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Abstract. Within the video, different regions have varying motion com-
plexity, with simple regions containing static or global motion and com-
plex regions containing fast motion or lots of local motion. In recent
years, the performance of flow-based Video Frame Interpolation (VFI)
algorithms has improved significantly. However, existing training meth-
ods train on randomly cropped regions of train data without considering
the complexity of the motion. As a result, they cannot handle all regions
of the frame that contain varying motion complexity. To solve this prob-
lem, we propose a novel VFI approach (IAM-VFI) that can interpolate
any motion by considering the motion complexity of all regions in the
frame. First, we propose a training data classification method for motion
optimization based on each motion complexity. Then, using the proposed
data, a flow estimation network generates optimized results for each com-
plexity. Finally, we propose a Motion Complexity Estimation Network
(MCENet) to generate a Motion Complexity Map (MCM) that can esti-
mate the motion complexity of each region. Our proposed methods can
be easily applied to most flow-based VFI algorithms. Experimental re-
sults show that the proposed method can interpolate any motion and
significantly improve the performance of existing VFI algorithms.

Keywords: Video Frame Interpolation, Optical Flow Estimation, Region-
Aware

1 Introduction

Video Frame Interpolation (VFI) is a challenging low-level vision task that in-
creases the frame rate by generating a non-existent intermediate frame between
two consecutive frames. VFI can be applied to various tasks such as video restora-
tion [3], novel view synthesis [7, 41], slow motion generation [14, 23], and frame
up-conversion [5], etc. With the development of deep learning, the performance
of VFI algorithms has significantly improved.
† Co-corresponding authors.
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(a) Interpolation results for region with medium
motion complexity

(b) Interpolation results for region with hard
motion complexity

Fig. 1: Example of subjective results of based on motion complexity. In the case of (a),
the motion complexity between the two input frames is classified as a medium, and
the model trained on data classified as medium is the best. In contrast, (b) has a fast
motion complexity and the model trained on the hard data shows the best results.

Existing VFI algorithms are generally divided into two main categories:
kernel-based methods [28, 29] and flow-based methods [16, 17, 39]. Kernel-based
methods typically use an adaptive convolution to synthesize intermediate frames
by local patches. However, it suffers from a limitation when the motion is larger
than the kernel size, which degrades the interpolation results. Furthermore, the
memory requirement increases when a large kernel size is used. Flow-based meth-
ods, on the other hand, estimate the optical flow between two input frames and
synthesize the intermediate frame by warping it with the input frames. Flow-
based methods have become promising method in recent years due to advances
in flow estimation networks [12,17,30].

Within consecutive frames, the distribution of motion complexity varies, with
some regions containing simple motion patterns such as stationary motion, global
motion, and linear motion, and others containing complex motion patterns such
as occlusion, fast motion, and local motion. However, existing flow-based VFI
algorithms typically train using patches that are cropped random regions of
the training data. The motion complexity within these patches is randomly dis-
tributed from easy to hard. When the complexity is distributed over a wide
range, it is not possible to train optimally for each complexity because each
complexity interferes with the others. As a result, the interpolation results are
degraded because it cannot optimally estimate all motions in a video with vary-
ing motion complexity. Therefore, to achieve optimal results for motion in all
regions, it is necessary to interpolate by considering information about each
motion complexity within the frame.

To address these issues, we propose IAM-VFI, a method that estimates the
motion complexity of each region of the intermediate frames and interpolates for
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all motions based on their complexity. First, we analyzed the relation between
existing VFI results and motion complexity to further investigate the problem.
Then, based on the analysis results, we propose a data classification method that
classifies the training data into three classes (easy, medium, and hard) according
to the motion complexity to optimize the motion estimation network of VFI for
each motion complexity. As shown in the Fig. 1, we can see that simply training
with complexity-classified data improves the results for specific complexities.

Finally, we propose a Motion Complexity Estimation Network (MCENet)
that estimate the complexity of the motion in each region of the intermediate
frame and adaptively interpolate all the motions according to their complexity.
MCENet generates a Motion Complexity Map (MCM) that represents the mo-
tion complexity within a frame. Experimental results show that the proposed
method can significantly improve performance when applied to existing VFI
algorithms.

In summary, this paper has the following main contributions:

– We analyse the relation between the motion complexity and the interpo-
lation results and propose a dataset classification method.

– We propose the IAM-VFI algorithm that can handle any motion within
the frame with varying distributions of motion complexity.

– We propose a novel network called MCENet and a complexity loss to
generate a MCM that to handle all region within the frame.

– The proposed methods can be simply applied to previous flow-based VFI
algorithms and achieve significant performance.

2 Related Works

2.1 Flow-based Video Frame Interpolation

Deep learning based VFI algorithms typically take two consecutive frames (I0,
I1) as input and generates the intermediate frame Ît, 0 < t < 1 through a VFI
network ϕ with parameters Θ.

Ît = ϕ(I0, I1;Θ) (1)

In recent years, advances in optical flow estimation networks have made flow-
based methods become a dominant approach for VFI algorithms. Most flow-
based VFI algorithms typically involve as following steps. First estimate optical
flows F0→1, F1→0 between two frames through a flow network. Then the flows
are warped with the input frames to generate intermediate frame. For warping,
some algorithms generate F0→t, F1→t by scaling the flow between two frames, and
then use forward warping to generate two warped frames I0→t, I1→t. However,
the problem with forward warping is that it creates holes in the interpolated
frame. For this reason, most recent VFI algorithms use backward warping by
creating Ft→0, Ft→1.

Î0→t = ϕw(I0, F0→t), Î1→t = ϕw(I1, F1→t) (2)
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where ϕw is a backward warp operation. Then, generate a temporary interme-
diate frame Ĩt with the two warped frames and the mask obtained by the flow
network [17,36].

Ĩt = M ⊙ Î0→t + (1−M)⊙ Î1→t (3)

Finally, generate an intermediate frame Ît by adding the estimated residuals β
using the synthesis network [8, 33,39].

Ît = Ĩt + β (4)

Previous flow-based VFI algorithms suffer from the issues that the receptive
field size is limited, and therefore it is challenging to handle fast motion with large
pixel displacements or complex videos with occlusion and context details. To
address this issues, Sim et al. proposed XVFI, a recursive multi-scale structure
for processing 4K video with large motion, and also released the X4K1000FPS
dataset with extreme motion [34]. To handle large and complex motion, Jin et al.
proposed an EBME [17] that guides the flow through correlation volumes. And
various flow networks have been proposed in recent years that utilize pyramid
structure [16, 17] to enlarge receptive field, and utilize transformer [24, 40] to
capture long-range correspondence. As a result, these methods have achieved
impressive results for handling large and complex motions.

However, interpolating complex frames with many occlusion regions or vari-
ous motion distributions within the frame still remains as a challenging problem.
In addition, there is the problem of poor performance of interpolation on data
other than training data.

2.2 Region-aware Image & Video Restoration

In a video (or image), each region has various characteristics of spatial com-
plexity, such as edges and noise, and temporal complexity, such as the degree
of motion between frames. Therefore, in the restoration task, it is important to
understand the characteristics of each region for accurate restoration.

As an example of utilizing spatial complexity, Rad et al. proposed SROBB
[32], which uses different weights for loss based on the OBB (Object, Background,
Boundary) labels within the frame. And Kong et al. proposed ClassSR [20],
which categorizes each patch in a frame as easy, medium, or hard based on
the PSNR and restores each patch appropriately. Recently, the Segmentation
Anything Model (SAM) [18] has been utilized for region aware restoration tasks
[15,37].

In VFI, it is also important to interpolate the intermediate frame with con-
sidering the spatial and temporal characteristics of the video. However, existing
VFI algorithms have been interpolating without considering these characteris-
tics. As a result, it is difficult to interpolate all regions of large videos with
varying distributions of motion complexity. To address the limitations of exist-
ing VFI algorithms, we propose IAM-VFI, a method for interpolating all regions
in videos with motion complexity.
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Fig. 2: SI & TI distribution of VFI bench-
mark

Table 1: Interpolation results of subclips
in HD data

Name PSNR

HD
Dataset

Parkrun 29.587
Shields 36.236

Stockholm 35.304
Bluesky 41.438
Kimono 35.983

Parkscene 37.482
Sunflower 35.994

Sintel Alley2 30.452
Sintel Market5 21.077
Sintel Temple1 27.57
Sintel Temple2 23.19

3 Proposed Methods

In this section, we first explore the problems with existing algorithms by analysing
the relation between video complexity and VFI results in Sec. 3.1. Then, in
Sec. 3.2, we describe a data classification method to address the existing prob-
lems. Finally, we describe the overall structure of our proposed IAM-VFI to
interpolate any motion within the frame in Sec. 3.3, and describe the proposed
MCENet to estimate the motion complexity of each region in Sec. 3.4.

3.1 Relation between Video Complexity & Interpolate results

We conducted the analysis in this section to explore the limitations of existing
algorithms. The algorithm we used for the analysis is RIFE [12], a representative
flow-based VFI algorithm. And we used Spatial Information (SI) and Temporal
Information (TI) [13] to find the relation between the complexity of the video
with the interpolation results. SI and TI are often used to ensure that videos
span the appropriate range of spatio-temporal complexity and are used to classify
video data according to complexity [9, 35]. It is also used when creating source
videos to ensure that the distribution of video complexity is appropriate [2],
and recently SI/TI has been used as a feature of deep learning-based video
quality metrics [10]. SI is a measure of the amount of spatial detail by computing
the sobel filter vertically and horizontally to detect edges within a frame and
considering the standard deviation of the detected edges:

SI = stdspace[Sobel(Fn)] (5)

Where Fn is the nth frame of the video. Higher SI value indicate that the
frame contains more detail are has a higher spatial complexity. TI is a mea-
sure of the amount of temporal variation in a video sequence. TI first calculates
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(a) Relation between TI and PSNR in HD (b) Relation between SI and PSNR in HD

Fig. 3: Relation between spatiotemporal information (SI/TI) & PSNR

the amount of variation between two adjacent frames by calculating the differ-
ence between the current frame and the previous frame, and then considers the
standard deviation of the variation to calculate temporal complexity.

Mn(i, j) = Fn(i, j)− Fn−1(i, j) (6)

TI = stdspace(Mn(i, j)) (7)

Where Mn represents the difference between the current frame Fn and the
previous frame Fn−1. A higher value of TI indicates that more motion is included
between two frames.

Video complexity is an important factor in VFI, so we analysed the relation
between SI/TI and interpolation results to find out the reason why the existing
VFI algorithms perform poorly on data that deviates from the characteristics of
the training data. As shown in the Fig. 2, we can see that the SI/TI distribu-
tion of the Vimeo90K [38] train dataset, which is commonly used for training,
contains the entire Vimeo90K test dataset. As a result, the existing training
methods perform well on interpolate the Vimeo90K test data. However, some of
the subclips in the HD [1] dataset have SI/TI that are out of the distribution of
the training data. In this case, we can observe that the PSNR of subclips outside
the distribution of the training data degrades in Tab. 1. Based on this, we fur-
ther analyze the relation between SI/TI and PSNR. As shown in Fig. 3a, PSNR
is more closely related to TI, which is important for accurately estimating mo-
tion in VFI. It shows that PSNR degrades as the complexity of motion between
frames increases. In contrast, SI, the spatial complexity of the interpolation, is
not closely related to the interpolation result, as shown in Fig. 3b.
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Fig. 4: Overview of our IAM-VFI. The Flow Network in stage 1 is the Flow Network
of the existing VFI algorithm. It is trained with our proposed easy, medium, and hard
datasets, respectively, to optimize for the motion complexity. The Synthesis Network
in stage 2 is the synthesis network of the existing VFI algorithm.

3.2 Data classification Method

Previous training methods typically train with patches cropped from random
regions of the input image. However, the complexity of motion within the patch is
also randomized, leading to suboptimal training for each complexity. As a result,
it suffers from poor results for videos with varying complexity distribution within
the video. To address this problem, we propose a data classification method
that classifies the existing training dataset into easy, medium, and hard datasets
according to motion complexity based on the analysis of Sec. 3.1.

First we created Vimeo90K(X2), which is a ×2 upsampling of Vimeo90K
[38] via EDSR [22] to generate more samples for larger motions, and we use
both Vimeo90K and Vimeo90K(X2) data for classification. To avoid training
randomly cropped regions, we first overlapped parts of the dataset and cropped
them into patches of 256x256 size. We then calculated the TI to classify the data
based on the motion complexity of each cropped patch. Based on the calculated
TI, we set a threshold to divide the number of data into three parts: easy,
medium, and hard datasets. The effectiveness of our proposed data classification
method can be seen in Sec. 5.1.

3.3 IAM-VFI Overview

To identify the motion complexity for each region in the frame and to handle all
motion, we propose IAM-VFI. Our proposed IAM-VFI is trained in two stages,
as shown in Fig. 4. In the first stage, we train a flow estimate network with easy,
medium, and hard datasets, each classified by motion complexity, to perform
motion optimization for that complexity. The flow estimation network trained
on each data generates optimized frames Ĩet , Ĩ

m
t , Ĩht , for each complexity. The

generated frames are then concatenated and used as input for the second stage.
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Fig. 5: The network structure of Motion Complexity Estimation Network

Ĩt = Concat(Ĩet , Ĩ
m
t , Ĩht ) (8)

The second stage receives each optimized frame as input and generates a Mo-
tion Complexity Map (MCMt) using a Motion Complexity Estimation Network
(MCENet) to estimate the complexity of each region in the intermediate frame.
Then perform a linear combination of the generated MCMt and the input image
Ĩt to generate a temporal intermediate frame Ît. And the generated MCMt is
used as input to provide information about the motion complexity to the syn-
thesis network of the existing VFI algorithm to estimate the residual. Finally,
the residual is added to the temporal intermediate frame to generate the final
interpolated frame It.

3.4 Motion Complexity Estimation Network

We propose MCENet, a network for estimating the motion complexity of each
region of the intermediate frames to be interpolated and handling them according
to the motion complexity of each region. First, MCENet takes as input Ĩet , Ĩ

m
t ,

and Ĩht , the optimized results for each motion complexity, and generates an
MCMt ∈ R3×H×W that estimate the motion complexity of the region. The
generated MCMt consists of three channels, each representing a probability
value for whether this region is close to easy, medium, or hard. We then perform
a linear combination of multiplying each channel by the Ĩet , Ĩ

m
t , and Ĩht frames

respectively to generate Ît, the frame that reflects the complexity. As a result,
MCMt also controls the region on the boundary of each class by giving more
weight to the most probable values among the three classified easy, medium, and
hard values.

Ît =
∑

c∈e,m,h

MCM c
t Ĩ

c
t (9)
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We construct MCENet with a U-Net structure for simple application to exist-
ing VFI algorithms and propose Motion Attention Block (MAB) for estimating
motion complexity more efficiently. The detailed architecture of MCENet and
MAB can be seen in Fig. 5.

To effectively train MCMt, we propose a novel loss function, complexity
loss. The frame Ît generated by the MCMt, contains information about the
complexity of the motion in each region. Therefore, it is not effective to use a loss
function to reduce the error with GT, which does not contain information about
complexity. For this reason we generate MCMgt, which contains information
about the complexity of the motion. To generate the MCMgt, we compute the
error between the optimized frame and the ground truth for each pixel by motion
complexity. We then assign a 1 to the channel of the MCMgt that represents
the class with the minimum error at each pixel, and a 0 to the other channels.
This allows the MCMgt to represent the best motion complexity class at each
pixel.

MCM c
gt(i, j) =

1, if c = argmin
c∈{e,m,h}

(∣∣∣gt(i, j)− Ĩct (i, j)
∣∣∣)

0, otherwise
(10)

Finally, we compute a linear combination of the generated MCM and each frame
to generate ÎMCM

ÎMCM =
∑

c∈{e,m,h}

MCM c
gtĨ

c
t (11)

We update the MCMt by taking the L1 loss between two frames Ît and ÎMCM

that contain the motion complexity.

Lc =
∥∥Ît − ÎMCM

∥∥
1

(12)

The effect on Lc was verified in Sec. 5.3.

4 Experiment

4.1 Implement details

Training Dataset. We first trained the flow network using the classified datasets
introduced in Sec. 3.2. Then, we freeze the flow network and trained the MCENet
and synthesis network. Since the classified datasets are the data proposed to
optimize each motion, we used the original Vimeo90K to train MCENet and
synthesis network. The Vimeo90K data consists of 51,312 triplets and has a res-
olution of 448 × 256.
Training Strategy. We applied the proposed methods to the flow-based algo-
rithms RIFE [12] and EMA-VFI [40]. The experiments were implemented based
on the official code presented in the paper. For both proposed stages, we used
the same optimization techniques such as batch size, optimizer, scheduler, and
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learning rate as used in RIFE and EMA-VFI, and trained for the same itera-
tions. Our training was performed on a single NVIDIA RTX A6000.
Loss Function. In the first stage, we used the same loss function used in the
original networks for training the flow estimation network. In the second step, we
used Lsyn, the reconstruction loss used to train synthesis network in RIFE and
EMA-VFI, and Lc, the loss function proposed in Sec. 3.4 to train the MCENet.

Ltotal = λsLsyn + λfLc (13)

where we set λs = 0.5, λf = 0.5 to balance the loss values.

4.2 Benchmarks and Evaluation Metrics

Our proposed methods are to handle various motion complexities. Therefore, we
evaluated our proposed method on the following datasets with various motion
complexities.
SNU-FILM [4] : 1280x720 resolution with a total of 1240 frames, categorized
into easy, medium, hard, and extreme according to the motion magnitude.
HD [1] : It consists of 11 videos. The HD dataset consists of four 1080p, three
720p and four 544p videos, and we used the first 100 frames of each video
UVG [25] : It consists of 7 videos with 3840x2160 resolution, and we used the
first 300 frames of each video.
Xiph [26] : It contains 19 video sequences, each consisting of 31 consecutive
4K resolution frames. We followed [27] method to downsample and center-crop
the 4K images to create a 2K resolution and evaluate both Xiph4K and Xiph2K.
Metrics. We used Peak Signal-To-Noise Ratio (PSNR) and Structural-Similarity-
Image-Metric (SSIM), commonly used objective quality metrics, where a higher
PSNR and SSIM indicate better quality. To evaluate runtime, we measured all
algorithms at 720p resolution to be fair, and we used a single NVIDIA RTX
A6000 GPU.

5 Results

5.1 Data Classification method

We first validate our proposed data classification method. The proposed method
aims to optimize for the complexity of each motion, so we exclude the influence

Table 2: Quantitative results comparison on benchmark datasets.(Red indicates best
PSNR value)

Train Data
Benchmark Vimeo90K UVG

easy medium hard easy medium hard
Vimeo90K 43.543 36.495 32.131 48.338 36.317 30.052
Ourseasy 43.955 36.402 31.727 49.027 36.291 29.338

Oursmedium 43.951 37.012 32.588 48.509 36.851 30.289
Ourshard 43.632 36.991 32.721 47.831 36.815 30.611
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Table 3: Quantitative results comparison on benchmark datasets.(Red indicates best
PSNR/SSIM values within each dataset and Blue indicates second best and Green in-
dicates third best.) We followed the test procedures of [12] for HD, [19] for SNU-FILM,
and [11] for Xiph to ensure a fair comparison. "OOM" indicates "Out of Memory" and
"†" indicates the results we obtained by retraining to compare results.

Algorithm HD
SNU-FILM

UVG
Xiph

Easy Medium Hard Extreme 2K 4K

SepConv [29] 30.87/0.930 39.41/0.990 34.97/0.976 29.36/0.925 24.31/0.844 26.11/0.864 34.77/0.929 32.06/0.880
CAIN [4] 31.45/0.939 39.91/0.990 35.57/0.977 29.87/0.929 24.73/0.850 30.32/0.902 35.21/0.937 32.56/0.901

AdaCoF [21] 31.43/0.933 39.84/0.990 35.07/0.975 29.47/0.924 24.31/0.843 OOM 34.86/0.928 32.19/0.882
CDFI [6] 31.46/0.937 40.11/0.990 35.51/0.977 29.74/0.927 24.54/0.847 OOM 35.48/0.940 32.47/0.903

ABME [31] 32.17/0.943 39.59/0.990 35.51/0.978 29.47/0.936 25.23/0.863 OOM 35.18/0.964 32.36/0.940
IFRNet [19] 32.15/0.943 40.02/0.990 35.93/0.979 30.40/0.935 25.05/0.858 31.33/0.904 36.24/0.964 33.38/0.941

M2M-PWC [11] 31.23/0.937 39.59/0.990 35.68/0.979 30.27/0.936 25.07/0.860 30.89/0.910 36.40/0.967 33.77/0.943
VFIformer [24] OOM 40.12/0.991 36.09/0.980 30.67/0.937 25.20/0.863 OOM OOM OOM

EBME [17] 32.44/0.945 39.98/0.991 35.74/0.979 30.40/0.935 25.24/0.861 31.79/0.915 36.33/0.965 33.71/0.942

RIFE† [12] 32.08/0.942 39.98/0.990 35.78/0.978 30.14/0.933 24.84/0.853 31.13/0.900 36.15/0.964 33.25/0.940
RIFEours 32.46/0.946 40.18/0.991 36.05/0.980 30.58/0.937 25.35/0.863 32.17/0.917 36.60/0.966 34.20/0.946

EMA-VFI† [40] 32.62/0.948 40.17/0.991 35.97/0.979 30.64/0.935 25.27/0.857 31.19/0.907 36.71/0.966 33.69/0.944
EMA-VFIours 32.89/0.951 40.28/0.992 36.30/0.981 30.88/0.938 25.59/0.864 32.12/0.916 37.01/0.968 34.29/0.947

of synthesis networks for accurate validation. We use the proposed easy, medium,
and hard datasets to train IFNet, the flow network of RIFE. And warped the
estimated flows and input frames then generate temporal intermediate frames
using Eq. (3). The Benchmark used for validation was Vimeo90K test and UVG,
and was divided into 256x256 patches to avoid varying complexity within the
region and the TI of each patch was calculated and classified as easy, medium,
or hard.

As shown in Tab. 2, we can see that the training with the complexity classified
data optimizes the motion estimation performance, resulting in improved PSNR
compared to the results trained with the original dataset. This result shows that
classification by complexity is effective in optimizing motion.

5.2 Comparison with the State-of-the-Art Methods

To compare the proposed methods, we used the kernel-based algorithms SepConv
[29], AdaCoF [21], and CDFI [6], the flow-based algorithms ABME [31], IFRNet
[19], M2M-PWC [11], VFIformer [24], EBME [17], and the other method CAIN
[4]. We applied our methods to the flow-based algorithms RIFE [12] and EMA-
VFI [40].

Tab. 3 summarizes the quantitative comparison with existing VFI algorithms
on various benchmarks to show the effectiveness of the proposed methods. The
performance of the original RIFE is slightly worse compared to the state-of-the-
art algorithms, but we can see that our proposed method improves performance
on all benchmarks. In particular, for UVG and Xiph4K, which are high-resolution
videos with various motion complexity, we can see the PSNR improvements
of 1.04 dB and 0.95 dB, respectively, with the best results for UVG data
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(a) Visual comparison of IAM-VFI applied to EMA-VFI with the SOTA algorithm

(b) Visual comparison of IAM-VFI applied to RIFE with the SOTA algorithm

Fig. 6: Visual comparison on extreme subset of SNU-FILM [4] and HD [1] benchmarks.

compared to the state-of-the-art algorithms. Other benchmarks also achieved
second or third best results. And when the IAM-VFI method is applied to the
recently proposed EMA-VFI, we can see that it achieves the best performance
in all benchmarks except UVG, with an improvement of 0.93 dB in UVG and
0.60 dB in Xiph4K compared to the original algorithm.

In Fig. 6, we compare the subjective image quality of the results of applying
IAM-VFI to RIFE and EMA-VFI with other algorithms. In the first column
of Fig. 6a, we can see that IAM-VFI can handle large motions and the second
column demonstrated that images with complex motion and detail are also im-
proved. In the first column of Fig. 6b, the occlusion regions of the object and
background are sharply interpolated and the face is interpolated clearly. And in
the second column, the edge regions are also interpolated sharply.
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Fig. 7: Subjective image quality comparison for the effectiveness of MCM. The first
column shows, from left, the overlap of the two input images, each channel of the
MCMt representing the probabilities of easy, medium, and hard, and the interpolation
results of the original RIFE. The second column shows, from left, the ground truth of
the intermediate frames to be interpolated, the intermediate frames optimized to easy,
medium and hard using the data classification method, and the interpolation results
of IAM-VFI.

5.3 Ablation Studies

We performed the ablation study to demonstrate the effectiveness of the pro-
posed methods. For comparison, we used all benchmark datasets and compared
the inference time of applying the proposed method to the existing VFI algo-
rithm. In Tab. 4, the baseline without applying all the proposed methods is the
original RIFE [12] algorithm.
Effect of MCENet. The second column is the result of simply weighting each
of the frames optimized for each class by the classified data by 0.33. We can see
that the PSNR degrades for most of the benchmarks because we do not take into
account the complexity of each region. In contrast, when we generate an MCMt

using MCENet to estimate the complexity of each region and adaptively weight
each region, we see that performance improves compared to the baseline for all
benchmarks.

In Fig. 7, we can see the optimized results for each motion and a visualisation
of each channel of the MCMt generated by MCENet. We can see that the regions
with large motion are classified as hard motion complexity, and the optimized
result with hard data interpolates the large motion regions clearly. Also in the
occlusion region, we can see that the motion complexity is classified as hard due
to the different motion of the two overlapped objects, and the edges are sharply
interpolated. And global motions are classified as easy or medium. Finally, when
small objects such as branches move, the distribution of their motions varies,
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Table 4: Ablation studies for our proposed methods. M.O stands for Motion Optimi-
sation with classified data. (Red indicates the best PSNR).

M.O MCENet Lc MAB SynMCM HD SNU-FILM UVG Xiph Runtime
Easy Medium Hard Extreme 2K 4K

× × × × × 32.08 39.98 35.78 30.14 24.83 31.13 36.15 33.25 48.3ms
✓ × × × × 31.97 38.39 35.15 30.22 25.23 31.60 35.80 33.60 68.3ms
✓ ✓ × × × 32.32 40.05 36.03 30.59 25.35 32.02 36.33 33.92 78.7ms
✓ ✓ ✓ × × 32.42 40.11 36.04 30.58 25.34 32.08 36.56 34.06 78.7ms
✓ ✓ ✓ ✓ × 32.45 40.14 36.05 30.59 25.35 32.15 36.60 34.12 82.7ms
✓ ✓ ✓ ✓ ✓ 32.46 40.18 36.08 30.60 25.35 32.17 36.60 34.20 87.5ms

so they are classified as complex motions, and you can see that the previously
blurred parts are interpolated clearly.
Effect of Motion Complexity Loss. The Ît generated by MCMt contains
information about the complexity of each regions. Therefore, we can see that
using the loss function for frames with complexity information reflected through
MCMgt rather than using the loss with GT is effective.
Effect of MAB. Each channel of MCM represents the probability value for
whether the complexity of the corresponding area falls into easy, medium, or
hard. Therefore, the PSNR is improved when MAB is used in MCENet to give
attention for each channel.
Synthesis Network with MCM. Using the MCMt as an additional input
to the synthesis network to provide information about motion complexity can
improve performance on most of the benchmarks.

5.4 Limitations

By applying the proposed method to the existing algorithm, we achieved a sig-
nificant improvement in interpolation results, but it still has several limitations.
First, the flow network needs to be trained for each classified dataset to optimize
for motion, resulting in increased training time. Second, compared to the exist-
ing network, the runtime increases. In future work, we will attempt to optimize
for all motion complexities using a single flownet.

6 Conclusion

This paper aims to address the problem that existing VFI algorithms do not con-
sider motion complexity and therefore fail to perform optimally for all regions.
We solve this problem by combining three intermediate frames, which are derived
by different flow networks, with motion complexity map. Experimental results
show that the proposed method of interpolating frame by considering motion
complexity improves the interpolation performance of existing VFI algorithms
and achieves enhanced quality for all regions in the video.
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