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A Supplementary material of Sec. 3.3

A.1 Further Explanation of Ll
partial, Ll

col, and Ll
self

As mentioned in “Decoder Layer” of Sec. 3.3 in our manuscript, the distance
branch is supervised by partial cross-entropy loss Ll

partial, color-prior loss Ll
col,

and self-training loss Ll
self . Here we offer further explanations of these three

losses as follows:
Partial cross-entropy loss: Ll

partial supervises the distance result (proba-
bility map) at labeled pixels, we should note that each point label is expanded
to a 17 × 17 square region during the training process (as mentioned in Sec.
4.2), thus the 17× 17 square patches around each point label are supervised by
Ll
partial, which makes the distance branch learn to predict right results at these

patches.
Color-prior loss: Ll

col first computes the affinity label Ai,j as follows:

Ai,j =

{
1 if exp{− 1

2∥I
LAB [i]− ILAB [j]∥2} > τ

0 otherwise , (A)

where ILAB is the LAB color format of input image I, ∥ · ∥2 is the l2 norm
function, the threshold τ is set as 0.3. According to Eq. (A), if two pixels i and
j are similar in LAB space, Ai,j = 1, otherwise, Ai,j = 0. After computing Ai,j ,
we supervise the probability map with Eq. (9) in our manuscript, Eq. (9) is as
follows:

Ll
col = − 1

Zcol

HW∑
i=1

∑
j∈Ni

Ai,j log(M
l[i]TM l[j]), (B)

where Zcol =
∑HW

i=1

∑
j∈Ni

Ai,j is the normalizing factor, Ni denotes neighbor-
ing pixels of pixel i, M l[i] and M l[j] are two probability vectors of size N × 1,
their l1 norm is 1, (M l[i]TM l[j]) is the inner product of M l[i] and M l[j], which
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depicts the similarity between M l[i] and M l[j]. When Ai,j = 1, Ll
col requires

(M l[i]TM l[j]) to be as large as possible, which requires M l[i] and M l[j] to pre-
dict similar results, when Ai,j = 0, (M l[i]TM l[j]) is not supervised.

In general, Ll
col requires the distance branch to predict similar results for

neighboring pixels with similar LAB values, through the constraint between
neighboring pixels, the ground truth supervision for labeled pixels can be prop-
agated to unlabeled pixels.

Self-training loss: Ll
self supervises the probability map M l with the pseudo

label ML from the last decoder layer in a self-training manner. As mentioned
in Sec. 3.3, pseudo labels are improved iteratively, ML is more accurate than
pseudo labels {Ml}L−1

l=1 from earlier layers, thus ML can improve {M l}L−1
l=1

through {Ll
self}

L−1
l=1 . For the last probability map ML, LL

self is as follows:

LL
self =

1

HW

HW∑
i=1

CE(ML[i],ML[i]) = − 1

HW

HW∑
i=1

logML
ML[i][i], (C)

where i is the pixel index, ML
ML[i][i] is the ML[i]-th channel of ML[i], LL

self

requires this channel to be larger (more confident). Since most pixel labels in ML

are right, LL
self requires the right channels of most pixels to be more confident

and reduces the uncertainty of ML, in this way, ML is improved by LL
self .

Finally, supervising the distance branch with ML can also be seen as a prop-
agation of ground truth supervision at labeled pixels. Specifically, the distance
branch can learn to predict right results at labeled pixels under the supervision
of Ll

partial, then this branch can predict right results at most unlabeled pixels
thanks to its generalization ability on unlabeled pixels, thus the pseudo label
ML based on the prediction of the distance branch offers right labels for most
unlabeled pixels. By supervising the distance branch with ML, the ground truth
supervision at labeled pixels is propagated to unlabeled pixels implicitly.

A.2 Detailed Description of the Decoder Layer

Our distance branch contains L decoder layers with the same architecture, the
l-th layer predicts the probability map M l to estimate the distance map X l

and pseudo label Ml as described in “Distance Map Prediction” of Sec. 3.3.
Following [5], we predict M l based on the cross-attention between anchor queries
Q̂l and multi-scale pixel features F 1, F 2, F 3. As shown in Fig. A we flatten F 1 ∈
RD×H1×W1 , F 2 ∈ RD2×W2 , F 3 ∈ RD×H3×W3 into 1D features and concatenate
them to get F ∈ RL×D, L = H1W1+H2W2+H3W3. Then we compute the cross
attention map Al ∈ [0, 1]N×Nh×L between Q̂l ∈ RN×D and F , where Nh is the
attention head number. Al is the output of the MHCA layer, it is split into
3 parts along the last dimension (L → [H1W1, H2W2, H3W3]), these 3 parts are
reshaped into 2D maps Al

1 ∈ [0, 1]N×Nh×H1×W1 , Al
2 ∈ [0, 1]N×Nh×H2×W2 , Al

3 ∈
[0, 1]N×Nh×H3×W3 . Al

1, A
l
2, A

l
3 are processed by a convolution layer (channel size
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Nh is not changed), a Relu layer, and upsampled to size N × Nh × H1 × W1.
Finally, we concatenate 3 upsampled results to get a N×3Nh×H1×W1 feature
map and reduce its channel size from 3Nh to 1 with a convolution layer to get
a N × 1×H1 ×W1 mask logit, we apply Softmax along the first dimension and
get probability map M l ∈ RN×1×H1×W1 , namely M l ∈ RN×H1×W1 . In a word,
the output of our MHCA layer is not the result of "V" multiplied by attention
maps, but just the attention maps, thus the output size is not equal to the input
query size.

Fig.A: The l-th decoder layer of the distance branch.

B Supplementary material of Sec. 4.2

B.1 More Training Details

During the model training process, we upsample the probability map ML and
pseudo label ML from size H1×W1 to size H×W , then compute losses Ll

partial,
Ll
col, and Ll

self at H × W pixels, this helps preserve the details of instances.
Besides, the learning rate of the backbone is 1.4e-5 (1/10 of the base learning
rate). To reduce the influence of noisy ML at the first epoch, we multiply a
linear warm-up factor to losses that adopt ML as the training label. On COCO,
the batch size is 8 and the model is trained for 12 epochs. , the learning rate is
decayed by a factor of 0.1 at the last 4 epochs. On VOC, the batch size is 4 and
the model is trained for 20 epochs. the learning rate is decayed by a factor of 0.1
at the last 5 epochs. Each point label is expanded to a 17× 17 square region to
supply more supervision for the model. The color-prior loss indexes neighboring
pixels with a 5× 5 kernel and its threshold τ is 0.3.
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C Supplementary material of Sec. 4.3

C.1 Comparison of RGB Space and LAB Space in Color Prior Loss

Following previous works [2, 4, 6], we adopt LAB space in the color-prior loss
(Ll

col, Eq. (9) in our manuscript) because LAB space is closer to human percep-
tion as stated in [6]. As shown in Tab. A, if we apply color-prior loss in RGB
space (the image input format of deep networks), the model performance will
drop from 56.6% to 55.9% when trained with the single-point label on VOC [1],
demonstrating the effectiveness of LAB space.

Table A: Model performance when applying the color-prior loss in different color
spaces.

Color Space PQ SQ RQ
RGB 55.9 82.0 66.9
LAB 56.6 81.4 68.1

C.2 Erosion Operation in Query Aggregating

During the query aggregating process in Sec. 3.3, we remove noisy labels at
contour regions of the pseudo label through the erosion operation, this operation
is conducted 3 times with a 3×3 kernel by default. Here we analyze the influence
of the kernel size and iteration number in Tab. B, the model performs worse when
changing the default kernel size 3 × 3 or iteration number 3 to other values,
demonstrating the default erosion setting provides the best balance between
noise label removal and full instance coverage.

Table B: Ablations of pseudo label erosion in the query aggregating process.
size 3× 3 2× 2 4× 4 3× 3 3× 3

#iter 3 3 3 2 4
PQ 56.6 54.0 52.7 55.1 54.3

C.3 Influence of Point Label Numbers

Previous methods PSPS and Point2Mask both show the results of training mod-
els with P1 (one point label per instance) and P10 (ten point labels per in-
stance), thus we mainly show the results of P1 and P10 for fair comparison in
our manuscript. Here we also train models with P2, P3, ..., P9 labels (two, threee,
..., nine point labels per instance) . As shown in Tab. C, the model performance
improves very slowly after P7 label.

Table C: Models’ performance when trained with different labels.

label P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

PQ 56.6 59.8 62.1 62.3 62.6 62.9 63.6 63.7 63.9 64.0



PSPS via Estimating Pseudo Labels from Learnable Distance 5

C.4 Analysis of Distance Map Training Strategy

As mentioned in Sec. 3.3, we get the distance map X l ∈ [0, 1]N×H1×W1 from
the probability map M l through Eq. (6) of our manuscript, and supervise M l

to train X l indirectly. Here we also train our model by directly supervising the
distance map X l. Specifically, for each pixel in X l, we require the distance to
the ground truth instance to be 0, and the distance to other instances to be 1.
Given the one-hot format P01 ∈ {0, 1}N×H×W of point-level instance ID mask
P, we can get the distance label 1−P01, then we can upsample X l to size H×W
and supervise X l with 1− P01 as follows:

Ll
partial_dist =

1

Zpartial

∑
P[i]̸=255

DIFF (X l[i], 1− P01[i]), (D)

where i is the pixel index, 255 denotes unlabeled pixels which are ignored in
Eq. (D) , DIFF (·, ·) is a function that measures the difference between two vec-
tors, Zpartial is the normalizing factor, it is the number of labeled pixels. Simi-
larly, we can also supervise X l with the one-hot format ML-01 ∈ {0, 1}N×H×W

of pseudo label ML as follows:

Ll
self_dist =

1

HW

HW∑
i=1

DIFF (X l[i], 1−ML-01), (E)

finally, we supervise X l through the color-prior loss by replacing M l with X l:

Ll
col_dist = − 1

Zcol

HW∑
i=1

∑
j∈Ni

Ai,j log(X
l[i]TX l[j]) (F)

By replacing Ll
partial, Ll

col, Ll
self with Ll

partial_dist, Ll
col_dist, Ll

self_dist in
Ll
distance in Eq. (11) of our manuscript, we can supervise X l directly. For the

function DIFF (·, ·), we tried MSE loss (Mean Square Error loss) and l1 Norm
loss. As shown in Tab. D, training X l directly with DIFF function (l1 Norm
or MSE) performs worse than training X l indirectly by supervising M l in our
default setting.

Table D: Model performance when training the distance map with different strategies.

Settings PQ SQ RQ
indirectly default 56.6 81.4 68.1

directly l1 Norm 53.1 81.0 64.2
MSE 54.7 81.3 65.9

C.5 Influence of Layer Numbers

In “Influence of Layer Numbers” of Sec. 4.3, we analyze the influence of decoder
layer numbers of our distance branch. As shown in Tab. 5 of our manuscript, the
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model performance increases rapidly when the number of layers increases from
1 to 3, then further increases a little when the layer number increases from 3 to
6. Here we also show some estimated pseudo labels of models with 1, 2, 3, and
6 decoder layers in Fig. B. When the distance branch adopts 1 decoder layer,
the pseudo label is estimated from the initial anchor query, which is usually
biased to local instance parts, thus the estimated pseudo label is incomplete
for most instances (row L1 of Fig. B). Adopting 2 decoder layers and estimating
pseudo labels from anchor queries aggregated according to previous pseudo labels
improves the result in some cases (row L2 of Fig. B), further adding 1 decoder
layer produces satisfactory results in most cases (row L3 of Fig. B), and adopting
6 decoder layers produces proper labels in almost all cases (row L6 of Fig. B). The
above results demonstrate that adopting multiple decoder layers and aggregating
new queries with pseudo labels iteratively benefits pseudo label estimation.

Fig. B: Pseudo labels of models with different decoder layer numbers in the distance
branch. “1, 2, 3, 6” denote the model adopts 1, 2, 3, 6 decoder layers, respectively. “gt”
denotes the ground truth mask. All models adopt the resnet50 [3] backbone and are
trained with P1 labels.

C.6 Analysis of Decoder Layer Architecture

“layer B” in Fig. C shows the decoder layer of our distance branch (the detailed
description of the decoder layer is in Sec. 3.3 of our manuscript), the pseudo label
Ml is estimated based on the cross-attention maps {Al

i}3i=1, the new query Q̂l+1

is aggregated using the pseudo label and further enhanced through the query
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enhancing process, the feed-forward layer is not adopted in our decoder layer.
Fig. C also shows another layer architecture “layer A” adopted in [5], “layer A”
generates new queries by aggregating features through the cross-attention layer
and processing the aggregated result with the feed-forward layer, the new queries
are further enhanced through the query enhancing process.

Here we also train our model by adopting “layer A” in the distance branch.
As shown in Tab. E, the model performs worse when adopting “layer A”, this is
because “layer A” aggregates features based on the cross-attention maps in the
cross-attention layer, thus may aggregate noisy features from different instances
for one anchor query which aims to represent one instance, our architecture “layer
B” aggregates features at the target instance region depicted by the pseudo label,
our anchor query contains much less noisy features.

Table E: Model performance when adopting different decoder layer architectures.

Layer arch PQ SQ RQ
layer A 41.4 77.5 51.4
layer B 56.6 81.4 68.1

Fig. C: “layer A” predicts the new query Q̂l+1 for the next layer by aggregating V
features with the cross-attention layer and further processing the aggregated features
with the feed-forward layer. In “layer B”, the new query Q̂l+1 is aggregated with its
predicted pseudo label Ml directly, the feed-forward layer and input V are discarded.

D Supplementary material of Sec. 4.4

D.1 Pseudo Label Comparison with PSPS

In Fig. 4 of our manuscript, we compare the pseudo label of our model with
Point2Mask [4] on VOC [1] train set. Here we also compare the pseudo label of
our model with PSPS [2] and the result is shown in Fig. D. Our pseudo labels
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are more accurate than Point2Mask and PSPS in general. Even though there are
a few errors in our results when the texture is ambiguous, our model performs
much better than PSPS and Point2Mask in these cases (column b, c, d, f of
Fig. D). We should note that texture ambiguity is a challenging problem in the
segmentation field, even fully-supervised models fail in ambiguous textures. This
problem is more challenging when training labels are sparse points. We solve this
problem better than PSPS and Point2Mask thanks to our learnable distance.

Fig.D: Pseudo labels of PSPS, Point2Mask, and Ours on VOC train set, “gt” denotes
the ground truth label. Models adopt resnet50 backbone and are trained with P1 labels.

D.2 Visualization on VOC and COCO

We illustrate some panoptic segmentation results on val set of Pascal VOC and
COCO in Figs. E and F, our model predicts accurate results in simple scenes
and also performs well in complex scenes with multiple small objects.

Fig. E: Illustration of panoptic segmentation results on Pascal VOC val set, the model
adopts Swin-L backbone and is trained with P1 label (one point label per instance),
“gt” denotes the ground truth label.
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Fig. F: Illustration of panoptic segmentation results on COCO val set, the model
adopts Swin-L backbone and is trained with P1 labels (one point label per instance),
“gt” denotes the ground truth label.

D.3 Comparison with Related Works in SQ and RQ

In Tab. 8 of our manuscript, we compare our method with related works in PQ,
PQth, and PQst. Here we also compare our method with PSPS and Point2Mask
in PQ, SQ, and RQ, and the results are shown in Tab. F. We can see that our
method also significantly outperforms PSPS and Point2Mask in SQ and RQ.

Table F: Comparison with other work. Models are evaluated on val set of MS COCO
and VOC. M, B, I denote full mask, bounding-box, and image class label, respectively.
P1 (P10) denotes single-point label (ten-point label).

COCO VOCMethod Backbone Label PQ SQ RQ PQ SQ RQ
PSPS [2] R50 P1 29.3 73.4 38.8 49.8 78.4 62.0
Point2Mask [4] R50 P1 32.4 75.1 41.5 53.8 80.2 65.4
Ours R50 P1 34.2 77.4 42.5 56.6 81.4 68.1
Point2Mask [4] R101 P1 34.0 75.1 43.5 54.8 79.8 67.0
Ours R101 P1 35.2 78.4 43.5 57.8 82.0 69.2
Point2Mask [4] Swin-L P1 37.0 75.8 47.2 61.0 83.5 71.6
Ours Swin-L P1 41.0 79.1 50.3 68.5 84.4 80.0
PSPS [2] R50 P10 33.1 74.2 42.2 56.6 82.5 67.7
Point2Mask [4] R50 P10 35.2 75.7 44.9 59.1 82.2 70.6
Ours R50 P10 41.3 77.9 51.5 64.0 85.0 74.2
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