FID or train-
ing speed by optimizing the diffusion structure or learning strategies, the inner
design structure of the Diffusion Transformer backbone is still not well explored.

2.2 Attention with Linear Complexity

One line of works achieves linear computational complexity by restricting recep-
tive fields, including Shifted-window attention [45], Neighborhood Attention [31].
These works bring locality back into the vision transformer architecture, while
the global context awareness is somewhat affected. In contrast to the idea of re-
stricting receptive fields, another line of researcgh directly uses linear attention to
address the computational challenge by reducing computation complexity. The
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pioneer work [39] discards the Softmax function and replaces it with a mapping
function ϕ applied to Q and K, thereby reducing the computation complexity to
O(N). However, such approximations led to substantial performance degrada-
tion. To tackle this issue, Efficient Attention [68] applies the Softmax function to
both Q and K. SOFT [49] and Nyströmformer [82] employ matrix decomposi-
tion to further approximate Softmax operation. Castling-ViT [87] uses Softmax
attention as an auxiliary training tool and fully employs linear attention dur-
ing inference. FLatten Transformer [22] proposes a focused function and adopts
depthwise convolution to promote feature diversity limited by linear operations.

Furthermore, Agent Attention [23] and Anchored Stripe Attention [43] in-
troduce another group of tokens as the bridge between queries and keys, which
is equivalent to linear attention, achieving favorable performance on recogni-
tion tasks and low-level visions, respectively. In this paper, we build our work
upon this architecture and comprehend the extra group of tokens as semantically
compressed information to guide the diffusion process to generate images.

2.3 Dynamic Neural Networks

In contrast to static models, which have fixed computational graphs and parame-
ters at the inference stage, dynamic neural networks [25,76] can adapt their struc-
tures or parameters to different inputs, leading to notable advantages in terms
of performance, adaptiveness [20,85], computational efficiency [72,84], and rep-
resentational power [60]. Dynamic networks are typically categorized into three
types: sample-wise [24,28,36,58,73,77,78], spatial-wise [26,27,29,37,56,74,80,81],
and temporal-wise [30, 75]. Since the breakthrough query-based visual recogni-
tion model DETR [7], a new query-based dynamic network has begun to de-
velop [59]. In this work, we introduce a novel temporal-wise dynamic approach.
Contrary to the former works, which study the dynamic mechanism along the
video time dimension, we explore the redundancy across the diffusion-denoising
time steps in this paper. We dynamically change the number of mediator tokens,
conditioned on the generation process of different image samples, and achieve
better FID-50K results with less computational complexity.

3 Attention Redundancies Along Denoising Steps

In this section, we examine redundancies in conventional self-attention opera-
tions. Initially, we provide a brief overview of attention computation in Trans-
former architectures. Subsequently, we introduce a quantitative metric designed
to analyze redundancies in query-key interactions. Our findings reveal that sig-
nificant redundancies exist in Diffusion Transformers, and the extent of this
redundancy decreases as the denoising procedure progresses.

3.1 Background of Attention

We first revisit the attention mechanism [71] in Diffusion Transformers [51, 57].
The latent Diffusion Transformer takes a latent token sequence zl−1∈RN×C from
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the previous layer l − 1 as input (N is the token number and C is the hidden
dimension), then projects it into the query, key, and value sequences with three
linear projection layers, denoted as Wq,Wk,Wv∈RC×C (bias omitted):

q = zl−1Wq, k = zl−1Wk, v = zl−1Wv. (1)

Then q,k,v∈RN×C are divided into M heads q(m),k(m),v(m)∈RN×d in terms
of channel C, with head dimension of d=C/M . Within each head, the similarity
of each query q(m) and key k(m) is computed as:

A(m) = Softmax
(
q(m)k(m)⊤/

√
d
)
, (2)

where the attention map A(m) is an N×N matrix containing elements in the
range [0, 1], and the sum of each row is normalized to 1. The attention mechanism
reweights the value sequence according to the attention map, h(m)=A(m)v(m),
to dynamically adjust the outputs based on the dependency of each token in the
inputs. In the end, each head of the reweighted representation is concatenated
together to produce the final output of this layer l, written as:

zl = Concat
(
h(1),h(2), . . . ,h(M)

)
WO, (3)

where WO∈RC×C (bias omitted) is a linear projection layer to promote inter-
action between different heads in the multi-head attention layer.

We view each row of A(m) in Eq. (2) as a probabilistic distribution between
one query and all the keys, e.g ., the i-th row A

(m)
i ∈ R1×N depicts how the

N key tokens contribute to the output of the i-th query token, on the m-th
attention head. Since the output of i-th token h

(m)
i =A

(m)
i (zl−1Wv)

(m) only
distinguishes other tokens by the distribution A

(m)
i , the feature diversity in the

output sequence of the attention is determined by this distribution. If different
queries qi1 and qi2 (i1 ̸= i2) share similar probabilistic distributions over keys,
i.e., D

(
A

(m)
i1

,A
(m)
i2

)
≈0 for some distribution similarity metric D(·, ·), the out-

put h
(m)
i1

and h
(m)
i2

would be rather close, leading to redundant representations
and a lack of spatial diversity in the diffusion noise prediction process.

3.2 Jensen-Shannon Divergence as A Redundancy Metric

We adopt Jensen-Shannon Divergence (JSD) as the redundancy metric D to
study the spatial redundancy in attention on latent tokens quantitatively. JSD is
a symmetric divergence that combines two Kullback–Leibler Divergence (KLD).
Given two probabilistic distributions P1(X) and P2(X) in which X is a discrete
random variable with K possible values, the KLD is defined as

DKL (P1∥P2) =

K∑
k=1

P1(X=k) [lnP1(X=k)− lnP2(X=k)] . (4)
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Fig. 1: (a) shows the JSD-based redundancy score defined in Sec. 3.2 evaluated on DiT-
S/2 model along with diffusion time steps. The score is computed over 32 samples and
averaged by different attention heads in every layer. (b) shows the same redundancy
score of all the 12 layers of SiT-S/2 model with the SDE sampler.

Then the JSD is defined with a mixture distribution M= 1
2 (P1 + P2), by aver-

aging the KLD of P1 from M and the KLD of P2 from M, written as

DJS(P1∥P2) =
1

2
[DKL(P1∥M) +DKL(P2∥M)] . (5)

The JSD is symmetric and bounded in that DJS(P1∥P2) = 0 when P1 and P2

are identical, and DJS(P1∥P2)→ ln 2 when the support of P1 and P2 are disjoint.
JSD decreases as two distributions are closer and increases vice versa.

For the query token sequence, we compare the attention distribution by each
pair of queries using Jensen-Shannon Divergence and then accumulate the diver-
gence to each query token as the final redundancy score metric, which we define
as follows for the l-th layer in the Diffusion Transformers:

Sl =
2

MN(N−1)

M∑
m=1

N−1∑
i1=1

N∑
i2=i1+1

DJS

(
A

(m)
i1

,A
(m)
i2

)
. (6)

This score computes the JSD of every attention distribution pair in the latent
token sequence and reduces over N(N−1)

2 pairs and M attention heads. A high Sl

means that the averaged attention maps among the tokens are in low similarity
in the l-th layer, indicating a low spatial redundancy. On the contrary, a low Sl

means the redundancy in the l-th layer is relatively high.

3.3 Redundancies Along Time Steps

We measure the Sl of both the DiT-S/2 [57] and SiT-S/2 model [51]. We ran-
domly sample 512 images with a pretrained model and record the Sl of all the
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diffusion transformer layers and all the denoising time steps (all the SDE sam-
pling t in SiT). The results for DiT-S/2 and SiT-S/2 are illustrated in Fig. 1(a)
and Fig. 1(b), respectively. Notably, the redundancy of self-attention is inversely
proportional to Sl. As a result, we get two observations from Fig. 1. First, massive
query-key redundancy exists in the attention operation of the diffusion trans-
formers. For example, in some layers (e.g . layer 10 in DiT-S/2), the inner-query
distance is nearly zero in the first several time steps, implying that almost all
the queries are akin and redundant. The second observation is that redundancy
gradually decreases as the denoising process continues. It is implied that the
queries become more diverse in the latter denoising steps.

Based on the above phenomenon, we design mediator tokens that interact
with query and key tokens separately, thus compressing the excessive attention
between queries and keys. The number of mediator tokens can be adjusted in
different time steps, thus adapting the different degrees of redundancy inside
different phases of the denoising process. We present the detailed explanation of
our method in the following section.

4 Efficient DiTs with Attention Mediators

In this section, we introduce the attention mediator mechanism to leverage the
redundancy efficiently in Sec. 4.1, building up a dynamic architecture of Diffusion
Transformer. To further boost the efficiency of Dynamic Diffusion Transformers,
we devise an algorithm in Sec. 4.3 to speed up the sampling process and fit the
computational budgets via dynamically adjusting mediator tokens.

4.1 Attention Mediators

We present the attention mediators to regulate the attention between every two
query and key pairs. The high-level idea of attention mediators is to use an
additional group of tokens to compress the interaction between the queries and
keys. The additional tokens, which we name it as mediator tokens, usually have
a smaller number than queries or keys, serving as a condensed supervisor over
the attention interaction. We present the detail as follows.

In each head of the multi-head attention module, besides the query q(m), key
k(m), and value v(m) tokens, we introduce a set of mediator tokens t(m) ∈ Rn×d,
where n is the mediator token length and n ≪ N . The mediator tokens first
interact with the key tokens to get the intermediate result v

(m)
med:

v
(m)
med = Softmax

(
t(m)k(m)⊤/

√
d
)
v(m), (7)

where v
(m)
med ∈ Rn×d. Then the mediator token interacts with the query tokens

and extracts the results from the intermediate result v
(m)
med:

h(m) = Softmax
(
q(m)t(m)⊤/

√
d
)
v
(m)
med. (8)
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In this way, a condensed set of mediator tokens interacts with the queries and
keys separately, avoiding redundancy when they interact indirectly.

The mediator tokens are obtained by adaptively pooling the query tokens into
a small number of tokens. Considering the noise predicted by the transformer has
spatial structured information, we first reshape the query tokens into the latent
image shape RH×W×d and then pool it in the spatial dimensions to get Rh×w×d.
The pooled queries are finally reshaped to the mediator tokens t(n) ∈ Rn×d,
where n ≪ N because (h× w) ≪ (H ×W ).

4.2 Complexity Analysis

It is noteworthy that by incorporating an additional, compact set of tokens,
we achieve a reduction in redundancy within the attention mechanism. Simul-
taneously, the computational complexity inherent to the attention operation is
diminished. We provide the subsequent analysis.

We begin by mixing and combining Eq. (7) and Eq. (8) to formulate the final
output of self-attention with mediator tokens:

h(m) = Softmax
(
q(m)t(m)⊤/

√
d
)

Softmax
(
t(m)k(m)⊤/

√
d
)
v(m)︸ ︷︷ ︸

Step 1: Rn×N · RN×d → O(Nnd)︸ ︷︷ ︸
Step 2: RN×n· Rn×d → O(Nnd)

. (9)

Since queries q(m) and keys k(m) are decoupled by the mediators, we can inter-
change the computation order of the queries, keys and values in attention. Unlike
previous vanilla self-attention that firstly computes q(m) and k(m), we first aggre-
gate values v(m) with precomputed A

(m)
tk = Softmax

(
t(m)k(m)⊤/

√
d
)
, as shown

in Step 1 of Eq. (9). The complexity of step 1 in multiplying an n × N matrix
and an N × d matrix is O(Nnd), as well as computing A

(m)
tk , which involves

multiplying an n× d matrix and an N × d matrix. Thus, the overall complexity
of Step 1 is no more than 2Nnd, also controlled by O(Nnd). The result of Step 1
has the shape of Rn×d, therefore the information propagation to queries of step
2 with A

(m)
qt = Softmax

(
q(m)t(m)⊤/

√
d
)

is also an O(Nnd) complex operation.

To summarize, both Steps 1 and 2 in Eq. (9) have O(Nnd) complexity, with
N latent tokens, n mediator tokens, and d feature dimensions in each attention
head. The proposed attention module achieves linear complexity relative to N ,
n, and d. Summing all heads together, the proposed mediator attention has an
O(nNC) complexity. Compared with the vanilla self-attention, which directly
multiplies queries and keys together to aggregate values and get O(N2C) com-
plexity, our method significantly reduces computational demands, given that the
mediator token count n, is significantly less than the image token count N . To
compensate the potential loss of feature diversity in linear complexity attention,
we adopt a depthwise convolution following Flatten transformer [22].
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4.3 Time Step-wise Mediator Adjusting

Fig. 1 illustrates the variation in attention redundancy across different diffusion
denoising time steps, revealing a gradual decrease in redundancy throughout the
process. Understanding the attention mediator tokens as a means of compressing
tokens between query and value tokens, we exploit this phenomenon, as shown
in Fig. 1, to dynamically adjust the number of mediator tokens, increasing them
from loss to more along the diffusion denoising steps.

Given the variability of the denoising procedure across image samples, we
introduce a sample-specific method for dynamically adjusting the number of
mediator tokens. This approach allows for a customized mediator token adjust-
ment schedule for each sample, based on its unique denoising process.

To quantify the changes in latent features between adjacent time steps, we
calculate the distance between each pair of subsequent time steps, denoted as
∆t = ∥xt − xt+1∥, alongside recording the initial denoising difference ∆0 =
∥x0−x1∥. The denoising process begins with a Diffusion Transformer featuring a
smaller number n1 of mediator tokens. Upon the latent difference falling below a
threshold ρ0 of the initial difference ∆0, we transition to a Diffusion Transformer
with an increased number n2 of mediator tokens.

nt =

{
n1,∆t > ρ0 ·∆0,

n2,∆t ≤ ρ0 ·∆0.
(10)

This process is further refined by introducing additional thresholds for change,
utilizing varying numbers of mediator tokens at each stage:

nt =


n1,∆t > ρ0 ·∆0,

n2,∆t ≤ ρ1 ·∆0,

...
nk,∆t ≤ ρk−1 ·∆0.

(11)

5 Experiments

In this section, we empirically evaluate the proposed sample-wise adaptive me-
diator tokens adjustment method on the state-of-the-art diffusion transformer
SiT [51]. We begin by introducing the experiment settings in Sec. 5.1, which
include the dataset description and training hyper-parameters. The experiment
results for different numbers of mediator tokens are presented in Sec. 5.2. In
Sec. 5.3, we show how to optimize the schedule for adjusting the mediator tokens.
Then, the effectiveness of the time step-wise mediator adjustment mechanism on
larger models and higher resolutions is demonstrated in Sec. 5.4. We also com-
pare our method with some state-of-the-art approaches in Sec. 5.5. Finally, more
ablation studies regarding our method and the generation visualization results
are presented in Sec. 5.6 and Sec. 5.7, respectively.
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Table 1: Effectiveness of static mediator tokens. n is the mediator tokens number.

Model FLOPs(G) FID (↓) sFID (↓) IS (↑) Precision (↑) Recall (↑)

SiT-S/2 (baseline) 6.06 58.61 9.25 24.31 0.41 0.59

+ Ours (n = 4) 5.49 57.67 10.01 26.66 0.42 0.56
+ Ours (n = 16) 5.55 54.55 9.28 26.55 0.43 0.59
+ Ours (n = 64) 5.78 53.57 9.01 27.26 0.43 0.61

5.1 Experimental Setups

Following DiT [57] and SiT [51], we train class-conditional diffusion transformer
models on the highly-competitive generative modeling benchmark ImageNet-
1k [13]. We adopt AdamW [40, 47] optimizer to train all the diffusion models
with no weight decay. For 256 × 256 image resolution models, we train them
from scratch with a global batch size of 256 for 400K iterations. The global
learning rate is set as constant 1 × 10−4 during all training steps. We only use
simple random horizontal flops data augmentation and maintain an exponential
moving average (EMA) of the model weights over training with a decay of 0.9999.

5.2 Effectiveness of Attention Mediator Tokens

To verify the effectiveness of the proposed mediators, we replace the standard
self-attention layers in SiT-S/2 [51] with the mediator-token ones. The exper-
iments are conducted at a 256 × 256 resolution, and the images are sampled
without using classifier-free guidance. Tab. 1 shows the results for different num-
bers of static mediator tokens, which means the token number is static across
different denoising time steps. It is observed that by compressing the query-key
interaction process, our method not only reduces the computational complexity
in FLOPs but also achieves a higher generated image quality in FID.

5.3 Exploring Optimized Mediator Token Adjustment Schedule

Since determining optimized thresholds (ρi in Eq. (11)) is non-trivial, we conduct
a small-scale grid search to explore reasonable mediator token number change
thresholds. Specifically, we use the three models introduced in Tab. 1. We sweep
the first threshold ρ0 in {1.0, 0.9, · · · , 0.1, 0.0}, and sweep the second threshold
ρ1 in {ρ0, ρ0 − 0.1, · · · , 0.1, 0.0}. In this way, this search space not only includes
the ensemble of these three models with different numbers of mediator tokens,
but also contains two-model ensembles and a single model. The choice of distance
function, as described in Sec. 4.3, is also ablated between L1 and L2 distance.

The results regarding the trade-off between FID/sFID-50K and computation
cost in GFLOPs are illustrated in Fig. 2(a) and Fig. 2(b). We plot all the results
under different thresholds, along with their envelope curves. The thresholds in
the envelope curves are considered optimized. We also compare the effectiveness
of using L1 versus L2 distance and find that the L1 distance is the better choice.
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Fig. 2: Ablation for optimized mediator token adjustment schedule. (a) Trade-off be-
tween FID-50K and FLOPs. (b) Trade-off between sFID-50K and FLOPs.
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Fig. 3: Main Results of the proposed method in 256×256 resolution. Each string of red
dots is obtained by adjusting the mediator token number with optimized thresholds.
(a) Comparison with DiT [57] and SiT [51]; (b) Zoomed in results around SiT-B/2.

5.4 Main Results

We adopt the optimized thresholds obtained in Sec. 5.3 and repeat the afore-
mentioned experiment on a larger scale model SiT-B/2. The results in Fig. 3
show that our method consistently outperform both DiT and SiT (Fig. 3 (a))
and this phenomenon is consistent between different model sizes (Fig. 2 (a) for
SiT-S/2, Fig. 3 (b) for SiT-B/2). Specifically, our method can get a better FID
score (1.85 lower than SiT-B/2) with even less computation budget.

We further conduct experiment on generating higher resolution images. The
512× 512 resolution models are finetuned from 256× 256 models with a global
batch size of 64 for 400K iterations, while 1024 × 1024 models are finetuned
from 512 × 512 counterparts with a global batch size of 16 for 400K itera-
tions. For testing 512× 512 resolution models, we generate 10K images with our
model and compute the FID with 512 resolution reference batch obtained from
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Fig. 4: High resolution image generation results.

Table 2: Benchmarking class-conditional image generation on ImageNet 256×256.

Model FID↓ sFID↓ IS↑ Precision↑ Recall↑

BigGAN-deep [4] 6.95 7.36 171.4 0.87 0.28
StyleGAN-XL [67] 2.30 4.02 265.12 0.78 0.53

Mask-GIT [8] 6.18 - 182.1 - -
ADM [15] 10.94 6.02 100.98 0.69 0.63

ADM-G, ADM-U 3.94 6.14 215.84 0.83 0.53
CDM [34] 4.88 - 158.71 - -
RIN [38] 3.42 - 182.0 - -

Simple Diffusion(U-Net) [35] 3.76 - 171.6 - -
Simple Diffusion(U-ViT, L) 2.77 - 211.8 - -

VDM++ [41] 2.12 - 267.7 - -

DiT-XL(cfg = 1.5) [57] 2.27 4.60 278.24 0.83 0.57
SiT-XL(cfg = 1.5) [51] 2.06 4.50 270.27 0.82 0.59

Ours(cfg = 1.5) 2.01 4.49 271.04 0.82 0.60

guided-diffusion3. For 1024 × 1024 models, we randomly select 10K images
from ImageNet validation set, resize them into 10242 resolution, and compute
FID ( with clean-fid4 toolkit) with 10K images sampled by our model.

The high-resolution results is illustrated in Fig. 4, where we can find that:
(1) the proposed method can still achieve better generated image quality (e.g .,
for SiT-S/2, −4.90 FID for 10242) with far fewer FLOPs, and (2) the speedup
is even more significant as the image resolution increases (e.g ., for SiT-B/2, the
speed-up increase from 15.7% in 5122 resolution to 45.4% in 10242 resolution).
This is because as the image resolution grows, the sequence length the atten-
tion operation needs to process also increases. At this point, the superiority of

3 https://github.com/openai/guided-diffusion/tree/main/evaluations
4 https://github.com/GaParmar/clean-fid
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the linear complexity in our method becomes far more prominent compared to
standard attention, which has quadratic complexity w.r.t the sequence length.

5.5 Comparsion with State-of-the-art

We compare our method against state-of-the-art class-conditional generative
models with the highest complexity SiT-XL/2 model endowed with our method.
We replace the first four self-attention layers with the proposed attention with
mediator tokens, and finetune the modified model for 400K iterations. The
results reported in Tab. 2 illustrate that when using classifier-free guidance
(cfg=1.5), following the practice in DiT and SiT, our method outperforms all
the prior diffusion models, achieving a remarkable FID-50K of 2.01.

5.6 Ablation Studies

Table 3: Effectiveness of static mediator tokens. n is the mediator tokens number.

Model FLOPs(G) FID (↓) sFID (↓) IS (↑) Precision (↑) Recall (↑)

SiT-S/2 (baseline) 6.06 58.61 9.25 24.31 0.41 0.59

r = 0.875 5.91 58.98 9.10 24.13 0.40 0.60
r = 0.750 5.76 59.18 9.26 24.03 0.39 0.59
r = 0.625 5.61 60.30 9.58 23.74 0.39 0.59
r = 0.500 5.46 60.02 9.43 24.01 0.40 0.57

Ours (n = 64) 5.78 53.57 9.01 27.26 0.43 0.61

Comparison with vanilla Q-K compression. In order to verify that the
proposed mediator token method is an effective way to leverage the query-key
interaction redundancy, we design experiments where queries and keys are re-
duced in a simpler way. Specifically, in each self-attention layer of the SiT model,
we modify the Wq and Wk linear projections from RC×C to RC×rC (where
r < 1) dimensions. In this way, queries and keys also interact in a compressed
space. We train this model with the same training recipe as SiT. The results in
Tab. 3 show that although directly reducing the hidden dimension of queries and
keys can save computation cost, the generated image quality drops dramatically.
In contrast, the proposed method can increase the generated image quality as
well as reduce the inference cost, verifying that our method is an effective way
to leverage the redundancy in diffusion transformers.
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Fig. 5: Sampled images by SiT-XL/2 models endowed with our method trained on
ImageNet 256×256 resolution with cfg=4.0.

5.7 Visualization Results

In order to verify the proposed time step-wise dynamic mediator token adjusting
token mechanism does not achieve a better numerical result by over-fitting the
FID-50K metric, we visualize the sample images using the largest SiT-XL/2
based model. Following the common practice in the DiT [57] and the SiT [51],
we set the classifier-free guidance as 4.0 to sample the images. The sampled
results are visualized in Fig. 5, from which we can find that our method not only
can achieve lower FID metric but also can generate high-quality images.

6 Conclusion

This paper proposed a novel diffusion transformer architecture in which an ex-
tra group of mediator tokens interact with the query tokens and key tokens
separately, compressing the redundant query-key interaction during the denois-
ing generation process. The number of mediator tokens adjusts across different
denoising time steps conditioned on the difference between every two adjacent
latent features in a simple-wise dynamic manner. Extensive quantitative exper-
iments and qualitative generated results demonstrate the effectiveness of our
method in alleviating attention redundancy and improving the generated image
quality. Our method also reduces the computation complexity in the attention
model since the proposed mechanism makes the attention operation have linear
complexity with regard to the image token length.
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