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Broader Societal Impact: Our proposed TIP, which is optimized using sta-
tistical techniques, could potentially perpetuate biases and unfairness present
in the training data. For instance, the image-tabular data in the UK Biobank
database [4] is mostly collected from white population and healthy subjects [2,
20]. Previous studies have found that deep learning models could potentially
learn spurious correlations between cardiac diseases and population character-
istics and may result in negative societal impacts when generalizing to other
populations [11, 15]. Therefore, further research and deployment based on this
model should take into account these issues, along with potential solutions to
address biases and unfairness.

A Detailed Data Description

The UK Biobank (UKBB) [4] is used for two cardiovascular disease classification
(diagnosis) tasks: coronary artery disease (CAD) and myocardial infarction (In-
farction). This dataset comprises 36,167 subjects. For each subject, we utilized
mid-ventricle slices of its cardiac magnetic resonance (MR) images at three time
phases, i.e., end-systolic (ES) frame, end-diastolic (ED) frame, and a time frame
between ED and ES. In addition, we employed 75 tabular features, including 26
categorical features, e.g ., alcohol drinker status, and 49 continuous features, e.g .,
average heart rate, and their detailed information can be found in Tab. 1.

Moreover, we have used a natural image dataset, Data Visual Marketing
(DVM) [12], for a car model classification task with 283 classes. We employed
176,414 image-tabular samples from this dataset. As illustrated in Tab. 2, each
sample has 17 tabular features in total, including 4 categorical and 13 continu-
ous features. For both UKBB and DVM datasets, we pre-processed their tabular
data before using them for our task as in [9]. Additionally, we converted categor-
ical data into ordinal numbers and standardized continuous data using z-score
normalization, with a mean value of 0 and standard derivation of 1.
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Table 1: 75 tabular features (26 categorical and 49 continuous) are employed for CAD
and Infarction tasks on UKBB. Cat denotes whether the feature is categorical, and
Nunq represents the total number of unique values for each categorical feature.

Tabular Feature Cat Nunq Tabular Feature Cat Nunq

Alcohol drinker status
√

3 LVCO (L/min) × -
Alcohol intake frequency

√
6 LVEDV (mL) × -

Angina diagnosed by doctor
√

2 LVEF (%) × -
Augmentation index for PWA × - LVESV (mL) × -
Average heart rate × - LVM (g) × -
Basal metabolic rate × - LVSV (mL) × -
Blood pressure medication regularly taken

√
2 Number of beats in waveform average for PWA × -

Body fat percentage × - Number of days/week of moderate physical activity 10+ minutes
√

8
Body mass index (BMI) × - Number of days/week of vigorous physical activity 10+ minutes

√
8

Body surface area × - Number of days/week walked 10+ minutes
√

8
Cardiac index during PWA × - Oral contraceptive pill or minipill medication regularly taken

√
2

Cardiac index × - Overall health rating
√

4
Cardiac output during PWA × - P duration × -
Cardiac output × - Past tobacco smoking

√
4

Central augmentation pressure during PWA × - Peripheral pulse pressure during PWA × -
Central pulse pressure during PWA × - Pulse rate × -
Central systolic blood pressure during PWA × - Pulse wave Arterial Stiffness index × -
Cholesterol lowering medication regularly taken

√
2 QRS duration × -

Current tobacco smoking
√

3 RVEDV (mL) × -
Diabetes diagnosis

√
2 RVEF (%) × -

Diastolic blood pressure × - RVESV (mL) × -
Diastolic brachial blood pressure during PWA × - RVSV (mL) × -
Duration of moderate activity × - Sex

√
2

Duration of strenuous sports
√

8 Shortness of breath walking on level ground
√

2
Duration of vigorous activity × - Sleep duration × -
Duration of walks × - Sleeplessness / insomnia

√
3

End systolic pressure during PWA × - Smoking status
√

3
End systolic pressure index during PWA × - Stroke diagnosed by doctor

√
2

Ever smoked
√

8 Stroke volume during PWA × -
Exposure to tobacco smoke at home × - Systolic blood pressure × -
Exposure to tobacco smoke outside home × - Systolic brachial blood pressure during PWA × -
Falls in the last year

√
3 Total peripheral resistance during PWA × -

Heart rate during PWA × - Usual walking pace × -
High blood pressure diagnosed by doctor

√
2 Ventricular rate × -

Hip circumference × - Waist circumference × -
Hormone replacement therapy medication regularly taken

√
2 Weight × -

Insulin medication regularly taken
√

2 Whole body fat mass × -
Long-standing illness, disability or infirmity

√
2

B Implementation Details

B.1 Pre-training

We followed the same image and tabular data augmentation techniques during
pre-training as in [9]. Specifically, we augmented images through random scaling,
rotation, shifting, flipping, Gaussian noise, as well as brightness, saturation, and
contrastive changes. After that, all images are resized to 128× 128. To speed up
the image augmentation process, we used the Albumentations python library [3].
For tabular data augmentation of ITC and ITM, we randomly selected 30% of
tabular features in each subject and replaced their values with column-wise ran-
domly selected values. Notice that tabular pre-training algorithms (SCARF [1],
VIME [24], and SAINT [18]) have their own tabular augmentations.

The hyper-parameters and training configurations for the self-supervised
learning (SSL) image pre-training approaches (SimCLR [5], BYOL [8], Sim-
Siam [6], BarlowTwins [26]) and SSL multimodal pre-training method (MMCL [9])
are the same as those used in [9], which were found using hyper-parameter search.



TIP: Tabular-Image Pre-training 3

Table 2: 17 tabular features (4 categorical and 13 continuous) are used for the DVM
car model classification task. Cat denotes whether the feature is categorical, and Nunq

represents the total number of unique values for each categorical feature.

Tabular Feature Cat Nunq Tabular Feature Cat Nunq

Advertisement month (Adv_month) × - Height × -
Advertisement year (Adv_year) × - Length × -
Bodytype

√
13 Price × -

Color
√

22 Registration year (Reg_year) × -
Number of doors (Door_num) × - Miles runned (Runned_Miles) × -
Engine size (Engine_size) × - Number of seats (Seat_num) × -
Entry prize (Entry_prize) × - Wheelbase × -
Fuel type (Fuel_type)

√
12 Width × -

Gearbox
√

3

We utilized optimal hyper-parameters to pre-train SSL tabular pre-training mod-
els and our proposed TIP. Specifically, for each model, we selected the best learn-
ing rate from a set of values of {3×10−3, 3×10−4, 3×10−5} and the best weight
decay from {1 × 10−4, 1.5 × 10−6}, based on its performance on the validation
set. All models are deployed on 4 A6000 GPUs and pre-trained for 500 epochs
using the Adam optimizer [13]. The learning rate is warmed up linearly for 10
epochs and decayed following a cosine annealing scheduler. The implementation
details of TIP and SSL tabular pre-training methods are discussed below.

The Proposed TIP: It utilizes a learning rate of 3× 10−4 and a weight decay
of 1.5× 10−6 for DVM pre-training and a learning rate of 3× 10−4 and a weight
decay of 1× 10−4 for UKBB cardiac pre-training.

SCARF [1]: It applies contrastive learning to original tabular data and an aug-
mented view by corrupting a random subset of features. Based on the validation
performance, the corruption ratio and the temperature parameter are set to 0.3
and 0.1, respectively. The hidden dimension of SCARF’s multi-layer perceptron
(MLP) is 512. We utilized a learning rate of 3 × 10−4 and a weight decay of
1.5 × 10−6 for DVM pre-training and a learning rate of 3 × 10−3 and a weight
decay of 1× 10−4 for UKBB cardiac pre-training.

VIME [24]: It predicts the corrupted positions in tabular data and reconstructs
their values. Based on the validation performance, the corruption ratio is set to
0.3. The reconstruction loss adjustment parameter α is 2.0 as in [24], and the
hidden dimension of VIME’s MLP is 512. For pre-training, we utilized a learning
rate of 3× 10−4 and a weight decay of 1.5× 10−6 for DVM and a learning rate
of 3× 10−3 and a weight decay of 1× 10−4 for UKBB cardiac dataset.

SAINT [18]: It produces an augmented tabular view through CutMix [25] and
mixup [27] and then operates contrastive learning and denoising pre-training.
Additionally, SCARF proposed a new transformer-based tabular architecture
that performs attention across rows and columns. We utilized a learning rate of
3× 10−5 and a weight decay of 1.5× 10−6 for DVM pre-training and a learning
rate of 3× 10−5 and a weight decay of 1× 10−4 for UKBB cardiac pre-training.
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Table 3: Learning rates of DVM, CAD, and Infarction tasks for different models
during supervised training or fine-tuning. � means linear probing, and ] represents
fully fine-tuning.

Model DVM Accuracy (%) ↑ CAD AUC (%) ↑ Infarction AUC (%) ↑
� ] � ] � ]

(a) Supervised Methods
ResNet-50 [10] 3× 10−4 1× 10−3 1× 10−3

Concat Fuse (CF) [19] 3× 10−4 3× 10−3 3× 10−3

Max Fuse (MF) [21] 3× 10−4 3× 10−3 3× 10−3

Interact Fuse (IF) [7] 3× 10−4 3× 10−3 3× 10−3

DAFT [23] 3× 10−4 3× 10−3 3× 10−3

(b) SSL Pre-training Methods
SimCLR [5] 1× 10−3 1× 10−4 1× 10−3 1× 10−3 1× 10−3 1× 10−3

BYOL [8] 1× 10−3 1× 10−4 1× 10−3 1× 10−4 1× 10−3 1× 10−4

SimSiam [6] 1× 10−3 1× 10−5 1× 10−3 1× 10−4 1× 10−3 1× 10−4

BarlowTwins [26] 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

SCARF [1] 1× 10−4 1× 10−4 1× 10−3 1× 10−3 1× 10−3 1× 10−3

VIME [24] 1× 10−4 1× 10−4 1× 10−3 1× 10−3 1× 10−3 1× 10−3

SAINT [18] 1× 10−4 1× 10−5 1× 10−3 1× 10−5 1× 10−3 1× 10−5

MMCL [9] 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

TIP (proposed) 1× 10−4 1× 10−4 1× 10−3 1× 10−4 1× 10−3 1× 10−4

B.2 Fine-tuning

For either fully fine-tuning or linear probing settings of each pre-trained model,
we chose the best learning rate from a set of values of {3 × 10−2, 1 × 10−2, 3 ×
10−3, 1×10−3, 3×10−4, 1×10−4, 3×10−5, 1×10−5} depending on its validation
performance. Tab. 3(b) demonstrates the learning rate used for each model.
We utilized an Adam optimizer without weight decay and a batch size of 512.
To alleviate over-fitting, an early stopping strategy in Pytorch Lightning has
been adopted, with a minimal delta (divergence threshold) of 0.0002, a maximal
number of epochs of 500, and a patience (stopping threshold) of 10 epochs.

B.3 Supervised Training

We reproduced 1 supervised image approach, ResNet-50, and 4 supervised multi-
modal algorithms: concatenation fusion (CF) [19], maximum fusion (MF) [21], in-
teractive fusion through channel-wise multiplication (IF) [7], and dynamic affine
transform (DAFT) [23]. These multimodal techniques leverage a ResNet-50 as
their image encoder for fair comparison. To adapt CF and MF to our task, we
used a 2-layer MLP with a hidden dimension of 512 and an output dimension
of 2048 as their tabular encoder. For IF, its tabular encoder is a 4-layer MLP,
with hidden dimensions of [64, 256, 512, 1024] and an output dimension of 2048.
We undertook the same training strategy and learning rate sweep as the fine-
tuning process, i.e., an early stopping strategy with a maximum of 500 epochs.
We ensure that all supervised models were converged after training. Tab. 3(a)
demonstrates the learning rate used for each model.
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Fig. 1: Overall result comparison with supervised/SSL image/multimodal approaches
on various number of fine-tuning samples. ] denotes fully fine-tuning, and � means
linear probing. In addition to the results shown in Fig. 3 of the manuscript, we have
included the results of BYOL, SimSiam, and BarlowTwins.

C Additional Experiment

C.1 Robustness to Low-data Regimes (Complete Results)

As mentioned in Sec. 4.1 of the manuscript, we propose to assess the performance
of TIP and other SOTA methods on low-data regimes (10% and 1% of the
original dataset size). Fig. 3 in the manuscript displays only SimCLR’s results
for SSL image approaches since it showed the best performance among them.
We present the complete results of all models in Fig. 1.

C.2 Ablation Study on The Proposed SSL Strategy

We conduct an ablation study to analyze the impact of each SSL pre-training
task: image-tabular contrastive learning (ITC), image-tabular matching (ITM),
and masked tabular reconstruction (MTR). Tab. 4 demonstrates the results on
complete downstream task data. We can obtain the following observations: (1)
Compared with supervised TIP w/o any pre-training tasks, adding pre-training
tasks improves the model performance, indicating the usefulness of our pre-
training strategy. (2) In the linear probing setting, compared with integrated
TIP, removing any of our pre-training tasks significantly decreases the model
performance, e.g ., TIP w/o ITC decreases AUC by 14.08% on Infarction, TIP
w/o ITM decreases AUC by 1.61% on CAD, and TIP w/o MTR decreases AUC
by 2% on CAD. This indicates that our three pre-training tasks enable the model
to learn transferable features and efficiently produce promising results with a few
tunable parameters. The competitive results of TIP and TIP w/o ITM or ITC in
fully fine-tuning can be attributed to the relatively small pre-training datasets
and also the fact that tuning all parameters can moderately alleviate the reliance
on integrating all three pre-training tasks.

Moreover, as mentioned in Sec. 4.3 of the manuscript, we study the perfor-
mance of TIP with and without our SSL pre-training strategy when encountering
incomplete downstream task data. Fig. 5 in the manuscript only illustrates the
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Table 4: Ablation study of TIP’s SSL pre-training tasks on complete data. � means
linear probing, and ] represents fully fine-tuning. TIP w/o pre-training (1st row) is
trained in a supervised manner, i.e., all of its parameters are trainable in both � and
] columns.

ITC ITM MTR DVM Accuracy (%) ↑ CAD AUC (%) ↑ Infarction AUC (%) ↑
� ] � ] � ]

98.57 98.57 86.04 86.04 84.19 84.19√ √
98.84 99.14 76.51 86.89 70.38 85.72√ √
99.71 99.53 84.82 86.22 83.71 85.89√ √
99.70 99.56 84.43 86.11 82.91 85.78√ √ √
99.72 99.56 86.43 86.03 84.46 85.58

Fig. 2: Results of DVM, CAD, and Infarction tasks comparing TIP with or without
the proposed SSL pre-training in the random feature missingness (RFM) scenario with
different missing rates. In addition to the DVM’s and CAD’s results shown in Fig. 5
of the manuscript, we have included the results on Infarction.

results on DVM and CAD due to page limitations. We present the complete re-
sults of DVM, CAD, and Infarction in Fig. 2. We observe that our pre-training
task enhances the model robustness to missing data across various missing rates
on DVM, CAD, and Infarction tasks.

C.3 Effect of TIP’s Tabular Encoder

We examine the contributions of our proposed transformer-based tabular en-
coder to the performance increase compared to supervised multimodal methods.
Specifically, we replaced the MLP-based tabular encoder in the supervised multi-
modal methods (CF and MF) with the tabular encoder from TIP and conducted
incomplete data experiments on the DVM classification task. As shown in Fig. 6,
TIP’s tabular encoder can improve the performance of supervised multimodal
methods. However, these methods still lag behind TIP, especially in a high miss-
ing rate condition, demonstrating the efficacy of other components of TIP.

C.4 Sensitivity of Masking Ratio

As mentioned in Sec. 4.3 of the manuscript, we evaluated the effect of dif-
ferent masking ratios of the MTR pre-training task. In addition to Tab. 4 in
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Fig. 3: Results comparing supervised multimodal methods and TIP on the DVM ran-
dom value missingness (RVM) and random feature missingness (RFM) scenarios. ♠

means using TIP’s tabular encoder.

Table 5: TIP’s RMSE results on the DVM and UKBB test sets for reconstruction of
missing continuous features. σ denotes data missing rate in fine-tuning and inference,
and ρ means masking ratio of the MTR pre-training task.

Model DVM RMSE ↓ UKBB RMSE ↓
Missing rate σ 0.3 0.5 0.7 0.3 0.5 0.7
ρ = 0.1 0.5349 0.6752 0.7871 0.6245 0.6903 0.7851
ρ = 0.3 0.4110 0.5128 0.5924 0.6044 0.6538 0.7469
ρ = 0.5 0.3899 0.4651 0.5055 0.6039 0.6460 0.7106
ρ = 0.7 0.3986 0.4612 0.4733 0.5963 0.6171 0.6654
ρ = 0.9 0.4279 0.4800 0.4816 0.6542 0.6696 0.6791

the manuscript, we present the results of missing value reconstruction on two
datasets in Tab. 5 and conducted experiments on the DVM classification task
using diverse masking ratios (Fig. 4). As shown in Tab. 5, ρ ∈ (0.5, 0.7) achieve
the best reconstruction performance, whereas too high (0.9) or too low (0.1)
masking ratios adversely affect model learning. In addition, the higher RMSE
in UKBB than that in DVM indicates that there could be some outliers in
UKBB. However, compared with SOTA data imputation methods in Tab. 2 of
the manuscript, our TIP still achieves the best performance.

As displyed in Fig. 4, TIP has fairly consistent results in data missing sce-
narios across masking ratios, and moderate ratios (0.3, 0.5, 0.7) are better than
extreme ones (0.1, 0.9). The sensitivity of ρ in fully fine-tuning is smaller than
that in linear probing. This may be because tuning all the parameters mitigates
the reliance on optimal masking ratios.

C.5 Visualization

As mentioned in Sec. 4.3 of the manuscript, we illustrate TIP’s attention to
tabular features when predicting a specific class in downstream tasks. Fig. 5
shows complete attention scores to all tabular features in downstream CAD task.
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Fig. 4: Results of TIP with different masking ratios ρ on 4 DVM’s missing data sce-
narios: (a) random value missingness (RVM), (b) random feature missingness (RFM),
(c) most important feature missingness (MIFM), and (d) least important feature miss-
ingness (LIFM). We evaluated linear probing (1st row) and fully fine-tuning (2nd row).
Notice that ρ is the masking ratio of the MTR pre-training task, while σ is the missing
rate of missing data scenarios.

Our observations are as follows: (1) TIP distinguishes important imaging phe-
notypes, e.g ., the model attends more to left ventricle myocardial mass (LVM)
and left ventricle end-diastolic volume (LVEDV) than left ventricle ejection frac-
tion (LVEF), which is consistent with previous cardiac disease studies [2]. (2)
TIP attends to critical non-imaging risk factors, e.g ., obesity-related features
such as waist circumference and whole body fact mass [17, 22]. (3) TIP focuses
more on physical measurements, e.g ., weight, body fat percentage, and blood
pressure. These measurements have demonstrated high correlations with the left
ventricular function, which plays an important role in CAD diagnosis [2].

Furthermore, we computed Grad-CAM [14,16] on the cross-attention maps in
the 2nd layer of TIP’s multimodal interaction module and generated per-token
visualization. As displayed in Fig. 6, TIP does not only identify the classification
object, but also captures inter-modality relations, e.g ., the ‘Bodytype’ token
attends to the entire car, whereas the ‘Wheelbase’ token mainly focuses on the
wheels. This showcases the effectiveness of our multimodal interaction module.

We also visualize some challenging cases of the DVM classification task where
TIP still outperforms supervised/SSL image/multimodal algorithms in Fig. 7.
The results demonstrate that a single image modality may not provide sufficient
information for decision-making, whereas TIP can effectively integrate multi-
modal information to enhance model performance.
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Fig. 5: The [CLS] token’s attention scores to tabular features for the True class in the
CAD task from the last layer of TIP’ tabular encoder.

Fig. 6: Grad-CAM visualization on the cross-attention map in the 2nd layer of TIP’s
multimodal interaction module.
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