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Appendix

1 mmWave Human Sensing

In Figure 1, we illustrate the utilization of mmWave radar for human sens-
ing, which detects human actions within a range of 3-5 meters from the radar.
This process generates mmWave point clouds (PCs). Simultaneously, a keypoint
annotation system such as VICON, Mocap, or Cameras is deployed to record
ground-truth human poses for reference. The mmWave radar-based human pose
estimation refers to training a neural network to estimate human poses using
mmWave radar point clouds as input.

For general mmWave human sensing, FMCW (Frequency Modulated Con-
tinuous Wave) chirp signals are transmitted and their reflections are received
through antenna arrays. These chirp signals are defined by parameters such as
start frequency fc, bandwidth B, and duration Tc. To generate radar PCs [15],
range-FFT separates different frequency components f from the IF signals, en-
abling the extraction of object distances using the formula R = cfTc

2B , where c
is the speed of light. Doppler-FFT measures phase changes ω of the IF signals,
facilitating the calculation of object velocities using v = λω

4πTc
, where λ is the

wavelength of the chirp. Elevation angles φ and azimuth angles θ of the detected
objects are determined based on φ = sin−1(ωz

π ) and θ = sin−1( ωx

cos(φ)π ), where
ωx is the phase change between azimuth antennas and corresponding elevation
antennas, and ωz is the phase change of consecutive azimuth antennas. Finally,
the Cartesian coordinates (x, y, z) of the detected point clouds are calculated as
follows: x = Rcos(φ)sin(θ), z = Rsin(φ), and y = (R2 − x2 − z2).

2 The Diffusion Model for Human Pose Generation

Forward process. The forward process involves the gradual sampling of in-
creasingly noisy human poses, resulting in an intermediate distribution of noisy
poses that serve as training guidance. Here, k ∈ [1..K] denotes the diffusion steps,
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Fig. 1: Workflow of mmWave sensing and mmWave human pose estimation.

where noisy human poses Hk are sampled by adding noise to the original ground
truth pose H0. Following the Markov process, we interatively add noise to the
pose Hk−1 and obtain a noisier version of pose Hk:

q (Hk | Hk−1) = N (Hk |
√
αkHk−1, (1− αk) I) , (1)

Hk =
√
1− βkHk−1 + βkε, (2)

where βk denotes the noise scale, ε ∈ N (0, I) denotes the random noise, and
αk = 1− βk. With a small noise scale βk ∈ [0.0001, 0.001], Hk is approaching to
Hk−1, which allows us to model both the forward sampling q(Hk|Hk−1) and the
reverse estimation pθ(Ĥk−1|Hk, C) as Gaussian distributions. To directly sample
Hk from the ground truth H0, Eq. 2 can be rewritten to:

Hk =
√
γkH0 +

√
1− γkε, (3)

where γk =
∏

i∈[1..k] αk. Eventually, when k → ∞, Hk approaches pure random
noise following Gaussian distribution.

Reverse process. At each iteration k of the reverse process, a cleaner pose
Ĥk−1 is estimated to approximate Hk−1 (generated by the forward process),
given a noisy pose Hk and the conditional set C. The reverse process can be
formulated as:

pθ

(
Ĥ0:K | H0, C

)
= p (HK)

K∏
k=1

pθ

(
Ĥk−1 | Hk, C

)
. (4)

During training, H1:K are obtained by adding noise to the ground truth H0,
following the forward process. However, during inference, as the ground truth is
unavailable, we set H1:K = Ĥ1:K by iteratively inputting the estimated human
poses Ĥ1:K into the trained diffusion model. As discussed in the main paper, ĤK

is initialized by a coarsely estimated pose H̃ as the starting point of the reverse
process.
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Table 1: Overview of the datasets used for mmWave human pose estimation.

Dataset: mmMesh mmBody mm-Fi

Radar Type: AWR1843BOOST
mmWave radar from
Texas Instruments.

Phoenix mmWave radar from Arbe
Robotics.

IWR6843 60-64GHz mmWave
radar from Texas Instruments.

Annotations: Mesh annotated by VI-
CON motion capture sys-
tem and generated by
SMPL.

55 keypoints are annotated by the Op-
tiTrack Mocap system; Mesh is gener-
ated by Mosh++ and SMPL-X.

2D keypoints are obtained
by HRNet-w48 from two-view
infra-red cameras; 3D keypoints
are calculated by triangulation.

Point format: Cartesian: (x, y, z); PC at-
tributes: (range, velocity,
energy).

Cartesian: (x, y, z); PC attributes: (ve-
locity, amplitude, energy).

Cartesian: (x, y, z); PC at-
tributes: (velocity, intensity).

Public or not: No. Yes. Yes.

# of subjects: Not mentioned. 20 (10 males, 10 females). 40 (29 males and 11 females)

# of actions: Not mentioned. 100 motions (16 static poses, 9 torso
motions, 20 leg motions, 25 arm mo-
tions, 3 neck motions, 14 sports mo-
tions, 7 daily indoor motions, and 6
kitchen motions).

27 actions (14 daily activities
and 13 rehabilitation exercises)
for a duration of 30 seconds.

# of frames: Not mentioned. 39892 frames for training and 28048
frames for testing.

133920 frames for training and
38400 frames for testing.

Scenes: Normal and occlusion. Lab1, Lab2, Furnished, Poor_lighting,
Rain, Smoke, and Occlusion.

Normal, Cross-subject, and
Cross-environment.

Model training. We follow DDPM [7] for faster convergence of the diffusion
model. Firstly, diffusion step k ∈ [1..K] and ε ∈ N (0, I) are randomly sampled,
and Hk is calculated according to Eq. 3. Then, the diffusion model is trained
to approximate ε̂ to ε, rather than directly approximate Ĥk−1 to Hk−1. The
learning objective following DDPM is formulated as:

Ldiff = Ek∼[1,T ]Eε∼N (0,I)||ε− ε̂θ(Hk, k, C)∥22. (5)

3 Evaluated Datasets

As shown in Table 1, we present a comparison of existing datasets for point-
cloud-based mmWave human pose estimation (HPE), focusing on several key
attributes including mmWave radar sensor type, keypoint annotations, radar
point cloud format, dataset size, and the variety of scenes covered in the dataset.

mmMesh [15]. mmMesh is the systematic work proposing mmWave human
sensing (mesh reconstruction) with an off-the-shelf commercial mmWave sensor,
AWR1843BOOST mmWave from Texas Instruments [13]. It provides a systematic
way to annotate human mesh (including human keypoints) with the VICON sys-
tem and SMPL [10] algorithm. The mmMesh dataset is presented for comparison,
as it is not public and only contains normal and occlusion scenarios.

mmBody [2]. mmBody dataset is a public dataset for mesh reconstruction with
multi-modal sensors: depth camera, RGB camera, and mmWave radar. Specifically,
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Phonix mmWave radar from Arbe Robotics is chosen as the mmWave sensor,
which extracts thousands of radar points for scene detection. Still, the detected
radar point clouds are noisy and sparse compared to RGB and depth sensors. The
dataset contains daily-life motions, with heterogeneous human motions including
motion of the torso, leg, arm, etc. Due to numerous subtle limb motions in
the dataset, it is challenging to accurately predict human poses. To evaluate
the robustness of mmWave HPE, the dataset includes various cross-domain
scenes (lab2 and furnished) and adverse scenes (dark, rain, smoke, and occlusion).
Meanwhile, except for lab2 containing seen subjects, all other scenes contain
unseen subjects for testing, which is challenging for the model’s generalizability.
Our experiment is conducted following the mmBody settings [2].

mm-Fi [16]. mm-Fi offers a broader scope of human sensing, including action
recognition and HPE, leveraging a variety of multi-modal sensors: RGB(D),
LIDAR, WiFi, and mmWave radar. It is a large-scale dataset with 40 subjects
participating and over 15k frames for training and testing. The mmWave radar
utilized in the dataset is IWR6843 60-64GHz mmWave, which is a low-cost option
generating a limited number of radar points. The point cloud format omits
redundant range features. Meanwhile, different from the other two datasets, the
model is trained in a self-supervised manner, as the human pose annotations
are obtained by RGB image using HRNet-w48 [12]. The annotations are rather
unstable compared to the motion capture systems. To test the model’s generaliz-
ability, the dataset also proposes the cross-subject and cross-environment splits.
Our experiment follows protocol 1 (P1) to include all daily-life activities and
adopt all splitting methods.

4 Detailed Experiment Settings

4.1 Data Preprocessing

Radar point clouds preprocessing. Due to radar sparsity and the occasional
miss-detection, we follow [1] to concatenate adjacent frames to enrich the number
of points. Specifically, 4 frames are concatenated for mmBody and 5 frames
are concatenated for mm-Fi. Further, since mmWave radar point clouds are
generated by the targets with salient Doppler velocity, the number of radar points
is frame-wise variant. As a result, to enable mini-batch training using PyTorch
dataloader [11], we perform zero-padding (null points with 0 values) to guarantee
the invariant input tensor shape. For mmBody, we zero-padding the point clouds
to 5000 points, while a dynamic padding technique [16] is applied for mm-Fi.
Moreover, to handle noisy radar points resulting from environmental reflection
and interference, we perform point cloud cropping to select only the points within
the region of human activities. For mmBody, the region of human activities is
centered at the ground-truth pelvis location, with a region size of (x:±1.6m,
y:±1.6m, z:±1.6m). However, for mm-Fi, as point clouds are generated solely by
moving targets, cropping is unnecessary.
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Fig. 2: Selected keypoints (ID and names) for mmWave human pose estimation. Red
arrows indicate the select limbs.

Human pose and limb-length preprocessing. Our ground truth keypoints
H = {h1, .., h17} are selected according to Figure 2. Following [8] to construct
ground-truth human poses, we perform pose normalization by pelvis alignment:
subtracting the pelvis position h1 from every keypoint h1:17 of the skeleton.
It’s worth noting that the pelvis alignment is missing for the mm-Fi dataset,
resulting in a higher Mean Per Joint Position Error (MPJPE). Consequently,
we incorporate human pose normalization for a fair comparison. To calculate
the ground truth 16 limb-length L = {l1, .., l16}, we compute the L2 distance
between two adjacent human keypoints, as selected according to Figure 2.

4.2 Implementation of mmDiff

Conditional diffusion model. The GCN encoders, GCN blocks, and GCN
decoders are designed following [18] and [6]. All MLPs are implemented as (Lay-
erNorm, Linear, Dropout, ReLU, and Linear), and the temporal 1D-convolution
extractor gtem2 is implemented as (Conv1D(k=3), Dropout, ReLU, Conv1D(k=3),
MaxPool). The conditional diffusion model adopts a Graph Convolution Network
(GCN) architecture inspired by GraphFormer [18] as its backbone. The pose
encoder and decoder utilize Chebyshev graph convolution layers [3] to project
human poses to 96-dimensional pose embeddings. The GCN block is implemented
by stacking a Chebyshev graph convolution layer and a graph attention layer,
with skip connection. The GCN backbone consists of 5 GCN blocks. Chebyshev
graph convolution layer first projects the 96-dimensional pose embeddings to
96-dimensional hidden feature embeddings. Subsequently, each graph attention
layer performs self-attention with 4 attention heads in a 96-dimensional hidden
feature space. During training, the GCN backbone applies a dropout rate of
0.25 and an exponential moving average (EMA) rate of 0.999 0.999. The condi-
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tional embeddings are added at the start of each GCN block. Notably, as the
Graph-Conditional Generation (GRC) model is trained before the diffusion train-
ing, the extracted conditional embeddings Cglo require an additional projection
to align with the human pose feature embeddings. This alignment is achieved
through a Chebyshev graph convolution layer projecting from 64 dimensions to
96 dimensions.

Radar point cloud encoder. Since mmBody and mm-Fi utilize different
mmWave radars for sensing, and mm-Fi has sparser point clouds, the design of
the radar point cloud (PC) encoder within the Global Radar Context (GRC)
model differs between the two datasets. For mmBody, the PC encoder adopts the
point 4D convolution following the P4Transformer benchmark [5]. Anchors are
selected using farthest point sampling (FPS) with a spatial stride of 32, resulting
in the selection of 312 anchors. Ball query is then applied to retrieve nearby
radar points within a radius of 0.1 and 32 samples. A temporal convolution with
a kernel size of 32 and a stride of 2 is subsequently applied to encode the nearby
PCs into a 1024-dimensional PC feature space. On the other hand, for mm-Fi,
the radar PC encoder is designed following the PointTransformer approach [17].
It utilizes 5 point-attention blocks with nneighbor = 16 and df = 128 feature
dimensions. After the radar PC feature encoders, the extracted PC features are
concatenated with randomly initialized joint feature templates and fed into the
global-transformer layers [14].

Global and local transformers. The global transformer consists of D = 10
transformer layers, each utilizing H = 8 attention heads and a hidden feature
dimension of 256. The local lightweight transformer consists of D = 5 transformer
layers, H = 8 attention heads, and a hidden feature dimension of 96. In each
attention layer of both transformers, skip connections are applied. Additionally,
after the local transformer, each anchor computes the proportion of points that
are within a distance threshold of thre = 0.04m. This proportion serves as a
measure of reliability for the local features. We incorporate it by multiplying
the local features with the calculated proportion (which falls in the range [0, 1]).
This approach helps to weigh the local features based on their distance to nearby
points, enhancing the model’s ability to focus on more relevant information.

4.3 Implementation of other Compared Methods

The methods using other modalities, e.g., RGB and depth are directly recorded
from mmBody [2]. Other methods use mmWave radar point clouds (PCs) as the
input modality, which are described in detail:

mmWave-based HPE methods. For a more direct comparison of performance
gains achieved by mmDiff, it’s important to note that the radar point cloud
(PC) encoders of P4Transformer [5] and PointTransformer [17] are the same with
mmDiff’s radar PC encoder.
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In the case of P4Transformer, which serves as the benchmark for mmBody,
the PC encoder first utilizes a point4D convolution layer to extract PC features
F r ∈ RP×1024. Subsequently, a global transformer performs self-attention on
these features. Unlike GRC modules, the input to the global transformer is solely
the PC features F r without any joint feature templates F̄ j . Following the global
transformer, a nonparametric max-pooling layer aggregates RP×1024 PC features
into R1024. This aggregated feature is then dimensionally reduced into a R64

feature space through an MLP and decoded into R17∗3 human poses. On the other
hand, PointTransformer, which serves as the benchmark for mm-Fi, employs a
point attention PC encoder to extract PC features. Similar to P4Transformer, a
global transformer performs self-attention on these features. Then, a max-pooling
layer aggregates PC features, followed by two MLPs for dimension reduction and
pose decoding. Lastly, mmMesh [15] is implemented following its open-source
design without modification.

Camera-based 3D HPE methods. Since camera-based 3D Human Pose
Estimation (HPE) methods cannot directly utilize radar point clouds as input, we
adopt a different approach. These methods typically involve pose-lifting, where
2D human poses are used as input to predict 3D human poses. Therefore, we
fine-tune these models for 3D pose refinement: Given coarsely estimated 3D
human poses H̃, the models aim to estimate cleaner 3D human poses Ĥ by
eliminating noise within H̃.

To ensure a fair comparison, the input coarse human poses H̃ are the same
for mmDiff and the compared 3D HPE methods. We implement PoseFormer [19]
following its open-source design. Similarly, we implement DiffPose [6] using the
same GCN diffusion backbone as used in mmDiff. This consistent setup allows
for a direct comparison between the performance of mmDiff and these 3D HPE
methods in refining 3D human poses.

Other methods In this section, we provide a discussion of other mmWave-based
methods that do not utilize PCs as the input modality, i.e. using raw radar signals
or Range-Doppler (RD) maps. Specifically, Hupr [9] and MI-Mesh [4] utilize raw
radar signal to perform HPE. We summarize the difference between mmDiff with
HuPR and MI-Mesh in Table 2, regarding input modalities, evaluation dataset
pros and cons, preprocessing methods, and reported joint errors. Quantitative
comparisons are limited by the absence of datasets containing both RF raw data
and radar PCs.

5 Supplementary Results

5.1 Visualization of Diffusion Process

As shown in Figure 3, we provide the visualization of progressive noise
elimination of diffusion-based human pose estimation, where mmDiff performs
progressive noise elimination and generates human poses from coarse to fine.



8 J. Fan et al.

Methods Input Modalities Evaluation Dataset Data Preprocessing Joint Error

HuPR Raw signal re-
flections from
two synchronized
radars.

Raw data: (1) More information to
process, thus computationally expen-
sive. (2) Contain rich environmental
information, thus subjective to inter-
ference and domain shift.

Tailored algorithms to
obtain range-doppler-
azimuth-elevation map.

MPJPE: 68 mm

MI-Mesh Radar PCs and
cameras fusion.

Camera: Not applicable to privacy-
preserving scenarios where cameras
cannot be deployed.

Techniques to calibrate
phase and handle multi-
path effect.

MPJPE: 69 mm

mmDiff Noisy PCs from
single radar.

Noisy radar PCs: (1) Privacy-
preserving and (2) Better cross-
environment capability.

Off-the-shelf PC genera-
tion algorithm.

MPJPE: 68 mm
(mmBody) and
65 mm (mm-Fi)

Table 2: Qualitative Comparison with HuPR and MI-Mesh.

The pose is refined from yellow to green. We can observe progressively improved
keypoint accuracy during the pose refinement process: For the lab1 scene, the
hands’ locations are approaching the head with the increment of diffusion steps;
For the rain scene, the legs’ locations are also corrected to better reflect the
walking poses. Meanwhile, we observe the correction of pose deformity in the
smoke and dark scenes, as the shoulders’ locations are progressively refined to the
ground truth location. Furthermore, due to the limited pages in the main paper,
we provide the visualization of motion continuity consistency and limb-length
distribution of the spine length here. As shown in Figure 4, we observe the
correction of erroneous frames w/ temporal motion consistency.

5.2 Visualization of Global Radar Context

To demonstrate the effectiveness in extracting more robust joint-wise features,
we perform further visualization of the transformer’s attention heatmap using
the global transformer in the Global Radar Context (GRC). First, as shown
in Figure 5, the global transformer extracts the self-correlation within the PC
features F r and the inter-correlation between F r and F j . In Figure 6, we further
demonstrate the feature extraction of different joints does not affect each other, as
they focus on different parts of the PC features. Such quality facilitates joint-wise
feature extraction. Finally, in Figure 7 and 8, we visualize the attention region of
different joint features. We observe that the feature extraction of detected joints
focuses on the correct-detected PC region, which facilitates more robust feature
extraction. Though feature extraction of undetected joints focuses on the wrong
part, it does not affect the feature extraction of other detected joints. Therefore,
the joint-wise feature extraction is more robust for detected joints.

5.3 Visualization of Local Radar Context

To illustrate the effectiveness of dynamic local PC selection in the Local
Radar Context (LRC), we provide a visualization of the local PC selection. We
examine the local PC selection during model inference, as shown in Figure 9.
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The dynamic joint anchors utilize intermediate diffusion poses Ĥk, starting from
coarsely estimated poses H̃ (as in k = 25) and progressively refined (k = 25 → 0).
Though initially, the joint anchor from Ĥk failed to select the upper left local
PCs around the human neck, the anchor is progressively refined to the ground
truth location. Finally, as k = 0, the upper left local PCs are considered for
more robust local feature extraction. On the other hand, static joint anchors only
incorporate H̃, leading to biased local PC selection.

5.4 Effect of Hyper-parameters

Table 3: Parameter sensitivity analysis of the diffusion steps K. We record joint errors
by MPJPE in white and PA-MPJPE in gray. Bold is the best and red is the worst.

K
Basic Scenes Adverse Environment

AverageLab1 Lab2 Furnished Rain Smoke Poor_lighting Occlusion

12 61.3 50.23 71.37 66.08 70.52 51.76 76.41 60.43 78.75 63.86 67.84 49.67 71.22 51.89 71.06 56.27
25 59.52 47.85 69.36 61.23 67.15 49.19 71.03 58.40 76.92 62.25 65.08 47.47 67.47 49.54 68.08 53.71
36 59.21 48.68 69 63.42 67.75 49.79 72.38 58.95 76.41 62.41 65.54 48.37 69.09 51.12 68.48 54.68
50 60.16 48.83 66.51 61.39 67.8 50.18 73.44 57.18 80.65 63.04 65.38 48.11 68.11 49.46 68.86 54.03
60 59.97 48.65 67.61 62.53 67.07 49.32 73.12 57.37 80.02 62.73 65.01 47.85 68.34 49.62 68.73 54.01

Table 4: Parameter sensitivity analysis of the β scheduling for the diffusion model. We
record joint errors by MPJPE in white and PA-MPJPE in gray. C denotes constant β
scheduling, L denotes linear β scheduling. Bold is the best and red is the worst.

β scheduling
Basic Scenes Adverse Environment

AverageLab1 Lab2 Furnished Rain Smoke Poor_lighting Occlusion

C: 0.001 59.37 48.66 67.24 60.69 65.83 48.65 72.24 57.77 79.82 63.55 64.34 47.1 64.81 48.57 67.66 53.57
C: 0.002 61.29 49.37 72.98 61.7 66.87 48.43 70.86 57.77 77.47 63.74 63.72 46.76 71.57 51.45 69.25 54.17

L: [0.0001, 0.001] 59.52 47.85 69.36 61.23 67.15 49.19 71.03 58.40 76.92 62.25 65.08 47.47 67.47 49.54 68.08 53.71
L: [0.0001, 0.002] 60.87 48.39 66.79 61.74 66.66 48.63 74.92 57.88 80.62 62.68 65.26 47.61 69.45 49.96 69.22 53.84

Table 5: Parameter sensitivity analysis of the limb loss weighting parameter λ for the
structural limb-length consistency module. We record joint errors by MPJPE in white
and PA-MPJPE in gray. Bold is the best and red is the worst.

λ
Basic Scenes Adverse Environment

AverageLab1 Lab2 Furnished Rain Smoke Poor_lighting Occlusion

2 59.35 47.99 67.71 61.97 66.99 49.63 73.04 57.85 78.77 62.06 64.99 47.80 68.29 49.70 68.45 53.86
5 58.65 47.66 68.91 62.25 67.86 50.33 71.42 57.58 77.19 62.84 65.50 47.86 67.79 49.15 68.19 53.95
8 59.47 48.47 68.07 61.90 67.83 49.69 72.34 57.75 78.58 62.72 65.59 48.26 68.68 51.25 68.65 54.29
10 59.52 47.85 69.36 61.23 67.15 49.19 71.03 58.40 76.92 62.25 65.08 47.47 67.47 49.54 68.08 53.71
15 58.36 47.75 68.01 62.65 67.80 49.92 71.16 57.87 78.22 63.37 65.49 47.94 67.00 49.66 68.00 54.17
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Table 6: Parameter sensitivity analysis of the historical pose sequence length ∆t for
the temporal motion consistency module. We record joint errors by MPJPE in white
and PA-MPJPE in gray. Bold is the best and red is the worst.

∆t
Basic Scenes Adverse Environment

AverageLab1 Lab2 Furnished Rain Smoke Poor_lighting Occlusion

2 60.86 48.54 69.32 62.82 67.72 49.68 72.94 57.85 81.39 63.72 65.19 48.18 69.25 50.99 69.52 54.54
4 59.59 47.77 68.63 62.75 67.11 49.45 73.05 57.59 79.91 63.12 65.50 47.93 68.70 49.80 68.93 54.06
6 59.52 47.85 69.36 61.23 67.15 49.19 71.03 58.40 76.92 62.25 65.08 47.47 67.47 49.54 68.08 53.71
8 58.44 47.89 68.79 64.02 68.00 50.44 72.15 58.52 77.18 61.81 65.86 48.58 67.12 50.19 68.22 54.49
10 58.57 47.51 68.05 62.59 66.96 49.01 73.10 57.47 78.14 62.46 64.90 47.34 67.74 49.23 68.21 53.66

Effect of diffusion steps K. As shown in Table 3, we present how the joint
error is affected by the number of diffusion steps K on mmBody [2]. When
diffusion steps K < 25, we observe that the increment of K can improve the
performance of mmDiff. As with more iterations, mmDiff potentially can handle
noisier human poses. However, with the number of diffusion steps K > 25, the
performance of mmDiff converges. We argue that the pose noise within the
coarsely estimated human poses is well handled with 25 diffusion steps.

Effect of β scheduling. As shown in Table 4, we present how the β scheduling
affects the diffusion-based HPE. We observe different β scheduling significantly
affects the mmDiff performance, as the selected noise scale should accurately
approximate the noise contained by the coarsely estimated human poses. For
linear scheduling, if the β range is increased (as in range[0.0001, 0.002]), the
performance drops significantly as the reverse diffusion process is not stable. We
also observe that constant β scheduling also performs well, as long as the noise
scale is selected properly.

Effect of the weighting parameter λ for Ldiff. As shown in Table 5, we
present how the model performs with different weighting parameters λ to integrate
the limb loss

∣∣∣L− L̂
∣∣∣ into the diffusion loss Ldiff. We observe that our model

is not sensitive to the selection of λ, with 68.27 ± 0.24 (MPJPE) statistically
lower than the performance without spatial limb consistency, 69.16 (MPJPE).
We argue that as long as the limb loss is presented, the model can estimate a
subject’s limb length with acceptable accuracy.

Effect of the sequence length ∆t. As shown in Table 6, we present how our
approach is affected by the number of adjacent time frames used in the temporal
motion consistency module. When the sequence length ∆t ≤ 6, we observe that
the increment of ∆t can improve the performance. As with longer sequence
lengths, mmDiff potentially can extract more reliable and robust motion patterns
of the subjects. However, as the sequence lengths K > 6 keep increasing, the
performance of mmDiff begins to drop, especially in adverse environments. As
the training of mmBody is conducted on basic scenes, the increment of sequence
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Fig. 3: Visualization of diffusion-based human pose estimation with diffusion 25 steps.
We use gradient colors (from yellow to green) to illustrate the refined poses of different
iterations. The yellow pose is the initialized coarse human pose, and the green pose is
the final refined pose.

length tends to overfit the model to basic scenes, causing a performance drop
in adverse environments. As a result, ∆t = 6 is the optimum for the mmBody
dataset.
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line [17], ours w/o Ctem and ours w/ Ctem. Green poses are the ground truth and red
poses are the prediction. We can observe occasion erroneous frames are corrected based
on smooth motion patterns.
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F r.
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of different joints depends on individual correlation with the PC feature, which is less
affected by other joint features after 5 transformer layers.
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Fig. 7: Visualization of the attention when performing feature extraction of joints 1-6
(legs). Each joint performs individual feature extraction. For detected joints 4-6(left leg),
the attention is more concentrated as correctly focuses on the left leg part, extracting
more robust features. The feature extraction is more distracted and less reliable for
undetected joints 1-3 (right leg) due to miss-detection.
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Fig. 8: Visualization of the attention when performing feature extraction of joints 11-16
(arms). As reflected by the attention heatmap, detected joints 11-13(right arm) have
more robust features, preventing the influence of undetected joints 14-16 (left arm).
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Fig. 9: Visualization of the local PC selection using dynamic joint anchors (right
shoulder) during model inference phase. Initially, as k = 25, the joint anchor is derived
from the coarsely estimated pose H̃, failing to select the upper left local PCs. The
dynamic joint-anchor starts from H̃ and is progressively refined with the diffusion steps
k = 25 → 0. Finally, as k = 0, the upper left local PCs are selected for more robust
local PC features. As the upper left PCs correspond to the human neck, a more robust
local feature is extracted considering both shoulder and neck PCs.
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