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Abstract. Human pose estimation (HPE) from Radio Frequency vision
(RF-vision) performs human sensing using RF signals that penetrate
obstacles without revealing privacy (e.g., facial information). Recently,
mmWave radar has emerged as a promising RF-vision sensor, providing
radar point clouds by processing RF signals. However, the mmWave
radar has a limited resolution with severe noise, leading to inaccurate
and inconsistent human pose estimation. This work proposes mmDiff, a
novel diffusion-based pose estimator tailored for noisy radar data. Our
approach aims to provide reliable guidance as conditions to diffusion
models. Two key challenges are addressed by mmDiff: (1) miss-detection
of parts of human bodies, which is addressed by a module that isolates
feature extraction from different body parts, and (2) signal inconsistency
due to environmental interference, which is tackled by incorporating prior
knowledge of body structure and motion. Several modules are designed
to achieve these goals, whose features work as the conditions for the
subsequent diffusion model, eliminating the miss-detection and instability
of HPE based on RF-vision. Extensive experiments demonstrate that
mmDiff outperforms existing methods significantly, achieving state-of-
the-art performances on public datasets. 1

1 Introduction

Human pose estimation (HPE) has been a widely-studied computer vision
task for predicting coordinates of human keypoints and generating human skele-
tons [3, 24,53]. It is a fundamental task for human-centered applications, such
as augmented/virtual reality [25,45, 52], rehabilitation [4, 38], and human-robot
interaction [10,13]. Current HPE solutions mainly rely on RGB(D) cameras [9,20].
Though demonstrating promising accuracy, camera-based pose estimators have
intrinsic limitations under adverse environments, e.g., smoke, low illumination,
and occlusion [41]. The privacy issue of cameras also hinders the viability of HPE
in medical scenarios, e.g., rehabilitation systems in hospitals [1].

⋆ J. Yang is the project lead.
1 The project page of mmDiff is https://fanjunqiao.github.io/mmDiff-site/.
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Fig. 1: Left: challenges of mmWave PCs. Right: the performance of existing SOTA
(P4Transformer [12]) compared to ours. The GTs are black and predictions are colored.
PC’s sparsity and dispersion cause inaccurate spline and shoulder. Inconsistent PCs
with occasional miss-detection further cause size variance and pose vibration. mmDiff
proposes diffusion-based pose estimation with enhanced accuracy and stability.

Overcoming limitations of camera-based HPE, Radio-Frequency vision (RF-
vision) has attracted surging attention for human sensing. The emerging mmWave
radar technology presents a promising and feasible solution for HPE due to its
price, portability, and energy efficiency [40]. Operated at the frequencies of 30-300
GHz [46], commercial mmWave radars transmit and receive RF signals that
penetrate human targets and occlusions. Radar point clouds (PCs) are further
extracted as the salient target detection via monitoring signals’ characteristic
changes [30,43]. Therefore, the extracted PCs are more robust to adverse environ-
ments [48] and reveal little privacy [44], inspiring accurate and privacy-preserving
HPE [2,22,43,44]. However, due to the bandwidth and hardware limitations [26],
radar PCs are sparse with limited geometric information [2], leading to huge diffi-
culties in achieving HPE. The sparse PCs are noisy in two aspects: (1) mmWave
radar has a lower spatial resolution, leading to PC dispersion throughout the
target area accompanied by ghost points caused by multi-path effect [26, 37];
(2) signal’s specular reflection and interference [5, 6] further cause inconsistent
sensing data, leading to occasional miss-detection of human parts.

To deal with sparse and noisy mmWave PCs, existing solutions mainly rely
on kinds of data augmentations, e.g., multi-frame aggregation to enhance PC
resolution [2,43]. For the feature extractor, they directly borrow Long Short-Term
Memory (LSTM) [43] or transformer-based architectures [6, 44] from existing
RGB(D) HPE methods. However, these feature encoders are tailored for visual
and language modalities, which struggle to handle noisy and inconsistent radar
PCs [27]. As shown in Figure 1 (right), the existing SOTA solution [12] still
suffers from pose vibration and severe drift, achieving undesirable performance.

Denoising Diffusion Probabilistic Models (DDPMs) [15, 34], also known as
diffusion models, have demonstrated superior performance in various generative
tasks, such as image generation and image restoration [14, 16, 54]. Diffusion
models perform progressive noise elimination, transferring noisy distribution into
desired target distribution [35]. Inspired by such capability, we aim to mitigate
the noise of mmWave HPE, which motivates mmDiff, a diffusion-based pose
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estimator tailored for noisy radar PCs. Different from existing diffusion-based
HPE using RGB(D), HPE using mmWave PCs confronts two key challenges: (1)
extracting robust features from noisy PCs where miss-detection of human bodies
may happen, and (2) overcoming signal inconsistency for stable HPE. For the
first challenge, we propose to isolate the feature extraction for different body
joints, so that occasional miss-detection would not affect the feature extraction
of detected joints. Extracting features directly from local PCs also improves
the feature resolution. For the inconsistency issue, prior knowledge of human
body structure and motion can reduce unreasonable cases, achieving consistent
feature learning. As the human structure has a size constraint where limb-length
should remain constant [8], the limb-length can be additionally estimated to
prevent pose variance. Moreover, inspired by human motion continuity [29] that
discourages abrupt human behavior changes, historical poses can be leveraged
for pose generation refinement, minimizing pose vibration.

To this end, mmDiff first designs a conditional diffusion model capable of
injecting radar information as the guiding conditions. Four modules are designed
to extract clean and consistent information from radar point clouds: (1) Global
radar context is proposed to isolate the globally extracted features for different
human joints using a transformer [39], which generates more robust joint-wise
features to handle miss-detection. (2) Local radar context is proposed to extract
local features around body joints with a local transformer, which performs
point-level attention for higher resolution. (3) Structural human limb-length
consistency is proposed to extract human limb-length as consistent patterns,
which reduce limb-length variance. (4) Temporal motion consistency is proposed
to learn smooth motion patterns from historical estimated poses, which avoid pose
vibration. Experiments have shown a significant improvement in pose estimation
accuracy using mmDiff compared to the state-of-the-art models. Meanwhile,
the generated poses demonstrate comparable structural and motion stability,
validating the effectiveness of our designed conditional modules.

In summary, our contributions are three-fold. First, we propose a novel
diffusion-based HPE framework with sparse and noisy mmWave radar PCs. To
the best of our knowledge, mmDiff is the first diffusion-based paradigm for
mmWave radar-based HPE. Second, four modules are proposed to extract robust
representations from the noisy and inconsistent radar PCs considering global radar
context, local radar context, structural limb-length consistency, and temporal
motion consistency, used as the conditions to guide the diffusion process. Finally,
extensive experiments show our approach achieves state-of-the-art performance
on two public datasets: mmBody [6] and mm-Fi [44].

2 Related Work

mmWave Human Pose Estimation. For decades, extensive works [3,24] have
been focused on human pose estimation from RGB(D) images. Though achieving
desirable accuracy, the major challenge faced by RGB(D) HPE is the performance
drop under adverse environments and with self-occlusion [7]. Recently, commercial
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mmWave radar has been proven to extract sufficient information for human
body reconstruction [43], bringing the potential for mmWave HPE. Despite
methods [21,42] utilizing raw radar signals for mmWave HPE, point clouds-based
methods [1, 2, 6, 43, 44] become popular for its format uniformity. Particularly,
Xue et al. [43] utilizes the LSTM model with anchor-based local encoding to deal
with the noisy nature of radar. An et al. [2] integrate point clouds of consecutive
frames to handle the point cloud sparsity. Chen et al. [6] and Yang et al. [44]
propose transformer-based benchmarks based on their dataset. However, the
sparse and noisy radar point clouds still hinder the accuracy of HPE using existing
non-parametric regression models.

Diffusion Model for Human Pose Estimation. Diffusion models have
been widely applied in image generation, such as image restoration [23], super-
resolution [18], and text-to-image synthesis [31]. Since the proposition of the
denoising diffusion probabilistic model (DDPM) [15], the diffusion model is
extended to a wider range of generative applications, including pose/skeleton
generation. DiffPose [14] formulate the 3D pose estimation problem as a pose
generation task from low-determinant 2D poses to high-determinant 3D poses.
Following DiffPose, Shan et al. [33] proposes to generate multi-hypothesis poses
for 3D pose ambiguity and Saadatnejad et al. [32] proposes to predict the human
poses in future time frames. Meanwhile, RGB-guided diffusion models for 2D
and 3D human pose generation are also achieved [28,51]. Nevertheless, existing
methods focus on diffusion-based HPE from stable and informative modality
sources, either well-estimated 2D poses or high-resolution RGB images. None of
these works investigate how noisy and sparse mmWave radar point clouds are
used to guide the pose generation.

3 Methodology

We address 3D HPE task with noisy and sparse PCs from mmWave radar. At
each time frame t ≥ 0, given the input 6-dimensional radar point cloud Rt ∈ RN×6,
where N denotes the number of detected points, our task is to estimate the
ground-truth 17-joint human pose Ht = {h1

t , h
2
t , ..., h

17
t } ∈ R17×3. Apart from the

Cartesian coordinate {x, y, z}, each detected radar point contains three attributes
{v,E,A}, representing velocity, energy, and amplitude respectively.

To extract clean radar features and overcome mmWave signal inconsistency,
we propose mmDiff as a diffusion-based paradigm for mmWave radar-based HPE.
The overview of the architecture of mmDiff is presented in Figure 2. We start
with an overall description of how human poses are generated by diffusion models
using radar information as the guiding conditions in Section 3.1, followed by a
detailed illustration of the four modules for extracting robust representations
from the noisy and inconsistent radar PCs in Section 3.2 and Section 3.3. We
omit the subscript t denoting the time frame in subsequent discussions for clarity.
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Fig. 2: mmDiff proposes a diffusion-based HPE model, using mmWave radar information
as conditions. k ∈ [0..K] denotes the diffusion step. Four modules are proposed as the
more reliable guidance, addressing PCs’ noise and inconsistency: GRC and LRC first
extract robust global-local radar features, Cglo and Cloc; SLC and TMC then extract
consistent human structure and motion patterns, Ctem and Clim.

3.1 Diffusion-based Human Pose Estimation

Diffusion models [15, 35] are a category of probabilistic generative models
popular in various tasks, e.g., image generation. Given a noisy image from a noisy
distribution, diffusion models can generate realistic image samples that match the
natural image distribution, through iterative noise removal [18, 23]. Extended to
HPE, diffusion models can estimate the distribution of reasonable human poses
for realistic pose generation. Particularly with noisy radar modality, miss-detected
body joints can be accurately estimated by inferring from the detected ones, and
inaccurate joints causing twisted human structures are potentially refined.

The diffusion-based HPE consists of two processes: (1) a forward process
gradually generates noisier samples as the training guidance and (2) a reverse
process learns to invert the forward diffusion. Modelled by a Markov chain of
length K, the forward process starts from the ground truth pose H0, iteratively
samples a noisier pose Hk by adding Gaussian noise ϵ ∈ N (0, I):

q (Hk | Hk−1) = N
(
Hk |

√
1− βkHk−1, βkI

)
, (1)

where k ∈ [0..K] refers to the diffusion step and βk refers to the noise scale. On
the contrary, the reverse process starts from a noisy pose initialization ĤK and
progressively removes noises until Ĥ0 is generated. For each step k, a diffusion
model ε̂θ is trained to identify the pose noise ε̂k within Ĥk, and remove it for
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more reliable pose Ĥk−1:

ε̂k = ε̂θ(Ĥk, k), (2)

Ĥk−1 = (1− βk)
−1(Ĥk − βkε̂k). (3)

To better leverage the context information provided by radar’s sensing data,
we propose a set of conditions C containing latent feature embeddings extracted
from the mmWave modality, to guide each step of the reverse process:

ε̂k = ε̂θ(Ĥk, C, k). (4)

As an implementation, we propose a conditional diffusion model, which injects
the radar conditions C in the latent feature space, using a Graph Convolution
Network (GCN) [49] as the backbone. The GCN takes the 17-joint human
pose Hk ∈ R17×3 as input, which is subsequently encoded into the latent pose
embedding Zk ∈ R17×96 by a GCN encoder, fed into n GCN blocks, and decoded
into ε̂k ∈ R17×3 by a GCN decoder. To inject radar conditions, we propose to
add the conditional embeddings from C to the pose feature Zk before each GCN
block, which serves as extra information for more accurate noise estimation of ε̂k.
To align features, the conditional embeddings are also projected to the R17×96

feature space. In the following sections, we discuss in detail how to extract clean
and consistent radar features that construct C.

3.2 Global-local Radar Context

Accurate guidance for the diffusion model depends on robust radar feature
extraction, which should carefully handle the miss-detection of human bodies. In
this section, we first revisit the existing mmWave feature extraction paradigm.
Then, we further propose to improve it with two modules: (1) Global Radar
Context (GRC) extracting features from overall PCs that can handle miss-
detection; and (2) Local Radar Context (LRC) extracting local PC features near
body joints for higher resolution.

Revisit mmWave Feature Extraction. Existing mmWave HPE paradigm
applies encoder-decoder architectures to encode the radar PCs, R ∈ RN×6, into
latent feature representations and decode them into human poses. Anchor-based
methods [12,47] are common options for PC encoders, where point anchors are
first sampled from the Farthest Point Sampling algorithm and nearby PCs are
extracted as the anchor features. As a result, the holistic radar PCs are encoded
into PC features F r ∈ RP×1024, where P indicates the anchor number. To decode
the PC features, a Multi-Layer Perceptron (MLP) is commonly applied as a
dimension-reducing projection to generate the joint feature F j ∈ R17×1024, which
is further decoded into human poses H̃ ∈ R17×3 by another MLP. However,
occasional radar miss-detection causes uncertainty within the PC features F r,
while MLP-based projection can hardly identify miss-detected joints. Additionally,
radar low-resolution PCs further impose noises. As a result, the estimated human
joints are generally coarse.
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Global Radar Context (GRC). To handle occasional miss-detection, GRC
is proposed to isolate feature extraction for different body joints, using global
information from F r to construct more robust joint features F j . From joint
features, the diffusion model potentially identifies miss-detected joints and utilizes
human prior knowledge for more accurate estimation. We exploit a Global-
Transformer Φg to facilitate joint-wise feature extraction from the F r. Following
the cls token design in ViT [11], we first randomly initialize a trainable joint
feature template (with no information) F̄ j ∈ R17×1024 and add it with positional
embedding Epos ∈ R17×1024. Then, the joint feature template is concatenated
with the PC feature [F̄ j , F r] ∈ R(17+P )×1024 and fed into Φg:

F j , F ′r = Φg(F̄ j , F r). (5)

The output F j ∈ R17×1024 is selected as the joint feature and the rest F ′r is
ignored. Within the transformer, deep correlation is captured, not only within
F r but also between F j and F r. Each body joint performs individual feature
extraction based on their correlation with the PC feature, so that features of
detected joints are less affected by other undetected parts. Finally, as the 1024-dim
F j feature space is too sparse for the diffusion latent condition, an MLP-based
dimension-reduction function gg further condenses the extracted information
within a R17×64 conditional embedding:

Cglo = gg(F j). (6)

Local Radar Context (LRC). LRC further performs local point-to-point
self-attention to extract higher-resolution features from local PCs near body
joints. To select local PCs, existing methods [43] utilize static joint anchors
from coarsely-estimated human poses H̃. However, the local joint features should
dynamically reflect the joints’ errors at different diffusion steps. Therefore, we
propose dynamic joint anchors from intermediate diffusion poses Ĥk for PC
selection. With i ∈ [1, .., 17] and each joint ĥi

k from the Ĥk as an anchor, the
K̄-nearest-neighbors (K̄NN) algorithm is applied to select K̄ nearest points as
local PCs, R̄i

k ∈ RK̄×6. Each R̄i
k is first encoded by a shared MLP gl into a

RK̄×64 embedding, and then fed into a shared small-scale local transformer Φl for
point-to-point self-attention. Finally, average pooling is performed to generate
R64 embeddings, which are further aggregated (concatenated) for every joint
anchor h̃i as the conditional embedding:

Cloc =
⋃

i∈[1,..,17]

Φl ◦ gl(R̄i
k). (7)

3.3 Structural-motion Consistent Patterns

Inconsistent radar signals such as occasional miss-detection lead to discontin-
uous and unstable pose estimation, such as variant limb-length, pose vibration,
or inconsistent error frames. To mitigate such inconsistency, we further extract
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consistent human patterns based on human structure and motion prior knowledge:
(1) Structural Limb-length Consistency (SLC) that extracts limb-length patterns
to reduce limb-length variance, and (2) Temporal Motion Consistency (TMC)
learns smooth motion patterns from historically estimated human poses.

Structural Limb-Length Consistency (SLC). SLC learns to extract a
human-size indicator, the 16 limb-length L̂ = {l̂1, ..., l̂16} ∈ R16, where each
limb-length measures the bone length connecting adjacent body joints. The
extracted limb-length serves as a structural constraint to reduce the limb-length
variance during the pose generation. Similar to decoding a pose, an MLP-based
limb decoder glim1 is first applied to decode the previously extracted global
joint feature F j into predicted limb-length L̂. Though with less dimension, the
extracted limb-length contains physical meanings and thus is more consistent and
stable. To ensure accurate limb-length decoding, a limb loss is designed to guide
the training (details in Section 3.4). To further project the estimated limb-length
L̂ into latent feature space, another MLP-based projector glim2 then transforms
the L̂ into the R96 embedding, which is further broadcasted to different joints as
the R17×96 conditional embedding:

Clim = glim2 (L̂) = glim2 ◦ glim1 (F j). (8)

Temporal Motion Consistency (TMC). Inspired by the fact that human
motion is generally stable and consistent [29], multi-frame historical human
poses can be utilized to extract the motion patterns in estimating the current
pose. Such motion patterns provide temporal constraints for the diffusion model,
which avoids error frames and pose vibration. As shown in Figure 2, TMC
extracts the latent motion patterns from a sequence of historical-estimated coarse
poses {H̃t−∆t, ..., H̃t−1}, where ∆t is the number of historical frames. Firstly, a
shared GCN encoder gtem1 is applied to convert the pose sequence into feature
embedding sequence {Z̃(t−∆t), ..., Z̃(t−1)} ∈ R∆t×(17×96). Then, a 1D-convolution-
based pattern extractor gtem2 is applied to extract the motion information along
the temporal dimension, which generates a R17×96 temporal embedding as Ctem:

Ctem = gtem2

 ⋃
i∈[1..∆t]

Z̃(t−i)

 = gtem2

 ⋃
i∈[1..∆t]

gtem1 (H̃t−i)

 . (9)

The reason for using 1D convolution is two-fold: (1) smooth motion features can
be extracted by potentially averaging pose features of historical frames, which
avoids pose vibration; and (2) the motion trend of the on-performing actions is
potentially extracted to avoid inconsistent error frames. For example, increasing
z values of the hand’s location are expected when performing the ‘raising hand’.

3.4 Overall Learning Objective

As feature extraction from global radar PCs is computation-consuming, we
divide the training process into two phases. Phase one facilitates the extraction of
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the global joint features F j and coarse estimation of human poses H̃. The GRC,
PC encoder (from an off-the-shelf mmWave HPE network), and an MLP-based
pose decoder are trained together. The learning objective of the phase one is
minimizing the L2 pose regression loss Ljoint:

Ljoint = Ei∼[1,17]||hi − h̃i∥22. (10)

In phase two, the remaining three conditional modules and the diffusion model are
trained together, with the phase one parameters frozen. The extracted F j and H̃
serve as the input of structural-motion consistency modules, and H̃ initialize ĤK

for the reverse diffusion process. The learning objective is minimizing Ldiff, which
is the diffusion learning objective following DDPM [15]. To ensure accurate limb-
length estimation, an L1 limb regression loss is further designed and integrated:

Ldiff = Ek∼[1,T ]Eεk∼N (0,I)||εk − ε̂θ(Hk, k, C)∥22
+λ ∗ Ei∼[1,16]|li − l̂i|1,

(11)

where λ is a weighting parameter and each li is the ground truth limb-length
calculated from ground truth pose H.

4 Experiments

4.1 Experiment Setup

Datasets. mmBody [44] studies the robustness of human sensing with various
sensors: RGB, Depth, and mmWave radar. Human skeletons are annotated by the
MoCap system. Models are set to train on data collected from 2 standard scenes
(Lab1 and Lab2), and tested on 3 basic scenes and 4 adverse scenes (including
unseen subjects). Meanwhile, mm-Fi [44] is a larger-scale HPE dataset using a
lower-bandwidth mmWave radar with sparser PCs. The skeleton annotations are
rather unstable compared to the MoCap annotations, as obtained by RGB using
the pretrained HRNet-w48 [36]. Three data-splitting methods are used with a
train-test split ratio of 4:1: random, cross-subject, and cross-environment.

Implementation Details. Our methods are trained for 100 epochs with a
batch size of 1024. The Adam algorithm [19] is used for optimization, with the
learning rate as 2e − 5, the gradient clip as 1.0, and the momentum as 0.9.
The forward/reverse diffusion process is set as K = 25 steps with a constant β
sampling of 0.001. An average of 5 hypotheses is recorded for a fair comparison
with non-diffusion methods. We choose Point4D [12] as the GRC’s PC encoder
for mmBody and PointTransformer [47] for mm-Fi. We set K̄ = 50 for K̄NN
algorithm for LRC, but due to insufficient radar points (N < 100), the LRC
module is neglected for mm-Fi. We further set ∆t = 8 for TMC and λ = 5 for SLC.
The hyper-parameters are obtained empirically, more precise hyper-parameter
tuning tricks such as the Bayesian optimization could lead to better results.
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Table 1: Quantitative results on mmBody [6], evaluated by MPJPE in white and
PA-MPJPE in grey. * indicates diffusion-based methods. G, L, T, and S denote GRC,
LRC, TMC, and SLC respectively. Bold is the best.

Methods
Basic Scenes Adverse Environment

Lab1 Lab2 Furnished Rain Smoke Dark Occlusion Average

RGB [6] 74 / 73 / 71 / 80 / 86 / 105 / / / 81 /
Depth [6] 55 / 39 / 55 / 86 / 243 / 51 / / / 88 /
RGB(D) [6] 58 / 34 / 54 / 95 / 154 / 58 / / / 75 /

MM-Mesh [43] 95.1 69.48 87.87 77.3 93.28 73.14 106.9 72.38 106.7 76.52 83.54 64.19 85.55 62.5 94.13 70.79
P4transformer [12] 69.35 54.45 73.40 66.39 75.28 55.77 86.83 65.71 89.82 69.73 73.48 54.52 78.56 57.36 78.10 60.56
PoseFormer [50] 64.53 51.61 70.17 63.26 69.71 51.04 77.49 59.03 84.82 63.57 69.88 50.46 73.52 53.53 72.87 56.07
DiffPose* [14] 66.43 52.56 68.36 65.69 69.78 51.29 77.77 62.60 89.01 69.34 67.27 49.90 74.52 56.20 73.31 58.23

mmDiff(G)* 61.00 49.19 67.79 62.45 69.83 51.47 77.39 60.48 81.41 64.44 68.83 49.82 70.64 52.79 70.99 55.80
mmDiff(G,L)* 61.11 49.41 69.06 63.14 68.17 50.60 73.70 58.45 82.26 64.30 66.06 48.56 68.18 50.8 69.79 55.04
mmDiff(G,L,T)* 59.90 47.81 68.12 62.02 66.98 48.63 74.84 58.13 80.95 63.44 65.25 47.26 68.05 50.4 69.16 53.96
mmDiff(G,L,T,S)* 59.52 47.85 69.36 61.23 67.15 49.19 71.03 58.40 76.92 62.25 65.08 47.47 67.47 49.54 68.08 53.71

Table 2: Quantitative results on mm-Fi [44].

Methods
Random Cross-Subject Cross-Environment

MPJPE PA-MPJPE MPJPE PA-MPJPE MPJPE PA-MPJPE

PointTransformer [47] 73.09±2.70 55.60±1.40 75.96±6.90 58.70±4.30 88.28±4.50 68.79±2.79

Diffpose* [14] 73.44±0.29 56.83±0.25 70.31±0.27 54.12±0.31 86.35±0.06 66.87±0.17

mmDiff(G)* 68.62±0.06 53.11±0.05 68.46±0.06 52.55±0.05 85.63±0.53 66.43±0.28

mmDiff(G,S)* 65.72±0.08 50.72±0.01 67.18±0.18 51.85±0.05 83.39±0.17 64.61±0.40

mmDiff(G,S,T)* 65.26±0.11 50.35±0.09 65.62±0.24 50.23±0.24 82.73±0.62 63.87±0.26

Compared Methods. (1) RGB, Depth, and RGB(D) [6] are benchmarks using
different modalities. (2) mmWave methods: P4Transformer [12] is the benchmark
on mmBody containing Point4D Convolution as the PC encoder and a transformer
for self-attention; PointTransformer [47] is the benchmark on mm-Fi designed
to handle the sparser PCs. mmMesh [43] is implemented as an extra mmWave
HPE baseline on mmBody. (3) SOTA camera-based HPE methods: camera-based
3D HPE methods generally perform pose lifting from 2D poses to 3D poses.
To modify them to perform radar-based HPE, we train the models to perform
pose refinements, from coarse poses H̃ to clean 3D poses. PoseFormer [50] is the
transformer-based method with temporal-spatial attention. DiffPose [14] is the
diffusion-based method using SOTA graph-based GraFormer [49] as backbones.

Evaluation Metric. Two evaluation metrics are adopted following [17]: (1)
Mean Per Joint Position Error (MPJPE (mm)): the average joint error between
ground truth and prediction (after pelvis alignment); and (2) Procrustes Analysis
MPJPE (PA-MPJPE (mm)): procrustes methods (translation, rotation, and
scaling) are performed before error calculation.

4.2 Overall Result

Performance on mmBody. As shown in Table 1, mmWave-based methods have
better robustness for cross-domain scenes and adverse environments. Particularly,
our proposed mmDiff demonstrates superior results compared to related methods



mmDiff for 3D Pose Estimation 11

Lab1

Sc
en
e

P4
Tr
an
s.

O
ur
s

Lab2 Furnished Rain Smoke Dark Occlusion

Fig. 3: Qualitative visualization of the estimated poses on mmBody dataset. mmDiff
demonstrates higher keypoint accuracy. The GTs are black and predictions are colored.

on the mmBody dataset. Compared to the SOTA mmWave HPE method, our
method mmDiff(G,L,T,S) outperforms the P4Transformer [12] by 12.8% (MPJPE)
and 11.3% (PA-MPJPE). For adverse environments, the improvement is more
significant with 14.7% (MPJPE) and 12.0% (PA-MPJPE), because radar signals
get noisier due to the specular reflection and mmDiff has improved noise-handling
capability. Compared to Diffpose [14] and PoseFormer [50] that utilize SOTA 3D
HPE methods for pose refinement, mmDiff(G,L,T,S) still outperforms by 6.6%
(MPJPE) and 4.2% (PA-MPJPE), demonstrating the proposed modules are dedi-
cated to handle noisy and sparse radar modalities. Furthermore, mmDiff enables
better mmWave-based performance compared to RGB-based methods under all
scenes and RGB(D)-based methods under adverse environments. Qualitatively,
we observe more accurate human poses as illustrated in Figure 3.

Performance on mm-Fi. As shown in Table 2, the generalizability of our
proposed mmDiff is further explored on mm-Fi dataset. We compare the proposed
method with the benchmark PointTransformer [47] and the SOTA DiffPose pose
refinement [14]. Compared with the benchmark, our proposed method reduces
the pose estimation error by 6.29% to 13.61% (MPJPE) and 7.15% to 14.42%
(PA-MPJPE). Though the vanilla DiffPose for pose refinement can improve

Table 3: Ablation studies of proposed modules on mmBody.

Diffusion Model Context Modules Consistency Modules Modules Elimination Overall

Modules

Diffusion ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Global ✓ ✓ ✓ ✓ ✓ ✓

Local ✓ ✓ ✓ ✓ ✓ ✓

Limb ✓ ✓ ✓ ✓ ✓ ✓

Temporal ✓ ✓ ✓ ✓ ✓ ✓

Average
MPJPE 78.10 73.31 70.99 70.43 69.79 69.85 71.71 69.46 68.83 68.81 69.45 69.16 68.08

PA-MPJPE 60.56 58.23 55.80 55.45 55.04 54.90 57.06 54.70 54.18 54.58 54.53 53.96 53.71
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Fig. 4: (a) shows the pose motion stability on mm-Fi by plotting 5 consecutive frames
of poses. mmDiff shows more consistent motion patterns (zoom in for details). (b) shows
the motion energy levels on mmBody, where lower AKV indicates better stability.

the result, the performance is further improved by 4.19% to 11.14% (MPJPE)
and 4.49% to 11.40% (PA-MPJPE) with the integration of the radar context
module and the consistency modules, further demonstrating their effectiveness.
Moreover, using cross-subject splitting, our method shows comparable results
to random splitting. As our model explicitly learns the human structural and
motion patterns from the radar signals, these patterns potentially generalize
for unseen subjects. Our method also demonstrates cross-domain ability as the
performance steadily improves with the integration of different modules.

4.3 Analytics

Ablation Study. As shown in Table 3, we perform the ablation study to verify
the effectiveness of each component from the following 4 perspectives. (1) The
vanilla diffusion design without any radar guidance can reduce the joint error
by modeling pose distribution and refine deformed poses. (2) The effectiveness
of the global-local radar context modules is verified by the performance gain
of 4.8% (MPJPE) and 5.5% (PA-MPJPE). Both modules extract clean radar

Table 4: Ablation studies of the detailed designs in global-local radar context modules.

Global Radar Context Local Radar Context

Modules
Diffusion ✓ ✓ ✓

Modules
Diffusion ✓ ✓ ✓

PC Features F r ✓ Static Anchors ✓

Joint Features F j ✓ Dynamic Anchors ✓

Average MPJPE 73.31 72.50 70.99 Average MPJPE 73.31 71.05 70.43
PA-MPJPE 58.23 58.03 55.80 PA-MPJPE 58.23 56.06 55.45
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Fig. 5: Limb-length distribution for a single subject by histogram. The error within 5
cm can be treated as correct. With Clim, more accurate limb-length and less variance
are observed, as the distribution moves towards the GT and is more concentrated.

information with a different focus (local radar PCs or global PC features). (3)
The effectiveness of the structure-motion consistency modules are verified by the
performance gain of 5.3% (MPJPE) and 6.1% (PA-MPJPE). (4) The necessity
of each module is further proved, as the elimination of different modules leads
to a performance drop. Specifically, the performance drop is more significant
when removing the limb-length module (Clim) and temporal motion consistency
module (Ctem), as the pose instability causes great pose inaccuracy.

Effect of Global-local Radar Context. To demonstrate the effectiveness of
joint-wise feature extraction using the joint feature template, we compare our
design with an alternative in Table 4: to directly generate PC feature guidance
using the transformer without any template. Our designed joint feature guidance
significantly outperforms the PC feature guidance, as the PC features are easily
affected by the radar’s miss-detection. To demonstrate the effectiveness of dynamic
anchors of LRC, in Table 4 we compare our design with static anchor design [43]
using coarse estimated human poses H̃. Our design has better performance and
is more suitable for diffusion-based local PC selection.

Effects of Temporal Motion Consistency. In Figure 4 (a), we observe a mix-
ing of incorrect skeletons within the correct skeleton timeline with PointTrans. [47],
e.g. chest-expanding and hand-waving. With mmDiff, smooth motion patterns are
ensured based on human behavioral prior knowledge. Additionally, our proposed
mmDiff can mitigate the uncertain locations of legs and arms (caused by low
resolution), demonstrating enhanced pose accuracy. Furthermore, for throwing
and kicking actions, our method is more stable compared to RGB-extracted
ground truth, as camera-based HPE suffers from self-occlusion. In Figure 4 (b),
we further apply the Average Keypoint Velocity (AKV) to quantitatively measure
the pose stability. AKV is defined as Ei=[0..17](||J i

t − J i
t−1||2), which measures

the average inter-frame joint moving distance, indicating the motion energy level
and pose stability. The proposed mmDiff demonstrates enhanced pose stability
by minimizing joint vibration and avoiding abrupt pose changes.
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Table 5: Model efficiency evaluated on mmBody. We compare mmDiff’s diffusion train-
ing in phase two with the benchmark method P4Transformer [12]. Extra computational
resources of our designed modules for one diffusion step are illustrated.

Modules Input Input Size Latency #Params. GFLOPs.

P4Transformer [12] R (N, 6) 40.48 ms 128.00M 43.50

Diffusion model (D) Ĥk (17, 3) 7.59 ms 1.03M 0.03
Global context (G) F j (17, 64) 0.36 ms 0.02M 0.01
Local context (L) R, Ĥk (N, 6), (17, 3) 2.00 ms 0.19M 0.40
Motion consistency (T) {H̃t−i}∆t

i=1 (∆t, 17, 3) 1.74 ms 15.98M 0.19
Limb consistency (S) F j (17, 64) 0.16 ms 1.29M 0.02
(D+G+L+T+S) / / 11.85 ms 18.51M 0.62

Effects of Structural Limb-length Consistency. To validate the effectiveness
of the limb-length consistency, we compare mmDiff w/ and w/o the module (Clim)
and plot the histograms that indicate the limb-length distribution in Figure 5.
The ground truth limb length remains constant for all limbs. We observe both
reduced limb-length error (in the estimated arms, legs, and spline) and variance
(in forearms and lower legs), indicating enhanced pose accuracy and structural
stability. We argue that more accurate limb-length can lead to more accurate
pose estimation. Qualitatively in figure 4, the variant height and arm’s length
for chest expansion and hand raising are mitigated with mmDiff. However, as in
Table 1, SLC has limitations when the sensing distance is long (e.g., in Lab 2)
due to harder limb-length estimation.

Model Efficiency. We provide the efficiency analysis in Table 5, where our
proposed modules require substantially little computational resources during
phase-two diffusion training and inference. All designed modules have a latency
of less than 2ms, demonstrating outstanding efficiency in supporting the iterative
diffusion process. Meanwhile, the model’s parameters of our designed modules
are relatively small compared to the P4Transformer [12], and require minimum
computation complexity, as reflected by GFLOPs. It demonstrates the potential
for applications like robotics, the Internet of Things, and edge computing.

5 Conclusion

This paper proposes mmDiff as a human pose estimation (HPE) method
for RF-vision, a conditional diffusion model designed to generate accurate and
stable human poses from noisy mmWave radar point clouds. The proposed
modules demonstrate enhanced robustness in handling radar’s miss-detection
and signal inconsistency when extracting the guiding features. Compared to the
state-of-the-art methods, the proposed mmDiff demonstrates better accuracy and
stability in mmWave HPE, showing the viability of radar-based HPE to deal with
low illumination or haze. However, it also has limitations worth future studies,
including slightly inferior performance compared to RGB-D and increased noise
in the presence of multiple sensing targets.
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