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Abstract. In this paper, we propose a simple yet effective approach for
Tracking Any Point with TRansformers (TAPTR). Based on the obser-
vation that point tracking bears a great resemblance to object detection
and tracking, we borrow designs from DETR-like algorithms to address
the task of TAP. In TAPTR, in each video frame, each tracking point is
represented as a point query, which consists of a positional part and a
content part. As in DETR, each query (its position and content feature)
is naturally updated layer by layer. Its visibility is predicted by its up-
dated content feature. Queries belonging to the same tracking point can
exchange information through self-attention along the temporal dimen-
sion. As all such operations are well-designed in DETR-like algorithms,
the model is conceptually very simple. We also adopt some useful designs
such as cost volume from optical flow models and develop simple designs
to provide long temporal information while mitigating the feature drift-
ing issue. TAPTR demonstrates strong performance with state-of-the-art
performance on various datasets with faster inference speed.

1 Introduction

Understanding every pixel in a video and tracking their motions is a funda-
mental task in computer vision, which is of great importance to video object
tracking, segmentation, action recognition, and physical world understanding.
Previously, this task is normally simplified to optical flow estimation and has re-
ceived much attention [14,16,40,42,45,49,55,63]. Since optical flow mainly solves
the correspondence problem between two consecutive frames, the lack of long-
range temporal information makes it ineffective in handling the situation when a
tracking point is occluded. The works [10,34,43,48,50,57] dedicated to semantic
key point tracking can handle the problem of occlusion. However, the semantics
of tracking targets are limited to only a small range such as the joints of humans.
To break the limitation of optical-flow estimation and key-point tracking, some
recent works [5,7,11,18,33,64] propose to track any arbitrary point specified by
a user in the whole video and formalize the task as Tracking Any Point (TAP).

Compared with optical flow estimation, the most important problem that
TAP needs to address is to model long-range point motion which may include
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Fig. 1: Comparison of our well-designed DETR-like simple framework with meaning-
clear point modeling and previous framework with redundant designs and blackbox
point modeling. The operation within the dashed box will execute only once.

occlusions along the temporal axis. MFT [33] addresses this problem by extend-
ing an off-the-shelf optical flow estimation method RAFT [45] with the ability of
visibility estimating and chaining the optical flow results to obtain the trajectory
of a tracking point in the whole video. Although MFT has demonstrated impres-
sive results, such an extension still lacks the capability of long-range temporal
information modeling and falls short in more challenging point tracking tasks.
To tackle this issue, several works [5, 7, 11, 64] utilize a sliding window-based
approach and let the points in different frames in the same window exchange
information along the temporal axis.

However, such works usually treat each tracking point independently and
ignore the correlation between points, which is an inappropriate assumption
when points, for example, belong to the same object, can provide contextual
information for each other based on some physical laws [4, 30, 35, 41, 58]. To
account for the correlation between tracking points, CoTracker [18] proposes to
track all points simultaneously using a Transformer-based architecture.

A crucial problem in such works is how to model tracking points. As shown in
Fig. 1 (b), in previous methods with iterative refinement [11, 18, 64], a tracking
point is modeled as a concatenation of several features, including point flow
vector as local movement, point flow embedding, point visibility, point content
feature, and local correlation as cost volume. These features are normally well-
designed in optical flow estimation algorithms and have clear physical meanings.
However, previous methods [11,18,64] simply concatenate all features and send
them as a blackbox vector to MLPs [11, 64] or Transformers [18] and expect
MLPs or Transformers to decipher and utilize the features. We suggest that
the previous methods may not fully achieve a clean model or facilitate ease of
understanding. Therefore, a conceptually simple and effective approach might
be beneficial for the task.

Inspired by DEtection TRansformer (DETR) [3] and its follow-ups [22,23,26–
28,36–38,61,65], we find that point tracking bears a great resemblance to object
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detection and tracking [31,44,56,59]. In particular, in each video frame, tracking
points can be essentially regarded as queries, which have been extensively studied
in DETR-like algorithms [21,23,26,32,52,61,65]. With this motivation, we follow
DETR-like algorithms to design a simple model for tracking any point with
Transformers.

Our pipeline is illustrated in Fig. 1 (a). In our method, in every frame, each
tracking point is represented as a point query, which has a clear meaning. Each
query consists of two parts, a positional part (point coordinate) and a content
part, and will be refined layer by layer. Its visibility is predicted by its updated
content feature. For multiple frames in a sliding window, queries belonging to the
same tracking point can exchange information through self-attention operation
along the temporal dimension. All such operations are common and well-designed
in object detection and make the model conceptually simple yet performance-
wise strong.

We introduce some designs based on the DETR-like model to further boost
performance. To address the difference between point tracking and object de-
tection/tracking, we take into account the well-established cost volume [45] into
the Transformer decoder. This is driven by the fact that, compared with object
detection/tracking, point tracking requires more local and low-level features to
precisely locate and track desired points. Furthermore, we propose a simple yet
effective design for updating content features within the decoder and between
the windows to convey longer temporal information while mitigating the drifting
issues in the context of TAP.

We conduct experiments on several challenging TAP datasets and demon-
strate superior performance over prior works. Our model surpasses the current
state of the art (CoTracker) on the DAVIS dataset under the same setting (63.0
vs. 60.7), and achieves this with 1.3 times faster speed. Remarkably, TAPTR out-
performs CoTracker even when CoTracker deliberately tracks each single point
at a time (63.0 vs. 62.2), while maintaining a 25 times faster speed.

2 Related Work

Optical Flow. Optical flow estimation is a long-standing fundamental computer
vision task. Extensive research has been conducted in the past few decades [1,2,
13]. In the last ten years, deep learning-based methods [8,14–16,40,42,49,54,55,
60,63] have dominated this task. In particular, thanks to the regularity of image
grid features, DCFlow [55] firstly utilizes cost volume for optical flow estimation.
Inspired by DCFlow, many follow-up works [42, 45, 49] are built upon the cost
volume, validating the effectiveness and robustness of cost volume in optical flow
estimation. Among the follow-ups, the paradigm of recurrently looking up the
cost volume and iteratively updating the optical flow estimation proposed by
RAFT [45] obtained a remarkable performance and inspired many subsequent
works [54,60]. However, optical flow only addresses the correspondence problem
between two consecutive frames, which is incapable of handling the occlusion
issue when a tracking point is occluded in a long-time video sequence.
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Fig. 2: The overview of TAPTR. The video preparation and query preparation parts
provide the multi-scale feature map, point queries, and the cost volumes for the point
decoder. The point decoder takes these elements as input and processes all frames
in parallel. The outputs of the point decoder are sent to our window post-processing
module to update the states of the point queries to their belonging tracking points.

Tracking Any Point. Compared to optical flow, each point to be tracked in the
TAP task is arbitrarily selected in a video and is required to be tracked across
the entire video. This task is more general and challenging. TAP-Vid [5] first
formalizes the task and develops a challenging benchmark for the research com-
munity. MFT [33] proposes to track points by selecting the most reliable optical
flow chain. However, the inherent limitations of optical flow estimation make
MFT hard to handle more challenging point tracking tasks. OmniMotion [51]
proposes to tackle this issue from the perspective of 3D. However, it requires a
costly time-consuming test time optimization which prevents it from being ap-
plied in online scenarios. Recently, some general end-to-end point trackers have
been proposed [5, 7, 11, 64], such as PIPs and TAP-Net. However, limited by
the irregular data structure, they track all points in parallel independently. Co-
Tracker [18] proposes to utilize the flexible Transformer architecture to construct
the interaction between points and obtain remarkable performance.

3 TAPTR Model

3.1 Task Definition and Overview

Task Definition. Given a video, with T frames and any of the i-th tracking
point in the video with an initial location lie = (xi

e, y
i
e), our goal is to track the

point across the video to obtain its trajectory, including its location sequence
Li = {lit}Tt=1, lit = (xi

t, y
i
t), and its visibility sequence V i =

{
vit
}T
t=1

, vit ∈ {0, 1}.
Here e is a special index indicating the time stamp when the tracking point first
emerges or starts to be tracked.
Overview. Our model mainly consists of four parts as shown in Fig. 2. They are
video preparation, query preparation, point decoder, and window post-processing.
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Following previous works [11, 18], we use a sliding-window strategy and process
W frames once at a time. So for each window, video preparation is to extract
feature maps for each frame with a backbone and a Transformer Encoder. Query
preparation is to prepare initial locations le, content features fe, and cost vol-
umes {Ct}Wt=1 for point queries in all frames of the window, where each point
query in a frame has its unique belonging tracking point. The point decoder
takes the point queries as input to detect their belonging tracking points’ states
as in DETR-like methods in all frames in parallel. Finally, there is a window
post-processing part to update the ultimate states of each point query to the
trajectory of its belonging tracking point.

3.2 Video Preparation

Following previous Transformer-based detectors and segmentors [23,26,61,65] we
use a convolutional neural network as our backbone to get the multi-scale image
feature maps and send the image feature maps into a Transformer-encoder to
further improve the quality and receptive field of the image features. We define
the final multi-scale image feature maps for the t-th frame as Ft = {Ft,s}Ss=1,
where S is the number of feature scales. The feature maps of all frames are
obtained independently in parallel.

3.3 Query Preparation

In every frame, each tracking point will be assigned with a point query. The
point query belonging to the i-th tracking point in the t-th frame is responsible
for detecting the most matching point of its belonging point in the t-th frame.
Content Feature and Location. To obtain an initial content feature for a
point query that accurately describes the point to be detected, we perform bi-
linear interpolation on the feature maps at the location where the belonging
tracking point of the query point initially appears or starts to be tracked. Thus
for the point queries that belong to the i-th point, their initial content feature
can be obtained by

f i
e = MLP

(
Cat

(
Bili

(
Fei,1, l

i
e

)
, Bili

(
Fei,2, l

i
e

)
, ..., Bili

(
Fei,S , l

i
e

)))
,

∀1 ≤ t ≤ T, f i
t ⇐ f i

e

(1)

where ei is the timestamp when the i-th point first emerges or starts to be
tracked. Bili and Cat stand for the bilinear interpolation and concatenation,
respectively. MLP is a multi-layer perceptron, which works for the fusion of point
features sampled on multi-scale feature maps. At the same time, the initial lo-
cations of the point queries that belong to the i-th point are initialized as lie

∀1 ≤ t ≤ T, lit ⇐ lie (2)

For notation simplicity, in the following, we denote the query that belongs to
the i-point in the t-th frame as a tuple qit = [f i

t , l
i
t].
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Cost Volume. The cost volume gives us an initial visual similarity between a
point query and each pixel of the image. The effectiveness of cost volume for
feature matching has been validated in many stereo-matching [20,25,39,62] and
optical flow estimation methods [16, 55]. Considering the characteristics of the
TAP task, we further incorporate cost volume into TAPTR. However, different
from previous works [18] that frequently recalculate the cost volume once the
content feature of a query is updated, we only calculate cost volume once before
the beginning of our decoder. This strategy keeps our decoder clean and the
target of multi-layer refinement stable. In detail, to obtain the cost volume of
the point query qit we conduct inner product between the content feature of the
point query and the image feature maps as in previous works [18,55]

Ci
t,s = InnerProd(Ft,s, f

i
t ), (3)

where InnerProd indicates the inner product operation. Note that computing
cost volume only once at the beginning does not mean that we do not update the
cost volume anymore. For more details about the updating of cost volume and
the effect of the updating on performance, please refer to Sec. 3.5 and Sec. 4.6.

3.4 Point Decoder
Given that when focusing on a single frame, the function of a point tracker essen-
tially involves detecting the most matched point within the image. Therefore, the
components of the original decoder align naturally with the TAP task, suggesting
preserving these modules, particularly the self-attention and cross-attention.

Taking into consideration the characteristics of the TAP task, we further in-
corporate the well-validated cost volume into our decoder through a cost volume
aggregation module. But as we have discussed, instead of updating cost volume
frequently as in prior studies [18], to maintain the simplicity of the decoder, we
treat the prepared cost volume as a static feature map similar to the original
image feature maps. We directly reuse the cost volume across different layers of
our decoder. To further utilize the temporal information, we adapt the attention
mechanism along the temporal dimension through a temporal attention module.

Since each frame behaves the same in our point decoder, without loss of
generality, in this section we take the t-th frame as an example to explain our
decoder for simplicity.
Cost Volume Aggregation. Cost volume provides a basic visual similarity
between the tracking point and a video frame. Instead of regressing the optical
flow in a one-shot manner as in TAP-Net [5], thanks to the multi-layer design in
our point decoder, we follow RAFT [45] to aggregate cost volume locally. More
specifically, for the point query qit, we conduct bilinear interpolation on the cost
volume around its location in a grid form, this operation is commonly referred to
as grid sampling GridSample. Then the sampled cost vector cit ∈ RG·G is fused
into the content feature of the point query to provide a basic perception of the
image. The process can be formulated as

cit,s = GridSample
(
Ci

t,s, Grid
(
lit, G

))
,

f i
t ⇐ MLP

(
Cat

(
cit,1, c

i
t,2, . . . , c

i
t,S , f

i
t

)) (4)
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where Ci
t,s is the cost volume of qit at the s-th scale, Grid is a function to generate

a grid of sampling locations with grid size as G. Note that, like in RAFT, the
sampling grid is shared in multi-scale cost volumes, resulting in a larger receptive
field on smaller-scale feature maps.
Visual Feature Enhancer. As shown in previous feature-matching [29, 53]
and optical flow estimation methods [16, 55], supplementing cost-volume with
the original image features will provide more detailed geometrical information
and thus result in a more robust feature to describe the points. In DETR-like
architecture, the cross-attention naturally plays this role. Following [24, 61, 65],
we use 2D deformable attention [65] to sample the multi-scale local image feature
around the tracking point and fuse the sampled image feature into the point
content feature. Thus for the point query qit, this process can be formulated as

git,s = DFA2D(Ft,s, l
i
t),

f i
t ⇐ MLP(Cat(git,1, g

i
t,2, . . . , g

i
t,S , f

i
t )),

(5)

where DFA2D indicates the 2D deformable attention operation and git,s is the
local geometrical feature for the i-th point in the s-th scale.
Interaction Among Point Queries. Limited by the irregularity of data struc-
ture, most previous works choose to process every point independently. Although
CoTracker [18] first proposes to use the flexible attention mechanism to complete
the interaction between points, their neglect of positional embedding limits the
efficiency [26]. Following previous DETR-like methods, we add positional embed-
ding to encourage the points queries to pay more attention to their neighboring
queries, which can provide more useful contextual information. The process can
be formulated as

pt = PE (lt, τ) , ft ⇐ Attention (ft + pt, ft + pt) . (6)

In Eq. 6, ft ∈ RN×C and lt ∈ RN×2 indicate the content features and locations
for all point queries in the t-th frame, where N and C indicate the number of
points to be tracked and the number of feature channels, respectively. Attention
and PE in Eq. 6 indicate the dense attention operation [47] and the sinusoidal
positional encoding [3], respectively. As the key parameter of PE, τ ∈ R represents
the temperature for positional encoding [26], the lower τ is, the sharper positional
embedding we get. Considering that point detection has a higher fine-grained
requirement than object detection, we lower the default value of τ down.
Interaction Along Temporal Dimension. To better utilize the temporal
information, we append temporal attention in our decoder. Temporal attention
conducts dense attention along the temporal dimension independently for each
tacking point. Thus for point queries that belong to the i-th point, the process
can be formulated as

f i ⇐ Attention(f i, f i), (7)

where f i ∈ RW×C indicates the content features of point queries that belong to
the i-th point in all of the W frames.



8 H. Li et al.

Point Query Updating. Following the DETR-like methods, we update the
location of each point query with the help of Sigmoid. As for the updating of
content features, affected by the occlusion and drift, compared with the features
that are updated through the above 4 blocks, the initial feature of each point
query is the most reliable one. Inspired by the residual connection [12], we update
the content feature of point queries in a residual mechanism. More specifically,

∆lit = MLP(f i
t ), ∆f i

t = MLP(Cat(f i
t , f

i
ei))

lit ⇐ Sigmoid(Sigmoid−1(lit) +∆lit), f
i
t ⇐ f i

t +∆f i
t .

(8)

where Sigmoid−1 is the inverse of sigmoid function. The updated point queries
will be sent as inputs to the next layer to undergo the aforementioned blocks for
D times for further optimization, where D indicates the number of point decoder
layers. Note that, unlike the regression of location, since the classification of
visibility can not be updated layer by layer and the wrong supervision of visibility
may affect the prediction of location, we follow [18] to only predict the visibility
at the last layer. So for the point query qit, its visibility prediction

vit = VisibilityClassifier(f i
t ), (9)

where VisibilityClassifier is an MLP ended with a Sigmoid activate function.
Upon the completion of the final decoder layer, the updated content feature,

the predicted location, and the predicted visibility of each point query will be
sent to subsequent modules to update the trajectory preparing for next window.

3.5 Window Post-processing

Limited by the memory limitation, we can not process all the frames of an ar-
bitrarily long video together in parallel. Following previous works [11, 18, 64],
we utilize the sliding window strategy to mitigate this issue. However, as illus-
trated in Fig. 3, after obtaining the results of each window, our updating and
padding extend beyond explicit states, including locations and visibilities, to
include content features as well.
Updating and Padding Trajectory. After obtaining the query results of the
point queries in each frame of the current window, similar to previous works [11,
18, 64], we update their explicit states into their belonging trajectory. Then
based on the assumption that smaller temporal differences correspond to smaller
positional differences, we pad the locations of the point queries in the last frame
of the window to all corresponding point queries in the subsequent frames to
reinitialize their location part.
Updating and Padding Content Features. Although the updating and
padding of location transfer temporal information to subsequent windows, the
lack of transferring more informative content features loses temporal informa-
tion. However, transferring the content feature without any limitation will result
in a drifting problem during inference because of the inconsistency of the video
length during training and inference, which will be further discussed in Sec 4.5.
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Fig. 3: The overview of sliding window and window updating and padding. “F. Update”
indicates the updating of the content feature, and “F. Padding” indicates the padding
of the updated feature to the subsequent frames. We use window size 4 and sliding
stride 2 for illustration.

To mitigate the feature drifting issue, during training and inference, instead of
updating the content feature every time, we employ a random drop strategy
to mitigate feature drifting issues. More specifically, during training, as demon-
strated in Window 3 of Fig. 3, we randomly disable feature updating, and feature
padding is also disabled accordingly. The drop off of feature updating forces the
network to handle the cases whether the content feature has been updated or
not adaptively. During inference, as demonstrated in Window 4 of Fig. 3, we
keep feature updating enabled so that the information from the last window can
be at least transferred to the next one. But we drop off the feature padding in a
dynamic frequency according to the length of the whole video, to mitigate the
accumulation of drifting in the point queries’ content feature.

Updating Cost Volume. To ensure the consistency of the optimization target
during the multi-layer refinement of our point decoder, we do not update the
cost volume in the decoder. This strategy also keeps our decoder clean and con-
cise. Since there is an overlap between two adjacent windows, frames within the
overlap will be processed twice by the network. If the content feature of a point
query is updated after the current window, we will update its corresponding cost
volumes at the beginning of the next window. Compared to previous methods
that update the cost volume at each layer, the content features at this stage are
more stable, resulting in higher-quality updated cost volumes.



10 H. Li et al.

3.6 Full Sequence Multi-Layer Loss
Instead of computing loss in every window, after obtaining the whole location
sequence and visibility sequence of one point, we calculate the L1 loss for the
location sequence and the cross entropy loss for the visibility sequence without
bells and whistles. Note that, similar to the auxiliary loss in the original DETR,
we also maintain a location sequence for each layer of the point decoder. Since
we only predict visibility at the last layer of the point decoder, the loss function
can be formulated as

Loss =

(
ωV CE(V, Ṽ ) +

D∑
d=1

ωLL1(Ld, L̃)

)
/N, (10)

where CE shorts for the cross entropy loss, D and d are the number of decoder
layers and the index of the point decoder layer respectively, Ld indicates the pre-
dicted location sequences of all tracking points from the d-th layer, V represents
the predicted visibility sequence of all points from the final layer, N indicates
the number of points. L̃ and Ṽ are the ground truth location and visibility se-
quences of all tracking points, respectively, ωL and ωV are the weights for the
supervision of location and visibility.

4 Experiments
We conduct extensive experiments on the challenging TAP-Vid benchmark [5]
to verify the performance of TAPTR. Abundant ablation studies are also pro-
vided to analyze the effectiveness of each component in TAPTR, reflecting the
adaptability of the DETR-like framework to the TAP task.

4.1 Datasets and Evaluation
Datasets. For training, we follow previous methods [18] to train our model on
the TAP-Vid-Kubric dataset. TAP-Vid-Kubric is a synthetic dataset consisting
of 11,000 videos with 24 frames. Each video in TAP-Vid-Kubric is generated by
Kubric Engine [9] simulating the process of a set of rigid objects falling from
the air and then dispersing upon impact. Each video contains annotations for
tracking 2048 points. During training, we resize the resolution of the video to
512 × 512 and randomly sample 700-800 points. We evaluate our method on
the TAP-Vid benchmark, which contains three subsets. The first is TAP-Vid-
DAVIS, which contains 30 challenging videos captured from various real scenarios
with complex motion and large changes in object scale. TAP-Vid-DAVIS has
about 2000 frames and 650 annotations for point tracking in total. The second
is TAP-Vid-RGB-Stacking. Although it is a synthetic dataset, the objects in this
dataset are usually texture-less, making it hard to track. The third one is TAP-
Vid-Kinetics, which contains over 1000 labeled videos collected from YouTube.
Note that, for a fair comparison, when evaluating the benchmark, we will also
downsample the video to 256× 256 at first.
Evaluation Protocol and Metrics The TAP-Vid benchmark provides a com-
prehensive evaluation protocol along with metrics. To accommodate both the
online tracker and offline trackers, TAP-Vid provides two evaluation modes. In
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PPS DAVIS DAVIS-S RGB-Stacking Kinetics
Method AJ < δxavg OA AJ < δxavg OA AJ < δxavg OA AJ < δxavg OA

COTR [17] – – – – 35.4 51.3 80.2 – – – – – –
Kubric-VFS-Like [9] – – – – 33.1 48.5 79.4 – – – – – –
RAFT [45] – – – – 30.0 46.3 79.6 – – – – – –

PIPs [11] – – – – 42.0 59.4 82.1 – – – 31.7 53.7 72.9
TAP-Net [5] – 36.0 52.9 80.1 38.4 53.1 82.3 53.5 68.1 86.3 38.5 54.4 80.6
MFT [33] – 47.3 66.8 77.8 56.1 70.8 86.9 – – – 39.6 60.4 72.7
TAPIR [7] – 56.2 70.0 86.5 61.3 73.6 88.8 55.5 69.7 88.0 49.6 64.2 85.0
OmniMotion [51] – 52.7 67.5 85.3 51.7 67.5 85.3 – – – – – –
DINO-Tracker [46] – – – – 62.3 78.2 87.5 – – – – – –
CoTracker-Single [18] – 60.6 75.4 89.3 64.8 79.1 88.7 – – – 48.7 64.3 86.5
CoTracker2-All [18] 15.7 60.7 75.7 88.1 – – – – – – – – –
CoTracker2-Single [18] 0.8 62.2 75.7 89.3 65.9 79.4 89.9 – – – – – –

BootsTAP† [6] – 61.4 74.0 88.4 66.4 78.5 90.7 – – – 54.7 68.5 86.3

Ours 20.4 63.0 76.1 91.1 66.3 79.2 91.0 60.8 76.2 87.0 49.0 64.4 85.2

Table 1: Comparison of TAPTR with prior methods on TAP-Vid. Points-Per-Second
(PPS) indicates how many points can be tracked across the whole video per second
on DAVIS dataset on average. Note that, BootsTAP† introduces extra 15M video clips
from publicly accessible videos for training.

the “First” mode, the tracking of a point starts from the first frame when it
is visible. In the “Strided” mode, the tracking of a point starts from the 5-th,
10-th, 15-th, . . . frame, as long as it is visible in these frames. The “Strided”
mode requires the tracker to track along bi-directions. TAP-Vid benchmark pro-
vides three metrics to evaluate TAP methods. Occlusion Accuracy (OA) is used
to evaluate the visibility prediction. < δxavg is the average location precision
for tracking points at thresholds of 1,2,4,8,16 pixels. Average Jaccard (AJ) is a
comprehensive metric reflecting the accuracy of both location and visibility.

4.2 Implementation Details
We use ResNet50 [12] as our backbone and employ two layers of transformer
encoder with deformable attention [65], and six layers of transformer decoder in
default. We use the AdamW [66] optimizer and EMA [19] to train our model
on 8 NVIDIA A100 for about 36,000 iterations with a learning rate of 2e-4. We
accumulate gradients four times using the gradient accumulation to approximate
the gradients similar to a batch size of 32. We follow previous works [18] to set
the window size as 8 and the stride as 4 for window sliding.

4.3 Comparison with the State of the Arts
We evaluate TAPTR on the TAP-Vid [5] benchmark to show its superiority. As
shown in Table 1, TAPTR shows significant superiority compared with previous
SoTA methods across the majority of metrics. Note that, The concurrent work
BootsTAP [6] is trained with additional real-world data. To evaluate the tracking
speed of different methods fairly, we compare the Point Per Second (PPS), which
is the average number of points that a tracker can track across the entire video
per second on the DAVIS dataset in the “First” mode. The results show the
speed advantage of TAPTR.
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Row Small Temp. Trans. Enc. Self Att. Temp. Att. C. V. C. Attn. Res. Up. Win. Up. AJ < δxavg OA

1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 63.0 76.1 91.1
2 ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 61.9 75.4 90.3
3 ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ 60.9 75.2 88.9
4 ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ 58.4 72.1 88.3
5 ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ 51.6 66.7 84.5
6 ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ 46.8 61.3 82.4
7 ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ 50.0 65.0 83.4
8 ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ 45.1 60.0 82.4
9 ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ 41.8 56.9 79.4

Table 2: Ablation study of the key components in our method on DAVIS dataset.
“Small Temp.”, “Trans. Enc”, “Self. Att.”, “Temp. Att.”, “C. V.”, and “C. Attn.” are
short for “Small Temperature”, “Transformer Encoder”, “Self Attention”, “Temporal
Attention”, “Cost Volume”, and “Cross Attention”, respectively. “Res. Up.” indicates
the residual updating of the point queries’ content feature within the decoder, “Win.
Up.” indicates the updating and padding of the content feature between windows.

4.4 Ablation of Key Components

As shown in Table 2, we provide extensive ablations to verify the effectiveness
of each key component in TAPTR, providing references for future work.
Self Attention and Temperature in Positional Embedding. Compared
to the default large temperature in the positional encoding [61] of self-attention
within the context of object detection, reducing the temperature, especially 100
times, brings about 1.1 AJ improvement (Row 1 vs. Row 2). After further drop-
ping the Self-Attention, there will also be a drop of 2.5 AJ (Row 3 vs. Row
4). These two experiments reflect the importance of establishing connections
among points and the validity of leveraging positional encoding to allocate more
attention to the nearby points.
Transformer Encoder. After removing the Transformer Encoder, the compre-
hensive metric of AJ drops by about 1.0 (Row 2 vs. Row 3). A closer inspection
reveals that the main performance loss stems from the accuracy of visibility es-
timation, indicating that increasing the quality and the receptive field of image
feature maps gives a better understanding of the relationships between objects
in the scene.
Temporal Information. After removing the temporal attention from our de-
coder and the feature updating between every two windows, a significant drop
of 6.8 AJ occurs (Row 4 vs. Row 5). If we further drop the updating of content
feature between windows, there will be an additional drop of about 3.3 AJ (Row
8 vs. Row 9). The drops indicate the importance of temporal information. At
the same time, removing temporal attention within the sliding window leads
to a larger performance drop, indicating that short-term temporal information
should be more important.
Cost Volume Aggregation. Since the cost volume provides a basic visual
similarity between the tracking point and the original image, removing the cost
volume from our decoder results in a significant drop of 4.8 AJ (Row 5 vs. Row
6), which aligns with the importance of cost volume in previous works.
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Row Update-Train Pad-Train Update-Inference Pad-Inference DAVIS
AJ < δxavg OA

1 ✗ ✗ ✗ ✗ 62.0 75.2 89.7
2 ✓ ✓ ✓ ✓ 54.7 73.0 77.3
3 Random Drop ✓ ✗ ✗ 55.9 71.7 85.3
4 Random Drop ✓ Gap ✓ 62.5 75.5 90.9
5 Random Drop ✓ ✓ Gap 63.0 76.1 91.1

Table 3: Ablation study of the content feature updating between windows. “Gap” here
indicates dynamically gap the feature updating or padding.

Cross Attention. The dropping of cross-attention will result in a drop of 1.6 AJ
(Row 5 vs. Row 7), indicating the importance of supplementing detailed visual
information to cost volume from cross-attention. Note that, since cross-attention
is considered as a basic perception of images in the transformer decoder, we keep
cross-attention in the following ablations.
Residual Updating. The initial content feature of a tracking point provides a
strong prior, which conveys the specific information of the point to be detected
in every frame. Since the updating within the decoder is not stable enough,
updating the content feature between every two decoder layers as in the original
DETR may bring in noise. Replacing our residual updating with the original one
results in a drop of 1.7 AJ (Row 6 vs. Row 8).

4.5 Ablation of Feature Updating Strategy Between Windows

As shown in Table 3, if we directly update our content feature without limita-
tion, there will be a critical drifting problem (Row 1 vs. Row 2). As described in
Sec. 3.5, during training we randomly drop off the updating of content features
for the tracking points with a probability of 0.6. During inference, due to the
length of every training video being 24, instead of random updating, we update
the content feature every T/24 windows and gap the updating of the interme-
diate windows to ensure stability. As shown in Row 4 of Table 3, although this
strategy loses some temporal information, it still works. To reserve more tempo-
ral information, we keep the feature updating open but drop the feature padding
with the same gaps. Compared with the direct drop off of feature updating, this
strategy at least keeps the temporal information between every two windows,
and thus obtains the best performance as shown in Row 5.

4.6 Ablation of Cost Volume Updating

To verify the advantage of our cost volume updating approach, we conduct ab-
lation studies on the updating frequency. As shown in Table 6, if we update the
cost volume after every iteration of the decoder as in previous methods [18],
there will be a decline of about 1.1 AJ on the DAVIS dataset and 2.8 AJ on
the RGB-Stacking dataset. On the other hand, if we keep the cost volume never
updated, although achieving comparable performance on the DAVIS dataset,
the performance on the RGB-Stacking dataset still decreases by about 2.5 AJ.
This is reasonable because, in this case, the cost volume can not benefit from
the long temporal information, leading to worse performance on longer videos.
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Supervision AJ < δxavg OA

Last Layer Only 55.4 70.0 87.3
All Layers 63.0 76.1 91.1

Table 4: Ablation study
of the multi-layer losses.

# Decoder AJ < δxavg OA

2 58.2 72.3 89.0
4 61.6 75.0 89.8
6 63.0 76.1 91.1

Table 5: Ablation of
decoder layer.

DAVIS RGB-Stacking
Updating Freq. AJ < δxavg OA AJ < δxavg OA

Per Iter. 61.9 75.2 90.7 58.0 75.6 84.0
No Update 63.0 76.1 90.9 58.3 76.0 84.1
Per Wind. 63.0 76.1 91.1 60.8 76.2 87.0

Table 6: Ablation study of cost vol-
ume updating frequency.

4.7 Ablation of Decoder Layer Number and Multi-layer Supervision
Consistent with the conclusions drawn from previous DETR-based object detec-
tion methods [3, 23, 26, 61] and multi-layer refinement-based TAP methods [11,
18, 64], as shown in Table 5, as we increase the number of decoder layers, the
number of refinement increases and the performance improves accordingly. How-
ever, if we only increase the number of decoder layers without supervising the
output of each layer, the performance is still poor and even worse than the one
with only 2 decoder layers, as shown in Table 4. This indicates that, if not fully
supervised, the multi-layer refinement brings a negative impact instead.

5 Visualization
As shown in Fig. 4, when the dog turns around, CoTracker shows a significant
drifting, where the tracking result shifts from the right side to the top of the dog.
In contrast, TAPTR tracks stably even when the tracking target is occluded. For
more comparisons, fancy visualizations, and corresponding videos, please refer
to Sec. ?? and Sec. ?? in the appendix.
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Fig. 4: Red and blue indicate visible and occluded respectively. We manually supple-
ment the ground truth location of invisible points with blue crosses for better compar-
ison. Best view in electronic version.

6 Conclusion
In this paper, we have proposed a conceptually simple yet effective method for
tracking any point task. With the help of our designs in mitigating feature drift-
ing we obtain SoTA performance while demonstrating an advantage in inference
speed. We also conduct extensive ablations to provide references for future work.
Limitations and Future work. Due to the difficulty in annotating in the TAP
task, most training data currently used is synthetic. How to further leverage
detection and segmentation annotations to assist TAP tasks is an interesting
problem that remains to be explored in our future work. At the same time, as
there have been many studies to reduce the cost of self-attention to near linear,
how to boost TAPTR with these works could also be explored in future work.
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