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1 Additional Details

1.1 Details on Training and Multi-view Data Synthesis

Let r ∈ RT×3, Θ ∈ RT×55×3×3, and β ∈ R16 be root position, body joint rotation
matrices in a temporal window of length T , and shape parameters from human
motion capture data. We begin our multi-view data generation by augmenting
the shape parameters with Gaussian noise with a standard deviation equal to
the standard deviation of all shape parameters within the datasets. Next, we
apply mediolateral mirroring with a 50% chance and randomly rotate the mo-
tion sequence around its center. We pass the augmented {r,Θ, β} parameters
to the forward-kinematic layer of the SMPL body model to obtain 3D vertices.
Lastly, we use a dataset-specific joint regressor on the vertices to extract the 3D
keypoints used in the next steps of our pipeline.

Next, we simulate a multi-camera recording setup by randomly positioning
several cameras in cylindrical space. As depicted in Fig. 1-a, we randomly choose
a recording volume size that encircles the space occupied by the human body. To
ensure that the subject appears in most cameras, we select the tilt, pitch, and
yaw so that they look at a random point in the center of the recording volume
while maintaining the correct up direction. Additionally, we limit the camera
height to mimic typical multi-view video recording setups.

After obtaining the camera intrinsic and extrinsic parameters, we project
the 3D body keypoints onto each camera view (see Fig. 1-b). We use these 2D
keypoints as ground truths µg to train our pose compiler (see Fig. 1-c). We
then add 2D point corruptions to the 2D keypoints, including Gaussian noise
with varying standard deviations, simulated occlusions with varying sizes and
probabilities, mediolateral flipping, and occasional truncation effects (see Fig. 1-
d). Next, we obtain the cross-view projected keypoints (see Fig. 1-e) via the
algorithm described in Sec. 3.2 in the main paper. Finally, we train our pose
compiler using the ground-truth keypoints and point clouds containing noisy 2D
data, as depicted in Fig. 2.
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Fig. 1: We illustrate our multi-view data synthesis framework, starting with (a) camera
placement in a space surrounding a motion-captured human body; (b) extraction and
projection of keypoints onto the synthetic cameras; (c) 2D ground-truth keypoints; (d)
data corruption; and (e) cross-view projection to prepare the point cloud training data
for our pose compiler.

Fig. 2: We illustrate the training routine of our pose compiler using synthetic data
generated based on real motion capture sequences.

1.2 Details on Criss-cross Attention

As discussed in Sec. 3.3 in the main paper, we use criss-cross attention blocks
in our spatiotemporal encoder to process information more efficiently. Accord-
ingly, the cross-view input features {fi} are first projected into queries, keys,
and values (Q,K, V ∈ RT×J×2H) via a linear layer. Next, we divide them into
temporal QT ,KT , VT ∈ RT×J×H and spatial groups QS ,KS , VS ∈ RT×J×H .
The temporal and spatial (skeleton joints) attentions are then calculated in two
separate self-attention modules and concatenated before the next feed-forward
layer and normalization. As a result of this operation, the receptive field of each
transformer layer is the information residing on the spatial and temporal axis,
and stacking multiple layers can approximate the full spatiotemporal attention
without large computational overhead. In the following sections, we study the
effectiveness of our design choice and compare its computation cost and perfor-
mance against full attention and concurrent attention designs.
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2 Additional Experiments and Results

This section describes the 2D datasets used during training and fine-tuning of
our 2D pose estimator. We then study the details of our pipeline to evaluate
its performance under different inputs, network architectures, and initialization
strategies for 3D keypoint estimation. Next, we provide additional comparisons
on the Human3.6m [5] dataset with weak or semi-supervised methods. We will
also provide more comparisons with monocular pose estimation approaches on
the RICH [4] dataset.

2.1 2D Datasets

COCO WholeBody. The COCO WholeBody [6] dataset is a large-scale whole-
body pose estimation dataset with over 250K samples. This dataset is an exten-
sion of Common Objects in COntext (COCO) [14] dataset with the same training
and testing splits. The dataset provides 133 2D keypoints (17 for body, 6 for feet,
68 for face, and 42 for hands) on in-the-wild images. We use this dataset to train
our 2D pose estimator during OoD experiments.
MPII. The MPII Human Pose dataset [1] dataset is a popular 2D pose estima-
tion benchmark. It contains over 40,000 images of people performing over 400
actions in diverse scenarios. The dataset contains 16 body joint labels and is
frequently used to pre-train [24] or improve cross-dataset generalization [16,25].
We use this dataset for 2D pose estimator pre-training and fine-tuning.

2.2 Additional Ablation Study

Following the ablation study originally presented in Sec. 5.3 of the main pa-
per, we investigate the impact of temporal length, our spatiotemporal encoder’s
architecture, different formulations of the point clouds, and our initialization
strategy for 3D keypoint estimation in Tab. 1. Additionally, we report and pro-
vide the computational cost comparisons for a single input batch with T = 27
and 4 views. Our pose compiler is significantly smaller than a single 2D pose
estimator, taking less than 1% of the total parameter count.
Random Initialization. We use the L-BFGS [15] optimization algorithm to
solve the 3D keypoint MLE iteratively. To speed up this process, we stop the
optimization when the changes of our optimization variables, namely U , are less
than a specific tolerance (Tol. = 0.001 mm). We further speed up the optimiza-
tion process by using a DLT algorithm to initialize the 3D points U . Table 1
first examines the effect of our initialization strategy when U is initialized to
zero, and the tolerance remains unchanged, showing a significant rise in the 3D
keypoint estimation error and inference time. Next, Tab. 1 shows that by lower-
ing the tolerance, zero-initialization performs similarly to our proposed strategy,
but at 3 times more inference time. Therefore, we conclude that unlike prior
works [22], our method is not reliant on initialization, and the initialization only
speeds up the estimation process. This may be due to the smooth nature of the
uncertainty distributions learned by the normalizing flows [11].
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Table 1: Additional ablation study on Human3.6m dataset. We only report the com-
putation cost of our pose compiler (in FLOPs) and exclude the CPN [2] network with
5.16T FLOPs for 27 frames of 4 views. Additionally, 64.87M of parameters in all ex-
periments belong to the CPN network.

Method MPJPE↓ PA-MPJPE↓ Param. (M)↓ Time (s)↓ FLOPs (G)
UPose3D (T = 27, Tol. = 10−3 mm) 26.42 23.42 65.407 10.1 2.04

w/ zero init 28.51 32.85 65.407 12.5 2.04
w/ zero init (Tol. = 10−6 mm) 26.42 23.42 65.407 28.9 2.04
w/ T = 243 33.17 25.11 62.660 10.9 20.18
w/ concurent attention 26.57 23.61 65.391 10.3 2.01
w/ full attention 26.50 23.57 65.322 10.3 2.28
w/ full attention (T = 243) 34.97 28.60 65.336 10.3 51.56
w/ epipolar line 26.46 23.45 65.407 10.1 2.04
w/ relative camera pos. emb. 26.37 23.43 65.407 10.2 2.04

Longer Temporal Window. We study the computational cost and perfor-
mance impact of very long temporal context size. Following [26], we report the
performance of UPose3D when 243 frames, as opposed to 27 frames, to infer the
3D keypoints of the center frame in Tab. 1. This new model takes 10 times more
FLOPs to compute and does not perform as well as our original model. This
may be because our synthetic data augmentations and corruption strategies are
tuned for smaller time windows, as longer context sizes were not in our consider-
ations. Our observations of the training and validation losses also show signs of
overfitting during training for longer time windows. As extremely long context
sizes are not in the scope of this paper, we do not perform any additional tuning
of these models and leave them for future research.
Pose Compiler Architecture. We compare the effect of our criss-cross atten-
tion modules with vanilla (full) and concurrent attention. Table 1 shows that
criss-cross attention outperforms the other two designs while requiring less com-
putation (FLOPs) than full attention. Additionally, we observe that on the ex-
treme case of very long temporal context sizes (T = 243), criss-cross attention
still outperforms full attention models by 1.8 mm while requiring 60% less com-
putations.
Inputs of Pose Compiler. Finally, we investigate the effect of different point
cloud formation strategies in our pipeline. Specifically, we study the impact
of appending a relative camera position embedding, inspired by [19], to the
cross-projected 2D keypoints while creating the point clouds. Accordingly, in
our first experiment, we concatenate the epipolar line parameters of other views
to the point cloud of the reference view. Similarly, in our second experiment, we
concatenate the relative position of the other cameras to the input point cloud as
well. However, as shown in Tab. 1, adding extra inputs does not greatly impact
the performance.

2.3 Additional Baselines and Comparisons

Table 2 complements Tab. 1 of the main paper by providing more comparisons
with prior works on the Human3.6m [5] dataset. Here, we include 3D keypoint
estimation approaches regardless of their input modality or supervision type
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Table 2: Additional comparisons with prior works on the full test set of the Hu-
man3.6m dataset in InD settings. (-) denotes that the error was not reported in the
original work.

Method Supervision Multi-view Frames MPJPE↓ PA-MPJPE↓ N-MPJPE↓
Rhodin et al. [17] 3D ✗ 1 66.8 51.6 63.3
Rhodin et al. [17] Weakly 3D ✗ 1 - 65.1 80.1
EpipolarPose [9] Weakly 3D ✗ 1 55.08 47.91 54.90
CanonPose [23] Weakly 3D ✗ 1 - 53.0 82.0
Gong et al. [3] Synthetic 3D ✓ 1 53.8 42.4 -
BKinD-3D [20] 3D Discovery ✓ 20 125.0 105.0 -
UPose3D (Ours) 2D ✓ 1 26.9 24.1 26.2
UPose3D (Ours) 2D ✓ 27 26.4 23.4 25.6

Table 3: Comparison of our method in OoD setting on RICH dataset against prior
works. * denotes our replication of prior works.

Method MPJPE↓ PA-MPJPE↓ OoD Multi-view Output
SA-HMR [18] 93.9 - ✗ ✗ SMPL
IPMAN-R [21] 79.0 47.6 ✗ ✗ SMPL
METRO [13] 98.8 - ✗ ✗ SMPL
METRO [13] 129.6 - ✓ ✗ SMPL
SPIN [10] 112.2 71.5 ✓ ✗ SMPL
PARE [8] 107.0 73.1 ✓ ✗ SMPL
CLIFF [12] 107.0 67.2 ✓ ✗ SMPL
AdaFuse* [24] 524.0 85.8 ✓ ✓ 3D Keypoints
HRNet-W48+Grid Search* 64.4 54.9 ✓ ✓ 3D Keypoints
HRNet-W48+DLT* 66.0 55.1 ✓ ✓ 3D Keypoints
Ours (T = 1) 36.2 33.4 ✓ ✓ 3D Keypoints
Ours (T = 27) 34.7 32.0 ✓ ✓ 3D Keypoints

in InD settings. We observe that our method outperforms all of the other ap-
proaches despite only using 2D supervision. Additionally, in Tab. 3, we compare
our work with prior research on the RICH [4] dataset. Since this dataset was
recently published, only monocular 3D body modeling techniques have reported
their performance on this dataset. Here, we observe that our method outper-
forms the majority of prior works. More importantly, when comparing Tab. 2
and Tab. 3 we notice that our method achieves consistent results between InD
and OoD evaluations on the Human3.6m [5] and the RICH [4] datasets, showing
generalizability across in-studio and outdoor environments.

3 Additional Visual Examples

We provide a supplementary video that describes our method with visual demon-
strations. Additionally, we provide several video clips of input and output data
from Human3.6m [5], RICH [4], and CMU-Panoptic [7] datasets and compare the
visual fidelity of our approach with the state-of-the-art method on Human3.6m,
AdaFuse [24].
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4 Qualitataive Comparisons

In Fig. 3, Fig. 4, and Fig. 5, we demonstrate some examples of our UPose3D on
Human3.6m [5] dataset to showcase its visual fidelity in comparison to ground-
truth keypoints and AdaFuse [24] in InD evaluation scheme. Additionally, we
provide more visual examples of UPose3D results in Fig. 6, Fig. 7, and Fig. 8
in comparison to our implementation of AdaFuse [24] in OoD settings on the
RICH [4] dataset. To better visualize the sharp keypoint distribution output of
our 2D pose estimators, we show the logarithm of heatmaps in all figures for 2D
pose estimators. We refer the reader to Fig. 4 of the main paper for an illus-
tration of the real heatmaps without any post-processing. Our method performs
consistently in both settings, while AdaFuse fails to correctly predict the human
keypoints in some OoD samples. In all cases, the 2D pose estimator generally
results in more refined predictions and sharper uncertainty distributions, while
our pose compiler outputs a coarser distribution. Moreover, our method typi-
cally depicts higher horizontal uncertainties, which may be due to more frequent
horizontal movements.
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Fig. 3: Example output of our proposed UPose3D pipeline in comparison to AdaFuse
[24] is presented in the InD evaluation scheme on the Human3.6m [5] dataset.
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Fig. 4: Example output of our proposed UPose3D pipeline in comparison to AdaFuse
[24] is presented in the InD evaluation scheme on the Human3.6m [5] dataset.
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Fig. 5: Example output of our proposed UPose3D pipeline in comparison to AdaFuse
[24] is presented in the InD evaluation scheme on the Human3.6m [5] dataset.
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Fig. 6: Example output of our proposed UPose3D pipeline in comparison to AdaFuse
[24] is presented in the OoD evaluation scheme on the RICH [4] dataset. The first
and second samples show the effectiveness of our approach in solving occlusions for
detecting hands and feet.
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Fig. 7: Example output of our proposed UPose3D pipeline in comparison to AdaFuse
[24] is presented in the OoD evaluation scheme on the RICH [4] dataset. The first
sample illustrates a challenging input with a rare posture, where both AdaFuse and
our method successfully predict the correct posture.
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Fig. 8: Example output of our proposed UPose3D pipeline in comparison to AdaFuse
[24] is presented in the OoD evaluation scheme on the RICH [4] dataset. We observe
that our method outperforms AdaFuse in the first and third samples.



UPose3D: Uncertainty-Aware 3D Human Pose Estimation 13

References

1. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estima-
tion: New benchmark and state of the art analysis. In: IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 3686–3693 (2014).
https://doi.org/10.1109/CVPR.2014.471

2. Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid
network for multi-person pose estimation. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 7103–7112 (2018). https://doi.org/
10.1109/CVPR.2018.00742

3. Gong, X., Song, L., Zheng, M., Planche, B., Chen, T., Yuan, J., Doermann, D.,
Wu, Z.: Progressive multi-view human mesh recovery with self-supervision. In:
Proceedings of the AAAI Conference on Artificial Intelligence. vol. 37, pp. 676–
684 (2023). https://doi.org/10.1609/aaai.v37i1.25144

4. Huang, C.H.P., Yi, H., Höschle, M., Safroshkin, M., Alexiadis, T., Polikovsky, S.,
Scharstein, D., Black, M.J.: Capturing and inferring dense full-body human-scene
contact. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 13274–13285 (2022). https://doi.org/10.1109/CVPR52688.2022.
01292

5. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: Large scale
datasets and predictive methods for 3D human sensing in natural environments.
IEEE Transactions on Pattern Analysis and Machine Intelligence 36(7), 1325–1339
(2013). https://doi.org/10.1109/TPAMI.2013.248

6. Jin, S., Xu, L., Xu, J., Wang, C., Liu, W., Qian, C., Ouyang, W., Luo, P.: Whole-
body human pose estimation in the wild. In: European Conference on Computer
Vision (ECCV). pp. 196–214. Springer (2020). https://doi.org/10.1007/978-3-
030-58545-7_12

7. Joo, H., Liu, H., Tan, L., Gui, L., Nabbe, B., Matthews, I., Kanade, T., Nobuhara,
S., Sheikh, Y.: Panoptic studio: A massively multiview system for social motion
capture. In: IEEE/CVF International Conference on Computer Vision (ICCV).
pp. 3334–3342 (2015). https://doi.org/10.1109/ICCV.2015.381

8. Kocabas, M., Huang, C.H.P., Hilliges, O., Black, M.J.: Pare: Part attention regres-
sor for 3D human body estimation. In: IEEE/CVF International Conference on
Computer Vision (ICCV). pp. 11127–11137 (2021). https://doi.org/10.1109/
ICCV48922.2021.01094

9. Kocabas, M., Karagoz, S., Akbas, E.: Self-supervised learning of 3D human pose
using multi-view geometry. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 1077–1086 (2019). https://doi.org/10.1109/
CVPR.2019.00117

10. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to recon-
struct 3D human pose and shape via model-fitting in the loop. In: IEEE/CVF
International Conference on Computer Vision (ICCV). pp. 2252–2261 (2019).
https://doi.org/10.1109/ICCV.2019.00234

11. Li, J., Bian, S., Zeng, A., Wang, C., Pang, B., Liu, W., Lu, C.: Human pose re-
gression with residual log-likelihood estimation. In: IEEE/CVF International Con-
ference on Computer Vision (ICCV). pp. 11025–11034 (2021). https://doi.org/
10.1109/ICCV48922.2021.01084

12. Li, Z., Liu, J., Zhang, Z., Xu, S., Yan, Y.: Cliff: Carrying location information in
full frames into human pose and shape estimation. In: European Conference on
Computer Vision (ECCV). pp. 590–606. Springer (2022). https://doi.org/10.
1007/978-3-031-20065-6_34

https://doi.org/10.1109/CVPR.2014.471
https://doi.org/10.1109/CVPR.2014.471
https://doi.org/10.1109/CVPR.2018.00742
https://doi.org/10.1109/CVPR.2018.00742
https://doi.org/10.1109/CVPR.2018.00742
https://doi.org/10.1109/CVPR.2018.00742
https://doi.org/10.1609/aaai.v37i1.25144
https://doi.org/10.1609/aaai.v37i1.25144
https://doi.org/10.1109/CVPR52688.2022.01292
https://doi.org/10.1109/CVPR52688.2022.01292
https://doi.org/10.1109/CVPR52688.2022.01292
https://doi.org/10.1109/CVPR52688.2022.01292
https://doi.org/10.1109/TPAMI.2013.248
https://doi.org/10.1109/TPAMI.2013.248
https://doi.org/10.1007/978-3-030-58545-7_12
https://doi.org/10.1007/978-3-030-58545-7_12
https://doi.org/10.1007/978-3-030-58545-7_12
https://doi.org/10.1007/978-3-030-58545-7_12
https://doi.org/10.1109/ICCV.2015.381
https://doi.org/10.1109/ICCV.2015.381
https://doi.org/10.1109/ICCV48922.2021.01094
https://doi.org/10.1109/ICCV48922.2021.01094
https://doi.org/10.1109/ICCV48922.2021.01094
https://doi.org/10.1109/ICCV48922.2021.01094
https://doi.org/10.1109/CVPR.2019.00117
https://doi.org/10.1109/CVPR.2019.00117
https://doi.org/10.1109/CVPR.2019.00117
https://doi.org/10.1109/CVPR.2019.00117
https://doi.org/10.1109/ICCV.2019.00234
https://doi.org/10.1109/ICCV.2019.00234
https://doi.org/10.1109/ICCV48922.2021.01084
https://doi.org/10.1109/ICCV48922.2021.01084
https://doi.org/10.1109/ICCV48922.2021.01084
https://doi.org/10.1109/ICCV48922.2021.01084
https://doi.org/10.1007/978-3-031-20065-6_34
https://doi.org/10.1007/978-3-031-20065-6_34
https://doi.org/10.1007/978-3-031-20065-6_34
https://doi.org/10.1007/978-3-031-20065-6_34


14 V. Davoodnia et al.

13. Lin, K., Wang, L., Liu, Z.: End-to-end human pose and mesh reconstruction with
transformers. In: IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). pp. 1954–1963 (2021). https://doi.org/10.1109/CVPR46437.
2021.00199

14. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European Conference
on Computer Vision (ECCV). pp. 740–755. Springer (2014). https://doi.org/
10.1007/978-3-319-10602-1_48

15. Liu, D.C., Nocedal, J.: On the limited memory bfgs method for large scale op-
timization. Mathematical Programming 45(1-3), 503–528 (1989). https://doi.
org/10.1007/BF01589116

16. Qiu, H., Wang, C., Wang, J., Wang, N., Zeng, W.: Cross view fusion for 3D hu-
man pose estimation. In: IEEE/CVF International Conference on Computer Vision
(ICCV). pp. 4342–4351 (2019). https://doi.org/10.1109/ICCV.2019.00444

17. Rhodin, H., Spörri, J., Katircioglu, I., Constantin, V., Meyer, F., Müller, E., Salz-
mann, M., Fua, P.: Learning monocular 3D human pose estimation from multi-view
images. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 8437–8446 (2018). https://doi.org/10.1109/CVPR.2018.00880

18. Shen, Z., Cen, Z., Peng, S., Shuai, Q., Bao, H., Zhou, X.: Learning human mesh
recovery in 3D scenes. In: IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). pp. 17038–17047 (2023). https://doi.org/10.1109/
CVPR52729.2023.01634

19. Shuai, H., Wu, L., Liu, Q.: Adaptive multi-view and temporal fusing transformer for
3D human pose estimation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 45(4), 4122–4135 (2022). https://doi.org/10.1109/TPAMI.2022.
3188716

20. Sun, J.J., Karashchuk, L., Dravid, A., Ryou, S., Fereidooni, S., Tuthill, J., Kat-
saggelos, A., Brunton, B.W., Gkioxari, G., Kennedy, A., Yue, Y., Perona, P.:
BKinD-3D: self-supervised 3D keypoint discovery from multi-view videos. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 9001–9010 (2023). https://doi.org/10.1109/CVPR52729.2023.00869

21. Tripathi, S., Müller, L., Huang, C.H.P., Taheri, O., Black, M.J., Tzionas, D.: 3D
human pose estimation via intuitive physics. In: IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 4713–4725 (2023). https:
//doi.org/10.1109/CVPR52729.2023.00457

22. Usman, B., Tagliasacchi, A., Saenko, K., Sud, A.: Metapose: Fast 3D pose from
multiple views without 3D supervision. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 6759–6770 (2022). https://doi.
org/10.1109/CVPR52688.2022.00664

23. Wandt, B., Rudolph, M., Zell, P., Rhodin, H., Rosenhahn, B.: Canonpose: Self-
supervised monocular 3D human pose estimation in the wild. In: IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). pp. 13294–13304
(2021). https://doi.org/10.1109/CVPR46437.2021.01309

24. Zhang, Z., Wang, C., Qiu, W., Qin, W., Zeng, W.: Adafuse: Adaptive multiview
fusion for accurate human pose estimation in the wild. International Journal of
Computer Vision 129, 703–718 (2021). https://doi.org/10.1007/s11263-020-
01398-9

25. Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y.: Towards 3D human pose estimation
in the wild: a weakly-supervised approach. In: IEEE/CVF International Conference
on Computer Vision (ICCV). pp. 398–407 (2017). https://doi.org/10.1109/
ICCV.2017.51

https://doi.org/10.1109/CVPR46437.2021.00199
https://doi.org/10.1109/CVPR46437.2021.00199
https://doi.org/10.1109/CVPR46437.2021.00199
https://doi.org/10.1109/CVPR46437.2021.00199
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
https://doi.org/10.1109/ICCV.2019.00444
https://doi.org/10.1109/ICCV.2019.00444
https://doi.org/10.1109/CVPR.2018.00880
https://doi.org/10.1109/CVPR.2018.00880
https://doi.org/10.1109/CVPR52729.2023.01634
https://doi.org/10.1109/CVPR52729.2023.01634
https://doi.org/10.1109/CVPR52729.2023.01634
https://doi.org/10.1109/CVPR52729.2023.01634
https://doi.org/10.1109/TPAMI.2022.3188716
https://doi.org/10.1109/TPAMI.2022.3188716
https://doi.org/10.1109/TPAMI.2022.3188716
https://doi.org/10.1109/TPAMI.2022.3188716
https://doi.org/10.1109/CVPR52729.2023.00869
https://doi.org/10.1109/CVPR52729.2023.00869
https://doi.org/10.1109/CVPR52729.2023.00457
https://doi.org/10.1109/CVPR52729.2023.00457
https://doi.org/10.1109/CVPR52729.2023.00457
https://doi.org/10.1109/CVPR52729.2023.00457
https://doi.org/10.1109/CVPR52688.2022.00664
https://doi.org/10.1109/CVPR52688.2022.00664
https://doi.org/10.1109/CVPR52688.2022.00664
https://doi.org/10.1109/CVPR52688.2022.00664
https://doi.org/10.1109/CVPR46437.2021.01309
https://doi.org/10.1109/CVPR46437.2021.01309
https://doi.org/10.1007/s11263-020-01398-9
https://doi.org/10.1007/s11263-020-01398-9
https://doi.org/10.1007/s11263-020-01398-9
https://doi.org/10.1007/s11263-020-01398-9
https://doi.org/10.1109/ICCV.2017.51
https://doi.org/10.1109/ICCV.2017.51
https://doi.org/10.1109/ICCV.2017.51
https://doi.org/10.1109/ICCV.2017.51


UPose3D: Uncertainty-Aware 3D Human Pose Estimation 15

26. Zhu, W., Ma, X., Liu, Z., Liu, L., Wu, W., Wang, Y.: Motionbert: A unified
perspective on learning human motion representations. In: IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV). pp. 15085–15099. IEEE (2023).
https://doi.org/10.1109/ICCV51070.2023.01385

https://doi.org/10.1109/ICCV51070.2023.01385
https://doi.org/10.1109/ICCV51070.2023.01385

	UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues

