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A Implementation Details

We evaluate on four datasets, including Shapenet Cars [1,2], CompCars [5], SDIP
Elephant [4], and LSUN Plane [6]. CompCars contains 136k unposed images
capturing the entire cars with different styles. The original dataset contains
images with different aspect ratios. We preprocess the images by center cropping,
padding to the squared images with the same length, and resizing them to
256×256. We use the mask to set the background black and filter the data
with bad mask estimation and extreme scale, leading to 110k images. LSUN
Plane is a dataset that contains unposed images of different planes. We use
MMDetection [3] to detect the plane and filter the plane larger than 226×226
resolution and the occluded plane, leading to 130k images. We rescale the plane
to make the large side equal to 226 and padding it to 256 resolution.

B Runtime Analysis

Runtime Breakdown: We report the average runtime of different processes
during training in Tab. 1. The runtime analysis is conducted on an A6000 GPU.
The "Template Rendering" indicates the time to render the template feature
field at discretized azimuth and elevation angles θ and ϕ to obtain 2D template
features {F}Nθ×Nϕ

k=1 . The batch size to render the template is 32. We update the
template and render it once every 16 iterations before 3k iterations and then
once every epoch. The template rendering time in the early stage is averaged
over 16 iterations. Since the iterations of each epoch are different for different
datasets, we report the averaged template rendering time in the late stage using
the dataset of the smallest amount of images, i.e. SDIP Elephant dataset. The
"Phase Correlation" refers to the time for estimating the scale r and in-plane
rotation γ, and warping each feature template to yield {F̃}Nθ×Nϕ

k=1 . The "Camera
Pose Sampling" includes the time to calculate mean square error and to perform
inverse sampling (see Eq. 2 and Eq. 3 of the main paper). "Training" indicates the
training time without camera pose estimation, which includes the data loading
⋆ Corresponding author.
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time, the network forward time, and the optimization time. The batch size for
training is 4. Note that we use a fixed camera pose and do not perform pose
estimation after 500k iterations. Compared to the overall iterations of 6250k,
the increased time is acceptable.

Runtime Comparison with Naïve Grid Search: As mentioned in our main
paper, one can implement a naïve grid search method by discretizing all four
variables (θ, ϕ, γ, r) we consider for the camera poses. We demonstrate that this
naïve approach significantly increases the pose estimation time in Tab. 2. Here,
we further discretize scale r and in-plane rotation γ, each discretized into 256
values, increasing the total amount of 2D feature templates by 2562 times. While
this omits the phase correlation module, it significantly increases the template
rendering time and is hence intractable for training the 3D GAN.

Process Template Rendering
Early Stage

Template Rendering
Late Stage

Phase
Correlation

Camera Pose
Sampling Training

Time (s/iter) 0.0992 0.0023 0.3898 0.0156 1.4038
Table 1: Time Analysis of Different Processes.

Process Template Rendering
Early Stage

Template Rendering
Late Stage

Phase
Correlation

Camera Pose
Sampling Training

Time (s/iter) 4423.0519 102.5506 – 74.8994 1.4038
Table 2: Time Analysis of Naïve Grid Search.

C Ablation Study of the Number of Discretizations

We conduct an ablation study on the number of discretizations on ShapeNet
Cars. We report FID and early-stage template rendering time in Tab. 3. Reducing
discretized bins of θ × ϕ from 36 × 18 to 24 × 12 or lower worsens FID due to
larger quantization steps. Increasing bins beyond 36 × 18 obtains comparable
results but yields increasing costs. Note that our method with 12 × 6 bins still
outperforms PoF3D in terms of FIDgt.

θ × ϕ 12×6 24×12 36×18 48×24 60×30
FIDgt / FIDest 11.29 / 9.57 7.48 / 7.35 5.95 / 6.55 5.51 / 6.25 5.96 / 6.48

time s/iter 0.0559 0.2126 0.4966 0.8465 1.3205
Table 3: Different number of bins for discretization.

D Comparison on the FFHQ and AFHQ datasets

We evaluate our method on the FFHQ and AFHQ datasets. We set the azimuthθ
range as 120 degrees according to the distribution prior for the datasets, and
discretize it into 36 values. Since the elevation variation is small, we directly set
the elevation angle as 90 degrees.
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We achieve comparable results with PoF3D on the FFHQ dataset and better
results on the AFHQ dataset, as shown in Tab. 4. Despite PoF3D performing well
in generated poses, their results degenerate in GT poses. We achieve comparable
results with EG3D on the AFHQ dataset, even though EG3D uses GT poses
(with pose condition) and we do not. Despite not using GT poses, our result is
only slightly worse than EG3D on the FFHQ dataset. Fig. 1 demonstrates our
qualitative results.

Fig. 1: Our generated samples on face and cat datasets.

FFHQ AFHQ
Method Depthgt↓ Depthest ↓ FIDgt ↓ FIDest ↓ FIDgt↓ FIDest ↓
EG3D 0.29 - 4.80 - 5.56 -
PoF3D 0.37 0.29 5.13 4.99 16.95 5.46
Ours 0.36 0.35 5.64 5.37 4.52 4.37
Table 4: Comparison on the FFHQ and the AFHQ datasets.

E Qualitative Results of Camera Pose Estimation

Fig. 2, Fig. 3, Fig. 4 and Fig. 5 show the estimated poses of real images on
CompCars, SDIP Elephant, Shapenet Cars and LSUN Plane, respectively. The
first row is the real image I and its corresponding DINO feature F, and the
second row is the best-matching template feature F̃∗

k. The corresponding camera
pose of F̃∗

k indicates the estimated pose of the real image. Note that we only
perform phase correlation on CompCars and LSUN Plane since Shapenet Cars
and SDIP Elephant do not have large variations in scale and in-plane rotation.
The results demonstrate that our method can perform fairly accurate camera
pose estimation. Fig. 6 shows the failure cases of pose estimation. The estimated
pose may not be accurate due to the object articulation, partial observation,
significant geometry difference, lack of modeling object translation, etc. This
could be solved by introducing multiple templates, modeling more freedom of
degrees of camera pose, and disentangling the geometry information during
the matching process in the future. We remark that despite some instances of
inaccurate pose estimation, the overall distribution of poses is generally precise.
This accuracy enables the trained generator to produce objects with complete
geometry and the capability for comprehensive 360-degree view synthesis.
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Fig. 2: Qualitative Pose Estimation on CompCars.

F Uncurated Qualitative Results

Fig. 7, Fig. 8, Fig. 9 and Fig. 10 show the uncurated qualitative results on SDIP
Elephant, CompCars, LSUN Plane and Shapenet Cars. Our results demonstrate
good fidelity and diversity.
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Fig. 3: Qualitative Camera Pose Estimation on SDIP Elephant.

R
ea

l
P
os

e
R

ea
l

P
os

e
R

ea
l

P
os

e

Fig. 4: Qualitative Camera Pose Estimation on Shapenet Cars.
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Fig. 5: Qualitative Camera Pose Estimation on LSUN Plane.

Elephant CompCars Plane ShapenetCars

Fig. 6: Failure Camera Pose Estimation
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Fig. 7: Uncurated Result on SDIP Elephant.

Fig. 8: Uncurated Result on CompCars.
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Fig. 9: Uncurated Result on LSUN Plane.

Fig. 10: Uncurated Result on Shapenet Cars.
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