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Abstract. To bridge the gap between point labels and per-pixel labels,
existing point-supervised panoptic segmentation methods usually esti-
mate dense pseudo labels by assigning unlabeled pixels to corresponding
instances according to rule-based pixel-to-instance distances. These dis-
tances cannot be optimized by point labels end to end and are usually
suboptimal, which result in inaccurate pseudo labels. Here we propose
to assign unlabeled pixels to corresponding instances based on a learn-
able distance. Specifically, we represent each instance as an anchor query,
then predict the pixel-to-instance distance based on the cross-attention
between anchor queries and pixel features through a distance branch,
the predicted distance is supervised by point labels end to end. In order
that each query can accurately represent the corresponding instance, we
iteratively improve anchor queries through query aggregating and query
enhancing processes, then improved distance results and pseudo labels
are predicted with these queries. We have experimentally demonstrated
the effectiveness of our approach and achieved state-of-the-art results.

Keywords: Weakly supervised learning · Panoptic segmentation · Point
label

1 Introduction

Panoptic segmentation involves dividing an image into distinct masks for both
thing and stuff categories, as described in [13]. Recently, deep learning-based
models have shown great performance in classification [8,12], object detection [2,
30–32,45], and segmentation [15,16,34] tasks. Many deep learning-based panoptic
segmentation methods [4,20,44] have been proposed, but their effectiveness relies
on the availability of pixel-wise labels, and annotating these labels is a time-
consuming process, which limits the widespread adoption of these methods in
practical applications.

To address the challenge of heavy annotation, several approaches [10,17–19,
35] suggest training panoptic segmentation models using dense pseudo labels
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Fig. 1: PSPS [10] and Point2Mask [18] first compute distances between adjacent pix-
els based on specified features, then build a graph and get the distance between non-
adjacent pixels through the Dijkstra algorithm, finally assign unlabeled pixels to ap-
propriate instances based on the distance result, the distance can not be optimized
by point labels. Our method predicts the pixel-to-instance distance directly through a
distance branch, our distance results can be supervised by point labels end to end.
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estimated from image tags [35], bounding boxes [17], single- point labels [10,18],
and multi-point labels [19]. Among these weak labels, the single-point label has
attracted a large interest recently, because its annotation time is only marginally
above the image tags [10], while spatial cues to distinguish different instances
are provided by it. Consequently, this paper concentrates on achieving great
panoptic segmentation performance with single-point labels (a single point label
for each target).

Recently, PSPS [10] and Point2Mask [18] train the panoptic head with pseudo
labels estimated from single-point labels and achieve satisfactory performance.
PSPS [10] and Point2Mask [18] both estimate pseudo labels by assigning unla-
beled pixels to corresponding instances according to rule-based pixel-to-instance
distances (namely distances from pixel to point labels, each instance is repre-
sented by its point labels). As shown in Fig. 1, they first build a graph by taking
pixels as vertices, and adjacent pixel distances as edges, then compute the dis-
tance between non-adjacent pixels through the Dijkstra algorithm. The distance
between adjacent pixels is computed based on several features (semantic segmen-
tation results, manifold features, Sobel edges, or contour results). The errors in
these features may lead to wrong distance values, which cannot be revised by
point label supervision and result in inaccurate pseudo labels.

To overcome the drawback of the rule-based distance, we propose an EPLD
framework, which estimates pseudo labels from learnable distances. Specifically,
we represent each instance as an anchor query and predict the pixel-to-instance
distance based on the cross-attention between anchor queries and pixel features
through a distance branch. Then, we assign each unlabeled pixel to its nearest
instance and get the dense pseudo label. Since our distance result is learned
rather than based on predefined rules (computing distances based on specified
features and the Dijkstra algorithm), our distance is more accurate and produces
better pseudo labels than previous methods.
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Our distance branch is specifically designed for distance prediction in three
aspects. Firstly, the number of instances in an image is variable, we initialize
an anchor query for each instance adaptively by aggregating features at labeled
pixels. Then we can predict a variable number of distance maps based on these
anchor queries. Many DETR [3] based panoptic segmentation methods [4, 6,
20] feed a fixed number of queries to their decoder to predict segmentation
results, these queries are not suitable for distance map estimation because they
can not accurately correspond to a variable number of instances one by one
like our anchor queries. Secondly, the initial anchor queries may be biased to
instances’ contour parts because point labels are sometimes at instance contour
regions. We alleviate this problem by updating anchor queries iteratively through
the query aggregating process. Thirdly, we further enhance anchor queries with
instance class labels through a query enhancing process to help the distance
branch estimate distance results utilizing the class cues. The main contributions
of the paper are summarized as follows:

– We propose to estimate pseudo panoptic labels based on a learnable distance,
which is more accurate than the rule-based distance in previous methods.

– We design a distance branch that is empowered by query aggregating and en-
hancing processes. It can estimate the pixel-to-instance distance accurately.

– We conduct experiments to demonstrate the effectiveness of our method. Our
method achieves the new state-of-the-art performance (68.5% PQ on Pascal
VOC and 41.0% PQ on COCO) with single-point labels as supervision.

2 Related Works

2.1 Panoptic Segmentation

Panoptic segmentation [13] involves the integration of semantic segmentation
and instance segmentation to assign both a semantic class label and an instance
ID label to each pixel in the input image. To address the challenges associ-
ated with this task, [13] proposes directly combining the results of semantic
segmentation and instance segmentation. OANet [25] tackles occlusion issues
between different instances by introducing a spatial ranking module. Knet [44]
proposes to segment both thing and stuff regions with adaptively updated ker-
nels. More recently, following transformer-based detection models DETR [3] and
DeformableDETR [46], several transformer-based panoptic segmentation models
have emerged. Panoptic SegFormer [20] utilizes two distinct query sets to repre-
sent thing and stuff contents, Mask2former [4] improves results by constraining
the cross-attention within predicted mask regions to extract localized features.

2.2 Weakly Supervised Panoptic Segmentation

To alleviate the annotation burden of pixel-wise panoptic labels, some approaches
have opted for weak labels, including image tags, bounding boxes, and points, as
training labels. In [17], stuff regions are supervised by image tags, while instance



4 J. Li et al.

regions are supervised by bounding boxes. JTSM [35] generates pseudo masks for
thing and stuff targets solely based on image tags. PSIS [5] supervises segmenta-
tion models with points sampled within box labels. PanopticFCN [19] employs
a strategy of assigning multiple point labels to a single target and subsequently
connecting these points to form polygon masks. PSPS [10] assigns label infor-
mation from labeled points to unlabeled pixels based on a minimal traversing
distance algorithm. Point2Mask [18] further improves PSPS by adopting a global
optimal transportation strategy in the minimal traversing distance algorithm.

2.3 Point Labels for Segmentation

Recently point-based supervision has attracted more attention in the segmentation-
related area [1,5,10,19,21]. Compared with scribbles [22,37–39,42] and boxes [40],
point labels require much less time and effort to obtain and generate, while still
including promising supervision to accomplish the model training, thus point
labels have been widely explored in semantic segmentation task [1, 10, 21, 29].
Besides, point information is also a key foundation of the interactive segmenta-
tion task [24,28,43].

2.4 Cross Attention

Cross attention is a powerful mechanism used in various natural language pro-
cessing (NLP) and computer vision applications. Originating from Transformer
[41], cross attention operates between distinct sequences, enabling the model to
align and integrate information from multiple sources. In NLP, this mechanism
helps many models like BERT [7] and GPT [33] to handle complex dependen-
cies between tokens in text sequences. In computer vision, this mechanism helps
many models [3,20,46] to combine multi-scale or multi-source features and cap-
ture fine-grained contextual information. In this paper, we estimate pixel-to-
instance distances based on the cross-attention maps between pixel features and
instance anchor queries.

3 Approach

Since manually annotating per-pixel panoptic labels is labor-intensive, we pro-
pose to train panoptic segmentation models with point panoptic labels, which
offer the instance class label Y and point-level instance ID mask P (we refer
to one thing object or stuff class as one instance in this paper). To bridge the
gap between point labels and per-pixel labels, our EPLD framework first esti-
mates dense pseudo labels from point labels and then trains the panoptic models
with pseudo labels. Next, we will elaborate on our EPLD framework and each
component of EPLD.
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Fig. 2: Left: our EPLD framework. Right: our fusion module.

3.1 EPLD Framework

As shown in Fig. 2, during the training process, our EPLD framework first
encodes the image as multi-scale features F 1, F 2, F 3 with the backbone and neck
module, then feeds them to three modules: the panoptic branch, the distance
branch, and the fusion module. The fusion module fuses F 1, F 2, and F 3 as
fusion feature F fuse which is fed to the distance branch. The distance branch
estimates dense pseudo labels ML from point labels P utilizing F 1, F 2, F 3, and
F fuse. The panoptic branch is supervised by the pseudo label ML.

During the inference process, the fusion module and the distance branch
are discarded and don’t incur any additional memory or computation cost, the
model architecture and inference process are the same as the fully supervised
model [20].

3.2 Fusion Module

The fusion module fuses multi-scale features F 1, F 2, and F 3 into one fusion
feature map F fuse. As shown in Fig. 2, for an input image with size H × W ,
F 1, F 2, and F 3 are of size D × H1 × W1, D × H2 × W2, and D × H3 × W3,
respectively, where Hi =

H
2i+2 , Wi =

W
2i+2 , D is the feature dimension. The fusion

module first upsamples F 2 and F 3 to the size of H1 ×W1 and sums them with
F 1, then feeds the summed feature to two convolution layers to produce F fuse

of size D ×H1 ×W1.

3.3 Distance Branch

As shown in Fig. 3, the distance branch contains L decoder layers and predicts
the pseudo label iteratively with these layers. In each iteration, anchor queries are
generated through the query aggregating process and further enhanced through
the query enhancing process, then a decoder layer predicts the distance map
based on the enhanced anchor queries to estimate the pseudo label. In the first
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Fig. 3: Our distance branch contains L decoder layers. The distance map is predicted
iteratively based on anchor queries. In each iteration, the anchor query is generated
through query aggregating and query enhancing processes. The initial anchor query
Q̂1 is aggregated using the point label P, other anchor queries are aggregated using
pseudo labels from the previous iteration. Please see Sec. 3 for more information.

iteration, the N anchor queries are generated by aggregating the fusion feature
at labeled pixels of the point label P. Since some point labels are at instance
corner or edge regions, the aggregated queries may be biased to these local re-
gions. Thus we aggregate new anchor queries in the second iteration according
to pseudo labels estimated in the first iteration, these pseudo labels cover more
complete instance regions and help to generate less biased anchor queries. Im-
proved pseudo labels can be estimated with these less biased queries. To further
improve the pseudo label, we aggregate new anchor queries with new pseudo
labels for another L − 2 iterations. Finally, we get the pseudo label ML from
the last iteration, we use ML to train the panoptic branch. Next, we will elab-
orate on the query aggregating process, query enhancing process, distance map
prediction, and decoder layer.

Query Aggregating Process. In the first iteration, Q1 ∈ RN×D is aggregated
using the point-level instance ID mask P ∈ {1, 2, · · · , N, 255}H×W , where N is
the number of ground truth instances in the input image, pixels with 255 are
unlabeled pixels, pixels with n ∈ {1, 2, · · · , N} belong to the n-th instance. We
first transform P into the one-hot format P01 ∈ {0, 1}N×H×W , for unlabeled
pixels, all N channels of P01 are set as zero. Then Q1 is generated with P01 as
follows:

Q1
n =

1

Z1
n

HW∑
i=1

P01
n [i] · F fuse[i] (1)
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where n denotes the n-th channel of P01 and n-th query item in Q1, i is the
pixel index, Z1

n =
∑HW

i=1 P01
n [i] is the normalizing factor.

In other iterations, Ql+1 ∈ RN×D (2 ≤ l+1 ≤ L) is aggregated using the
pseudo label Ml ∈ {1, 2, · · · , N}H×W . We first transform Ml into the one-
hot format Ml-01 including N binarized maps, then apply erosion morphology
operation to Ml-01 to remove the noisy labels at contour regions and get M̃l-01.
Some instances depicted by point label P01 may be missing in M̃l-01 after the
erosion process, thus we revise these errors with P01 and get M̂l-01 as follows:

M̂l-01
n [i] =

{
1 if P01

n [i] = 1

M̃l-01
n [i] otherwise

(2)

finally, we can get Ql+1 by aggregating fusion features as follows:

Ql+1
n =

1

Zl+1
n

HW∑
i=1

M̂l-01
n [i] · F fuse[i] (3)

where n denotes the n-th channel of M̂l-01 and n-th query item of Ql+1, and i
is the pixel index, Zl+1

n is the normalizing factor.

Query Enhancing Process. After generating Ql (1 ≤ l ≤ L) through the
aggregating process, we further enhance Ql with class label Y ∈ {1, 2, · · · , C}N
of N instances, where C is the total semantic class number of the dataset. We
first apply an FC layer on Ql to predict the class probability Y l ∈ [0, 1]N×C ,
and supervise Y l with Y to enhance Ql implicitly:

Ll
cls =

1

N

N∑
n=1

Lfocal(Y
l
n,Yn), (4)

where Lfocal is the focal loss, n is the instance index. Then we train C class
embeddings Ecls ∈ RC×D representing C classes and enhance Ql explicitly to
get Q̂l as follows:

Q̂l
n = Ql

n + Ecls[Yn], (5)

where n denotes the n-th instance, Ecls[Yn] is the class embedding selected by
the class label of the n-th instance. We feed Q̂l to the l-th decoder layer.

Distance Map Prediction. As shown in Fig. 3, the l-th decoder layer predicts
a learnable distance map X l of size N×H1×W1, the n-th channel of X l depicts
the distance from H1 × W1 pixels to the n-th instance. We supervise X l with
the point-level instance ID mask P by formulating the prediction of X l as an
instance classification problem for each pixel. Specifically, we let the l-th layer
predict a N -channel probability map M l ∈ [0, 1]N×H1×W1 , which depicts the
probability of assigning each pixel to N instances, then we supervise M l with P,
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which offers the instance assigning label of several pixels. The detailed prediction
and optimization process of M l is in “Decoder Layer” in the following. Based
on M l, we can get X l as follows:

X l[i] = 1−M l[i], (6)

where i is the pixel index. M l[i] depicts the probability of assigning the i-th pixel
to N different instances. Intuitively, the greater the probability of assigning pixel
i to an instance, the smaller its distance from this instance, thus 1 − M l[i] ∈
[0, 1]N can be seen as a kind of distance from pixel i to N instances. With X l,
we generate the pseudo label Ml by assigning pixels to their nearest instances:

Ml[i] = argmin
n

X l
n[i] = argmax

n
M l

n[i], (7)

where n is the channel index, i is the pixel index.

Decoder Layer. Our distance branch contains L decoder layers with the same
architecture, the l-th layer predicts the probability map M l to estimate the
distance map X l and pseudo label Ml as described in “Distance Map Pre-
diction” above. Following [20], we predict the probability map M l based on the
cross-attention maps between anchor queries Q̂l and multi-scale pixel features
F 1, F 2, F 3, the detailed description of the decoder layer architecture can be seen
in Sec. A.2 of the supplementary material.

To optimize M l, we first supervise M l with P through cross-entropy loss at
labeled pixels, a.k.a., partial cross-entropy loss:

Ll
partial =

1

Zpartial

∑
P[i] ̸=255

CE(M l[i],P[i]), (8)

where i is the pixel index, 255 denotes unlabeled pixels which are ignored in
Eq. (8) , CE(·, ·) is the cross-entropy loss function, Zpartial is the normalizing
factor, it is the number of labeled pixels.

Then we apply dense supervision to all pixels with color-prior loss [10, 40]
to supplement the sparse supervision of Eq. (8). Specifically, we first compute
the similarity between each pixel i and its neighboring pixel j in the LAB color
space, then threshold the similarity with τ to get the affinity label Ai,j , finally
we supervise M as follows:

Ll
col = − 1

Zcol

HW∑
i=1

∑
j∈Ni

Ai,j log(M
l[i]TM l[j]), (9)

where Zcol =
∑HW

i=1

∑
j∈Ni

Ai,j is the normalizing factor, i and j are pixel
indexes, Ni denotes neighboring pixels of pixel i.

Besides Eqs. (8) and (9), we also supervise M l with the pseudo label ML

from the last decoder layer in a self-training manner:

Ll
self =

1

HW

HW∑
i=1

CE(M l[i],ML[i]), (10)



PSPS via Estimating Pseudo Labels from Learnable Distance 9

where i is the pixel index. As mentioned before, pseudo labels are improved
iteratively, ML is more accurate than pseudo labels from earlier layers, thus
ML can improve earlier layers’ estimation through Lself .

3.4 Panoptic Branch

We adopt Panoptic Segformer [20]’s panoptic head as our panoptic branch, which
contains a location decoder and a mask decoder. The location decoder aims to
refine the randomly initialized thing queries by introducing the location infor-
mation of different instances into them. The mask decoder predicts thing masks
based on the refined thing queries and predicts stuff masks based on learned
stuff queries, a classification branch is also applied on top of the thing and stuff
queries to predict the class probability. The panoptic prediction is generated by
merging different stuff and thing masks using a mask-wise merging strategy.

3.5 Model Training

During the training process, we train the distance branch with Eq. (4), Eq. (8),
Eq. (9), and Eq. (10) as follows:

Ldistance =

L∑
l=1

Ll
col + Ll

self + Ll
partial + Ll

cls. (11)

Besides, we train the panoptic branch following [20]. Specifically, we optimize the
mask decoder with pseudo label ML through dice loss, optimize the classification
head with class label Y through focal loss, and optimize the location decoder
with pseudo boxes through detection loss, the pseudo boxes are bounding boxes
of different instance masks in ML. We refer to the sum of the above losses as
Lpan, the total loss of our model is as follows:

Ltotal = Ldistance + Lpan (12)

4 Experiments

4.1 Datasets and Evaluation Metrics

The experiments are carried out on PASCAL VOC 2012 [9] and MS COCO
2017 [23]. PASCAL VOC 2012 comprises 20 foreground classes and a back-
ground class, where the foreground classes are regarded as thing classes and the
background class is treated as the stuff class. Following [10], we augment the
PASCAL VOC train set with SBD [11], resulting in a train_aug set of 10,582
images, and a val set of 1,449 images. MS COCO 2017 includes 80 thing classes
and 53 stuff classes, and comprises 118k training images and 5k validation im-
ages. For the training labels, we adopt the single-point label P1 and ten-point
label P10 produced by PSPS [10], which are randomly sampled from per-pixel
ground truth labels with the uniform distribution. In all experiments, we employ
the panoptic quality (PQ), segmentation quality (SQ), and recognition quality
(RQ) to assess the model performance.
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4.2 Implementation Details

Model Architecture. For the backbone, we adopt resnet50 [12] by default,
we also adopt resnet101 [12] and Swin-Large [26] to get improved results. For
the neck module, we adopt the deformable attention transformer [46]. For the
panoptic branch, we adopt the panoptic head of Panoptic Segformer [20]. The
decoder layer number L of the distance branch is 6. In general, we adopt the
same backbone, neck, and panoptic branch with PSPS [10] and Point2Mask [18]
for fair comparison, but any other architectures of these modules are also OK.
Model Training. Following [10,20], We train our model with the AdamW op-
timizer [27], the learning rate and weight decay are 1.4e-4 and 1e-4, respectively.
The mask erosion in the query aggregating process is conducted by applying
erosion operation to the binarized mask 3 times with a 3 × 3 kernel, all the el-
ements of this kernel are 1. More training details can be seen in Sec. B.1 of the
supplementary material.

4.3 Ablation Study

In this section, we analyze the effectiveness of each component in our framework,
we train the models on VOC train_aug set with single-point labels P1 and
evaluate the models on VOC val set. The results of each analysis are described
in detail below. We also provide additional ablation results in Sec. C of the
supplemental material.
Analysis of Query Aggregating Feature. In our distance branch, the anchor
queries are aggregated from the fusion feature F fuse. Here we compare F fuse

with other feature maps in Tab. 1. We can see that replacing F fuse with Elearn

(learned spatial position embedding with the same size of F fuse) just deterio-
rates model performance, this is because this learned embedding encodes less
instance information than F fuse. For the same reason, Replacing F fuse with
Esin (sinusoidal spatial position embedding with the same size of F fuse) also
performs poorly, demonstrating aggregating anchor queries from F fuse is a more
efficient way to capture instance properties.

Table 1: Model performance when F fuse is replaced by Elearn or Esin.

Composition PQ SQ RQ
F fuse 56.6 81.4 68.1
Elearn 51.4 80.4 62.5
Esin 51.9 80.2 63.3

Analysis of Query Enhancing. In our distance branch, after aggregating the
anchor queries, we enhance them explicitly by adding class embedding Ecls to
them through Eq. (5), and enhance them implicitly by supervising them with
Lcls in Eq. (4). Here we analyse the influence of Ecls and Lcls in Tab. 2. The
results show that better model performance can be obtained by applying Ecls or
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Lcls alone, and applying Ecls and Lcls simultaneously produces the best result.
It’s worth noting that applying Ecls alone can significantly improve the result
from 42.1% to 55.2%, this is because Ecls can enhance the query with instance
class information from training labels, and help the decoder layer to discard
noisy regions belonging to other classes when predicting pseudo labels.

Table 2: Model performance of query enhancing strategies. Ecls denotes explicit en-
hancing with Ecls through Eq. (5). Lcls denotes implicit enhancing with Eq. (4).

Ecls Lcls PQ SQ RQ
42.1 81.1 50.5

✓ 45.3 81.7 54.0
✓ 55.2 81.6 66.3
✓ ✓ 56.6 81.4 68.1

Influence of Multi-scale Features. Multi-scale features are the standard set-
ting in the panoptic segmentation field and help to segment multi-scale objects.
Previous works [10, 18] adopt 3 scale features (F1, F2, F3) in their models, sim-
ilarly, we also adopt F1, F2, F3 in our fusion module and decoder layer of the
distance branch. We analyze the influence of F1, F2, F3 in Tab. 3. The result
shows that our model performs worse when removing features on 1 or 2 scales
in the fusion module or decoder layers, demonstrating the effectiveness of these
multi-scale features.

Table 3: Ablations of multi-scale features. “fusion” and “decoder” denote the fusion
module and decoder layer, respectively.

fusion F1, F2, F3 F1, F2, F3 F1, F2, F3 F1, F2 F1

decoder F1, F2, F3 F1, F2 F1 F1, F2, F3 F1, F2, F3

PQ 56.6 55.9 55.6 56.2 55.9

Table 4: Ablations of decoder layer numbers in the distance branch.

#layers 1 2 3 4 5 6 7
PQ 3.5 27.8 54.2 55.4 55.5 56.6 55.9

Influence of Layer Numbers. Our distance branch estimates pseudo masks
iteratively with 6 decoder layers. Here we train our models by adjusting the
number of decoder layers in the distance branch to investigate the layer number’s
influence. As shown in Tab. 4, starting with layer number 1, model performance
increases with the number of layers, reaches the optimal value when layer number
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is 6 (our default layer number), and then declines with more layers, when layer
number is too small (1 or 2), model performance is poor, this is because point
masks and pseudo masks of early layers are noisy and the aggregated queries
are biased, demonstrating aggregating queries with accurate pseudo masks is
necessary. We also provide the visual analysis of models with different layer
numbers in Sec. C.5 of the supplemental material.

Table 5: Model performance when probability maps are supervised by different losses.

Supervision PQ SQ RQ
all losses 56.6 81.4 68.1
− self-training 15.6 69.6 20.4
− color-prior 46.5 76.0 59.5

Supervision for the Probability Map. As mentioned in Sec. 3.3, the proba-
bility map is trained by partial cross-entropy loss Ll

partial, color-prior loss Ll
col,

and self-training loss Ll
self . Ll

partial provides the sparse supervision from ground
truth point labels. The other two losses provide dense supervision from low-level
LAB information and high-level pseudo labels, respectively. Here we train our
model by discarding color-prior loss or self-training loss. As shown in Tab. 5,
the model performance deteriorates significantly when color-prior loss or self-
training loss is removed, demonstrating that these two losses are necessary for
great model performance. Ll

partial is not ablated because it provides the nec-
essary supervision from ground truth point labels, if it is removed, the model
is not supervised by any ground truth labels and can not learn to distinguish
different instances.

Table 6: Results when applying different supervisions to the panoptic branch.

Supervision PQ SQ RQ
point label 19.5 64.6 28.6
pseudo label 56.6 81.4 68.1

Supervision for the Panoptic Branch. The panoptic branch performs better
when trained with dense pseudo labels than with point labels. To demonstrate
this, we discard the distance branch and train the panoptic branch with point
labels directly. For the mask decoder of the panoptic branch, we directly su-
pervise it with point labels through partial cross-entropy loss, for the location
decoder of the panoptic branch, we expand single-point labels P1 to 600×600
boxes to supervise it through detection loss (the model performs best with the
size 600×600 when supervised by P1). As shown in Table 6, the panoptic branch
deteriorates dramatically when supervised with point labels directly, demon-
strating that training it with pseudo labels is more in line with its original de-
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Table 7: Comparison with related works. M, B, I denote full mask, bounding-box,
and image class label, respectively. P1 (P10) denotes single-point label (ten-point label).

COCO VOC
Method Backbone Label PQ PQth PQst PQ PQth PQst

PanopticFCN [19] R50 M 43.6 49.3 35.0 67.9 66.6 92.9
Panoptic SegFormer [20] R50 M 48.0 52.3 41.5 69.6 68.5 92.7
Li et.al. [17] R101 B + I - - - 59.0 - -
JTSM [35] R18-WS [36] I 5.3 8.4 0.7 39.0 37.1 77.7
PSPS [10] R50 P1 29.3 29.3 29.4 49.8 47.8 89.5
Point2Mask [18] R50 P1 32.4 32.6 32.2 53.8 51.9 90.5
Ours R50 P1 34.2 33.6 35.3 56.6 54.9 89.6
Point2Mask [18] R101 P1 34.0 34.3 33.5 54.8 53.0 90.4
Ours R101 P1 35.2 34.9 35.6 57.8 56.2 90.3
Point2Mask [18] Swin-L P1 37.0 37.0 36.9 61.0 59.4 93.0
Ours Swin-L P1 41.0 39.9 42.7 68.5 67.3 93.4
PanopticFCN-point [19] R50 P10 31.2 35.7 24.3 48.0 46.2 85.2
PSPS [10] R50 P10 33.1 33.6 32.2 56.6 54.8 91.4
Point2Mask [18] R50 P10 35.2 36.1 34.0 59.1 57.5 91.8
Ours R50 P10 41.3 42.6 39.3 64.0 62.6 92.1

sign for full supervision than with point labels. This is because bounding boxes
from pseudo labels provide more accurate supervision for the location decoder
than expanded boxes of point labels, and pseudo labels also provide more dense
supervision for the mask decoder.

4.4 Comparison with Related Works

In this section, we compare our method with other related works. We train
our model with P1 and P10 labels on MS COCO and PASCAL VOC, then
evaluate our model on the val set of these two datasets. For fair comparison,
we adopt P1 and P10 labels used by PSPS [10] and Point2Mask [18]. As shown
in Table 7, when trained with P1, our method surpasses the previous SOTA
model Point2Mask in all three backbone settings (R50, R101, Swin-L). When
trained with P10, our model also outperforms Point2Mask by 6.1% PQ and 4.9%
PQ on two datasets in R50 backbone setting. We should note that our model
architecture is the same as Point2Mask except for the distance branch, the great
performance improvement comes from our more accurate pseudo labels. Fig. 4
shows some pseudo label examples of our model and Point2Mask, our masks are
more complete (column c), distinguish different instances with more accurate
contours (column d, g, h), and contain less background noise (column a, b, e, f).
Some visual examples of our predicted panoptic results are shown in Sec. D.2 of
the supplemental material.

4.5 Comparison with SAM

Here we compare our model with SAM [14] by generating pseudo labels with
these two models to train the same panoptic segmentation model. Specifically,
we feed our P1 label to SAM (ViT-H [8]) and generate pseudo labels of each
instance, then use these labels to train Panoptic Segformer [20] (Swin-L [26]).
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Fig. 4: Pseudo labels of Point2Mask and Ours on VOC train set, “gt" denotes the
ground truth label. Models are based on resnet50 backbone and trained with P1 labels.

We also generate pseudo labels from P1 using the distance branch of our trained
model (Swin-L) to train the Panoptic Segformer. As shown in Tab. 8, Ours
(Swin-L) outperforms SAM (ViT-H) on both COCO [23] and VOC [9]. Note
that, ViT-H contains more parameters than Swin-L, these results demonstrate
that our distance branch trained on COCO and VOC can estimate better pseudo
labels on these two datasets than SAM trained on SA-1B [14].

Table 8: Comparison with SAM. We generate pseudo labels using SAM or our trained
model (trained on COCO or VOC), then train Swin-L based Panoptic Segformer with
these labels. Panoptic Segformer is evaluated on the val set of COCO or VOC.

COCO VOC
Pseudo Label Generation PQ PQth PQst PQ PQth PQst

from SAM (ViT-H) 46.7 51.7 39.2 60.6 62.3 26.9
from Ours (Swin-L) 47.3 49.0 44.7 72.2 71.1 94.1

5 Conclusion

In this paper, we propose a simple yet effective framework for point-supervised
panoptic segmentation. We estimate high-quality pseudo labels based on the
learnable distance rather than the rule-based distance in previous methods.
Specifically, we represent each instance as an anchor query and unlabeled pixels
as multi-scale features, we predict the pixel-to-instance distance according to
the cross-attention between anchor queries and multi-scale features, then assign
unlabeled pixels to their nearest instances to get dense pseudo labels. Extensive
experiments demonstrate that our design is effective and achieves new state-of-
the-art performance in point-supervised panoptic segmentation.
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