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In the supplementary materials, we provide a detailed derivation of the ZMP006 006

and the dynamic stability term (Sec. 1), analyze the effect of body shape on007 007

motion (Sec. 2), provide additional qualitative results (Sec. 3), ablations for the008 008

latent embedding losses (Sec. 4), a discussion on AMASS shape diversity (Sec. 5),009 009

and finally additional implementation details (Sec. 6).010 010

011 011

Video. Our research focuses on humans in motion with diverse body shapes012 012

and sizes, making motion a critical aspect of our results. Given the difficulty of013 013

conveying motion quality through a static document, we strongly recommend014 014

that readers view the provided supplemental video for an in-depth overview of015 015

our methodology and findings.016 016

1 Detailed derivation for the Zero Moment Point (ZMP)017 017

and the dynamic stability term018 018

Before we compute the ZMP, we first compute the body Center of Mass (CoM)019 019

by adapting the CoM formulation of Tripathi et al . [4] to dynamic humans.020 020

For every sequence, we use their body part segmentation and the differentiable021 021

“close-translate-fill” [4] to compute per-part volumes VPi by splitting the mesh in022 022

the first frame into 10 parts. Using the per-part volumes, the CoM is calculated023 023

for time instance t, as a volume weighted-average of NU = 6890 mesh vertex024 024

points.025 025

Gt =

∑NU

i=1 VPvi vit∑NU

i=1 VPvi

, (1)026 026

The acceleration of the CoM, aG , is obtained using the central difference as,027 027

aGt =
Gt+1 − 2Gt + Gt−1

∆t2
(2)028 028

With aGt
, the force of inertia, Fgi, is computed as029 029

Fgi = mg −maG (3)030 030

where m is the body mass. The moment around the projected CoM, Cm, is031 031

Mgi
C =

−−→
CmG ×mg −

−−→
CmG ×maG − ḢG (4)032 032
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where
−−→
CmG is the vector joining the projected CoM, Cm with the actual CoM,033 033

G and ḢG is the rate of change of angular momentum at the CoM. For ḢG , we034 034

equally distribute the total m to point masses at the vertices of the body mesh035 035

proportional to the volume of the body part they are part of. The per-vertex036 036

mass and acceleration is037 037

mvi =
VPvi∑NU

i=1 VPvi

m, avi =
vit+1

− 2vit + vit−1

∆t2
(5)038 038

And ḢG is039 039

ḢG =

NU∑
i=1

−→
viG ×mviavi (6)040 040

Finally, the ZMP is computed in closed-form as041 041

Z = Cm −
n×Mgi

Cm

Fgi · n
(7)042 042

For CoP computation, we follow Tripathi et al . and uniformly sample the body043 043

mesh into Np = 20000 uniformly sampled surface points. We, then, use their044 044

heuristic pressure field to compute per-point, pi, pressure as045 045

ρi =

{
1− αh(pi) if h(pi) < 0,
e−γh(pi) if h(pi) ≥ 0,

(8)046 046

where α = 100 and γ = 10 are scalar hyperparameters set empirically. The CoP047 047

is computed as,048 048

Cp =

∑Np

i=1 ρipi∑Np

i=1 ρi
. (9)049 049

With the ZMP and the CoP, known the dynamic stability loss is defined as,050 050

Ldyn = ρ(∥CP −Z∥2) (10)051 051

where ρ is the Geman-McClure penalty function [1].052 052

2 Effect of body shape on motion053 053

In Fig. 1 (left), we assess the diversity of HUMOS generated motions across054 054

100 β parameters obtained by interpolating between a short male and a tall055 055

male body. We report the maximum right knee joint angle (|θ|) for the same056 056

walk sequence shown in the Sup. Mat. (SM) video (05:34). The graph illustrates057 057

that taller people bend their knees less for the same walking motion, indicating058 058

body parameters affect movement. Similarly, in Fig. 1 (center), we plot the right059 059

hand joint velocity across six different identities in the same walk sequence [SM060 060

video (05:34)]. The joint velocities differ across subjects in corresponding frames061 061

implying diversity induced by body shape variation. In Fig. 1 (right), we qual-062 062

itatively show the same frame of the jumping jack sequence [SM video (05:47)]063 063

where the different arm positions indicate motion diversity.064 064



ECCV 2024 Submission #2441 3

β Interpolation factor  

|θ
| 

(d
eg

re
es

)

Frames

Jo
in

t v
el

oc
ity

 (c
m

/s
2 )

Maximum right knee pose over interpolated βs β-wise variation in right hand pose across frames

Fig. 1: Effect of body shape across (left) interpolated β parameters, (center) 150 frames
for 6 different identities and (right) different identities for the same jumping jack frame
ü Zoom in.

3 Additional Qualitative Results065 065

We include additional comparisons with baselines in Fig. 2. For video results,066 066

we recommend watching the supplementary video.067 067

4 Additional Ablations068 068

In Tab. 1, we conduct additional ablations to analyze the effect of latent embed-069 069

ding losses, LE and LKL. We take the HUMOS model and successively remove070 070

the two loss terms individually. On ablating LE during training, we observe a071 071

small improvement in ground penetration and float. However, the skate and dy-072 072

namic stability metrics worsen. While the effect of LE is minimal in terms of073 073

metrics, we empirically note faster and stable convergence when using it dur-074 074

ing training. LKL also results in a slight improvement in physics metrics at the075 075

cost of dynamic stability. A significant advantage, however, of using LKL is that076 076

it adds structure to the shape-agnostic latent space, making realistic motion077 077

generation easier.078 078

Table 1: Ablation study for latent embedding losses, LE and LKL

Method Penetrate (cm) ↓ Float (cm) ↓ Skate (%) ↓ Dyn. Stability (%)↑ BoS Dist (cm) ↓

HUMOS 1.23 1.04 7.37 71.9 14.62

HUMOS - LE 1.20 0.98 9.3 71.0 15.01
HUMOS - LKL 1.14 0.93 6.96 71.05 15.21
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5 AMASS Shape Statistics079 079

For training and evaluation, we use the AMASS dataset [3]. AMASS is a compre-080 080

hensive collection of human motion data, unifying various optical marker-based081 081

motion capture datasets. This dataset stands out due to its extensive volume,082 082

containing over 50 hours of motion data from 480 unique subjects, encompass-083 083

ing more than 11,000 distinct motions. Among the 480 unique subjects, we have084 084

274 male and 206 female subjects. To understand the diversity of body shapes085 085

included in AMASS, in Fig. 3, we plot the mean and standard deviation of each086 086

principal component for the AMASS beta parameters. Following prior work, we087 087

use the first 10 shape principal components to represent body shape.088 088

6 Additional Implementation Details.089 089

Data processing. AMASS captures diverse human motions performed by real090 090

participants. Therefore, motions in AMASS start at arbitrary locations and fac-091 091

ing directions. AMASS also includes motions where the person is supported by092 092

objects such as chairs, stairs or raised platforms. Only the human is captured093 093

in such sequences, and given the lack of a supporting object, these motions are094 094

physically implausible. These sequence, along with arbitrary start locations and095 095

facing directions, add unnecessary ambiguity and make the raw AMASS data un-096 096

suitable for neural network training. To prevent this, we process the raw AMASS097 097

data by removing all sequences where the lowest vertex in at least 5 frames is098 098

higher than 0.25m from the ground. Next, as described in the main text, we099 099

canonicalize all sequences to start at the origin with the same facing direction.100 100

To augment our training data, we mirror the pose parameters and global root101 101

translation from left-to-right and vice-versa, effectively doubling the training102 102

data. Figure 4 shows the effect of each step in our data processing pipeline.103 103

Motion representation. The SMPL body model parameterizes the human104 104

body into body pose, shape and global root translation. The SMPL body pose is105 105

represented as parent-relative rotations in the axis-angle format. For our motion106 106

representation, we follow NeMF [2] and convert the parent-relative joint rotations107 107

to global root-relative rotations in 6d format [5]. This helps with convergence108 108

and produces better performance than using the SMPL parameters directly. We109 109

also experiment with using deltas in joint rotations and global translation in our110 110

motion representation. We empirically observe worse performance in this setting111 111

due to the propagation of errors in the integration step when recovering the joint112 112

rotations and translation from the predicted deltas.113 113

6.1 Perceptual Study114 114

We show the layout for our perceptual study in Fig. 5. We randomly sample115 115

sequence generations from our methods and baselines and every video is rated116 116

by 25 participants on Amazon Mechanical Turk. We ensure quality in ratings117 117

by adding two ground-truth videos and two catch-trial videos per worker with118 118
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extreme ground penetrations or floating sequences. Additionally, every partic-119 119

ipant is shown 5 warming-up sequences at the start of their annotation task120 120

which we discard. This allows the participant to get a sense of the task before121 121

they can reliably rate the generated motions. We report average ratings across122 122

all participants who qualify the quality checks.123 123

To test statistical significance, we performed one-way ANOVA tests, yielding124 124

a significant p-value of 1.5 × e−10. Tukey’s HSD statistical test indicates that125 125

our method has statistically significant differences with TEMOS-Rokoko (mean126 126

diff = 0.386, p < 0.001) and TEMOS-Rokoko-G (mean diff = 0.447, p < 0.001).127 127
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Fig. 2: Additional qualitative comparison of shape-conditioned motion generation.
Each row represents generations across different methods for a unique body shape
and gender. The difference in quality between methods is particularly evident in their
interaction with the ground. ü Zoom in.
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Fig. 3: Mean and standard deviation of the first 10 betas parameters in AMASS. This
represents the diversity in body shapes.

Original AMASS Removing 
ungrounded motions

Canonicalized Mirrored

Fig. 4: We process the raw data from AMASS by 1) removing unsupported physically
implausible motions e.g . walking up the stairs 2) canonicalizing all motions to start
facing the same direction at origin and 3) mirroring the pose and root translation to
augment data
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Fig. 5: Layout of the perceptual study.
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