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Abstract. This paper presents a neural architecture MVDiffusion++ for
3D object reconstruction that synthesizes dense and high-resolution views
of an object given one or a few images without camera poses. MVDiffu-
sion++ achieves superior flexibility and scalability with two surprisingly
simple ideas: 1) A “pose-free architecture” where standard self-attention
among 2D latent features learns 3D consistency across an arbitrary num-
ber of conditional and generation views without explicitly using camera
pose information; and 2) A “view dropout strategy” that discards a
substantial number of output views during training, which reduces the
training-time memory footprint and enables dense and high-resolution
view synthesis at test time. We use 3D objects for training and the Google
Scanned Objects for evaluation with standard novel view synthesis and
3D reconstruction metrics, where MVDiffusion++ significantly outper-
forms the current state of the arts. We also demonstrate a text-to-3D
application example by combining MVDiffusion++ with a text-to-image
generative model.

1 Introduction

Human vision demonstrates remarkable flexibility. Look at the images of objects
at the left in Figure 1. While unable to create millimeter-accurate 3D models,
our visual system can combine information from a few images to form a coherent
3D representation in our minds, including intricate facial features of a tiger or
the arrangement of blocks forming a toy train, even parts that are fully obscured.

3D reconstruction technology [1, 6, 29, 42] has evolved over the last fifteen
years in a fundamentally different way. Unlike the human ability to infer 3D
shapes from a few images, the technology takes hundreds of images of an object,
estimates their precise camera parameters, and reconstructs high-fidelity 3D
geometry at a sub-millimeter accuracy.

This paper explores a new paradigm of 3D reconstruction that combines the
high-fidelity of computational methods and the flexibility of human visual systems.
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Fig. 1: MVDiffusion++ generates dense(32) and high-resolution(512×512) images of
an object from a single or multiple unposed images. The input images of the three
examples are from a latent diffusion model, OmniObject3D[38], and Google Scanned
Objects[4], respectively.

Our inspiration comes from exciting recent developments in multi-view image
generative models [14, 17, 18, 27, 28, 30, 34]. MVDiffusion [30] is an early attempt
to extend pre-trained image diffusion models to a multi-view generative system,
when pixel correspondences across views are available (e.g., generating perspective
images to form a panorama). MVDream [28] and Wonder3D [18] further extend
to more general settings where generated images yield 3D reconstruction via
techniques such as NeRF [20] or NeuS [33].

This paper pushes the frontier of multi-view diffusion models towards flexible
and high-fidelity 3D reconstruction systems. Concretely, the paper presents
MVDiffusion++, a novel approach to generate dense (32) and high-resolution
(512×512) images of an object, conditioned with single or sparse input views
without camera poses, whose reliable estimation is difficult due to minimal or no
visual overlaps. Standard 3D reconstruction techniques turn generated images
into a 3D model. Two simple ideas are at the heart of our method. First, we
leverage a latent diffusion inpainting model with conditional and generation
branches, where self-attention among 2D features learns 3D consistency without
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using camera poses or image projection formula. Second, we introduce “view
dropout” training strategy, which randomly excludes generation views in each
batch, enabling the use of high-resolution images during training. During testing,
this simple approach surprisingly generates high-quality, dense views for all the
images simultaneously.

MVDiffusion++ achieves state-of-the-art performance on the task of novel
view synthesis, single-view reconstruction, and sparse-view reconstruction. For
single-view reconstruction, our method achieves 0.6973 IoU and 0.0165 Chamfer
distance on the Google Scanned Objects dataset, higher than SyncDreamer [17]
by 0.1552 in terms of Vol. IOU. For novel view synthesis in sparse view setting,
MVDiffusion++ improves the PSNR by 8.19 compared with a recent pose-free
view synthesis method, LEAP [11]. Lastly, we demonstrate applications in text-
to-3D by combining MVDiffusion++ with a text-to-image generative model.

2 Related work

This paper presents a multi-view image generative model for object reconstruction,
given one or a few condition images. The section reviews related work on multi-
view image generation and single to sparse-view 3D reconstruction techniques.

Multi-view image generation. The evolution of text-to-image diffusion models
has paved the way for multi-view image generation. MVDiffusion [30] introduces
an innovative multi-branch Unet architecture for denoising multi-view images
simultaneously. This approach, however, is constrained to cases with one-to-one
image correspondences. Syncdreamer [17] uses 3D volumes and depth-wise at-
tention for maintaining multi-view consistency. MVDream [28] takes a different
path, incorporating 3D self-attention to extend the work to more general cases.
Similarly, Wonder3D [18] and Zero123++ [27] apply 3D self-attention to single-
image conditioned multi-view image generation. These methods, while innovative,
tend to produce sparse, low-resolution images due to the computational inten-
sity of the attention mechanism. In contrast, our framework represents a more
versatile solution capable of generating dense, high-resolution multi-view images
conditioned on an arbitrary number of images.

Single view reconstruction. Single View Image Reconstruction is an active
research area [17, 18, 21, 36, 39, 40], driven by the advancements of generative
models [17, 18, 21, 36]. Large reconstruction model [10] and DMV3D [39] predict
triplanes from a single image, but the 3D volume limits its resolutions. The other
method, Syncdreamer [17] generates multi-view images with a latent diffusion
model by constructing a cost volume. These images are then used to recover
3D structures using conventional reconstruction methods like Neus. However,
this process requires substantial GPU memory, limiting it to low resolutions.
Similarly, Wonder3D faces challenges due to the computational demands of self-
attention, leading to similar restrictions. In contrast, our approach introduces a
"view dropout" technique, which randomly samples a limited number of views
for training in each iteration. This enables our model to generate a variable
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number of high-resolution images while employing full 3D self-attention, effectively
addressing the limitations faced by existing methods.

Sparse view reconstruction. Sparse View Image Reconstruction (SVIR) [11,
41] is a challenging task where only a limited number of images, typically two
to ten, are given. Traditional 3D reconstruction methods estimate camera poses
first, then perform dense reconstruction using techniques such as multi-view
stereo [29, 42] or NeRF [33]. However, camera pose estimation is difficult for
SVIR, where visual overlaps are none to minimal. To address this, FvOR [41]
optimizes camera poses and shapes jointly. LEAP [11] along with PF-LRM [35]
highlight the issues of noisy camera poses and suggest a pose-free approach.
However, they are not based on generative models, lacking generative priors, and
suffer from low-resolution outputs due to the use of volume rendering. In contrast,
our method employs a diffusion model to generate high-resolution multi-view
images directly, then a reconstruction system Neus [33] to recover a mesh model.

3 Preliminary: Multi-view latent diffusion models

MVDiffusion [30] is a multi-view latent diffusion model [17, 27, 28, 30], generating
multiple images given a text or an image, when pixel-wise correspondences are
available across views. MVDiffusion is the foundation of the proposed approach,
where the section reviews its architecture and introduces notations (See Figure 2).

For generating eight perspective views forming a panorama, eight latent
diffusion models (LDM) denoise eight noisy latent images {Z1(t), Z2(t), · · ·Z8(t)}
simultaneously. A UNet is the core of a LDM model, consisting of a sequence of
blocks through the four levels of the feature pyramid.

Let U i
b denote the feature image of i-th image at b-th block. A CNN initializes

an input U0
i from Zi(t) at the first block. Each UNet block has four network

modules. The first is a novel correspondence-aware attention (CAA), enforcing
consistency across views with visual overlaps: The left/right neighboring images
(U b

i−1, U
b
i+1) for panorama. The remaining three modules are from the original:

1) Self-attention (SA) layers; 2) Cross-attention (CA) layers from the condition
with the CLIP embedding; and 3) CNN layers with the pixel-wise concatenation
of a positional encoding of time τ(t). At test time, a standard DDPM sampler [9]
updates all noisy latents with the predicted noise from the last CNN layer. The
training objective is defined as follows by omitting the conditions for notation
simplicity, where ϵi is a Gaussian and ϵθ denotes the UNet output.

LMVLDM := E{Zi(0)}N
i=1,{ϵi∼N (0,I)}N

i=1,t

[ N∑
i=1

∥ϵi − ϵiθ({Zi(t)} , τ(t))∥22
]
. (1)

4 MVDiffusion++

MVDiffusion++ pushes the frontier of multi-view diffusion models for 3D model-
ing in their flexibility and scalability by generating dense and higher-resolution im-
ages given an arbitrary number of un-posed condition views. With the prevalence
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Fig. 2: The denoising architectures for MVDiffusion and MVDiffusion++for sampling
multi-view images. The order of the MVDiffusion network modules is rearranged to
highlight the differences (in orange) with MVDiffusion++.

of Transformer models [31], high-fidelity 3D modeling would require large-scale
attention over dense and high-resolution image features, potentially with volumet-
ric ones. Furthermore, 3D consistency learning is at the heart of the task, which
would usually require precise image projection models and/or camera parameters.
Our surprising discovery is that self-attention among 2D latent image features is
all we need for 3D learning without projection models or camera parameters, and
a simple training strategy would further achieve dense and high-resolution multi-
view image generation. The section defines the task (i.e., input condition and
output target images), then explains the two key ideas: 1) pose-free multi-view
conditional diffusion model for flexibility and 2) view dropout training strategy
for scalability. §5 provides the remaining system details.

4.1 Task: Input condition images and output target images

The generation target is a set of dense (32) and high-resolution (512×512) images,
positioned at uniform 2D grid points on a sphere. Specifically, there are eight
azimuth angles (every 45◦) and four elevation angles (every 30◦ in the range
[−30◦, 60◦]). Camera up-vectors are aligned with gravity, and their optical axes
pass through the sphere center. Our input condition is one or a few images
without camera poses, where visual overlaps are too minimal or possibly none
for Structure from Motion algorithms to work reliably. The number of condition
images is up to a pre-determined number, which is 10 in our experiments but
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Fig. 3: Illustration of the pose-free multi-view conditional diffusion model of MVD-
iffusion++. The model takes any number of input images and generates images at
fixed viewpoints. The condition branch and generation branch have different input
configurations but share the same structure and weights.

can easily change. The input image resolution is 512×512. The horizontal and
vertical field-of-view of both the input and output views is 60◦.

We use synthetic rendered images from 3D object databases for training
and evaluations. The task settings vary slightly between datasets, with details
provided in §5. Here, we explain one preprocessing step that removes ambiguity
in the training task. 3D object databases and Google Scanned Object [4] align
the Z-axis with the object up-vectors. However, the azimuth of the ground-truth
object pose is ambiguous without camera poses of the condition images. Therefore,
we rotate the output views to align the azimuth of the first condition and the
first output image.

4.2 Pose-free multi-view conditional diffusion model

MVDiffusion++ is a multi-view latent diffusion model as defined in §3, comprising
of a condition branch for single or sparse-view input images and a generation
branch for output images (See Figure 2 and Figure 3). Note that the condition
branch shares the same architecture and is tasked to generate the condition
images that are also given as guidance (i.e., a trivial task).

Diffusion process. The forward diffusion process is the same as MVDiffusion,
except for the image resolution and the pre-trained VAE. Concretely, it 1) converts
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all 512× 512× 3 input/output image (Ii) with foreground masks to 64× 64× 4
latent images (Zi) by a fine-tuned latent diffusion VAE (denoted as MVAE, see §5
for the fine-tuning process); and 2) adds a Gaussian noise with a linear schedule,
as suggested by zero-123++ [27] to each feature of Zi.

Denoising process. The denoising process is highlighted in Figure 2, where a
latent diffusion UNet with a few modifications processes a noisy latent Zi(t) at
each denoising step t. The UNet consists of 9 blocks of network modules over the
four levels of feature pyramids on either side of the encoder/decoder. The details
are explained as follows.

[At first block] The UNet feature U0
i at the first block is initialized with the

concatenation of 1) the noisy latents Zi; 2) a constant binary mask of either 1 or 0,
denoted by Mpos or Mneg to indicate the branch type (condition or generation);
and 3) the condition latents (MVAE(Ii,Mi)) where we use the conditonal VAE
from latent diffusion to encode the condition image (Ii) with its segmentation
mask (Mi). Note that this concatenation has 9 = (4 + 4 + 1) channels, and a
1× 1 final convolution layer reduces the channel dimension to 4. For a generation
branch, we pass a white image as Ii and a binary image of 1 (i.e., Mpos) as Mi.
For training 3D objects and Google Scaned Object datasets, we use the masks
provided by the datasets. Otherwise, we run segmentation to generate the masks.

[For each block] Three network modules process the input: 1) Global self-
attention mechanism among the UNet features across all the images, learning 3D
consistency; 2) Cross-attention mechanism, injecting the CLIP embedding of the
condition images to all the other images through the CLIP embedding; and 3)
CNN layers, process per-image features while injecting the timestep frequency
encoding τ(t) and the learnable embedding of an image index Vi. For the self-
attention module, we copy the network architecture and model weights and apply
it across all the views. This module is inspired by MVDream [28], while the key
differences in our work are 1) Scalability deployment via the view-drop training
strategy in §4.3; and 2) Handling of multiple condition images without camera
poses via the network design. 42 = (32 + 10) learnable embedding vectors {Vi}
are trained for 32 generation and 10 condition images, each of which is multiplied
with a zero-initialized trainable scale s to avoid model disruption at initailization.

[At last block] The output of the last UNet block yields the noise estimation,
and a standard DDPM sampler [9] takes it to produce the noisy latent of the
next timestep Zi(t− 1) for each sampling step. The loss function is the same as
MVDiffusion. Note that the model is first trained with ϵ-prediction and then with
v-prediction (See §5), where Equation 1 is the loss function for the ϵ-prediction
model. The velocity [26], vi(t) = αtϵ

i − γtZi(0), becomes the prediction target
for the v-prediction model, while αt and γt are predefined angular parameters.

4.3 View dropout training strategy

MVDiffusion++ training would face a scalability challenge. 42(= 32 + 10) copies
of UNet features yield more than 130k tokens, where the global self-attention
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mechanism becomes infeasible even with the latest memory efficient transformers
for large language models [2, 3]. We propose a simple yet surprisingly effective
view dropout training strategy, which completely discards a set of views across all
layers during training. Specifically, we randomly drop 24 out of 32 views for each
object at each training iteration, significantly reducing memory consumption at
training. At test time, we run the entire architecture and generate 32 views.

5 Remaining system details

This section explains the remaining system details on the data preparations, the
mesh extraction process, the MVAE pre-fine-tuning, and the three-stage training
strategy.

5.1 Training data preparation

We use 180k models whose aesthetic scores [22] are at least 5 for training. For
each object 3D model, we translate the bounding box center to the origin and
apply uniform scaling so that the longest dimension matches [−1, 1]. The output
camera centers are placed at a distance of 1.5 from the origin. Input condition
views are chosen in a similar way as Zero-123 [16]. Concretely, an azimuth angle
is randomly chosen from one of the eight discrete angles of the output cameras
(also see §4.1). The elevation angle is set randomly from [-10◦, 45◦]. The distance
of the camera center from the origin is set randomly from [1.5, 2.2]. We use
Blender to render images.

5.2 Testing data preparation

Single-view cases. Google Scanned Object (GSO) [4] is our testing dataset,
where we borrow the rendered images and the evaluation pipeline from Sync-
Dreamer [17]. Concretely, the test set consists of 30 objects. Each object has 16
images with a fixed elevation of 30◦ and every 22.5◦ for azimuth. SyncDreamer
selected condition images by “visual plausibility", which we copy. The details are
provided in the supplementary. Since the azimuth angles in our training setting
are every 45◦, eight images (starting from and including the condition image)
are used for evaluation. The resolution of the rendered images is 256x256, while
the image resolution of our architecture is 512x512. We upscale the condition
images to 512x512 for our system inputs. The ground-truth images are 256x256
and we downscale our generated images to 256x256 for evaluation, while 512x512
images are used for the mesh reconstruction. The Chamfer Distances (CD) and
volume IoU between the ground-truth and reconstructed shapes are reported
for single-view 3D reconstruction. The PSNR, SSIM [37], and LPIPS [44] are
reported for novel view synthesis (NVS) by averaging over the eight images.

Sparse-view cases. Sparse-view un-posed condition is a new setup (except
the work of LEAP [11] and PF-LRM [35] to our knowledge). We use a process
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similar to the single-view setting to render images. Concretely, we first render 10
condition images for each of the 30 GSO objects. The azimuth and the elevation
angles are chosen randomly from [0, 360) and [-10, 45] respectively. We render 32
ground-truth target images while aligning the azimuth of the first target view
and the first input view (See §4.1). The same evaluation metrics are used, while
we vary the number of condition images to be 1, 2, 4 and 10.

5.3 Mesh extraction from generated images

After generating 32 images, a neural implicit reconstruction method recovers a
mesh model, similar to SyncDreamer [17] and Wonder3D [18]. Specifically, we use
grid-based NeuS [7, 13], where the foreground masks are decoded from the latent
images {Zi(0)} by MVAE. Since our generated images have high resolution and
quality, we directly run the monocular normal estimator released by Omnidata [5]
to obtain additional normal supervisions for NeuS without a normal generation
module like Wonder3D. We borrow the NeuS implementation from Wonder3D’s
official codebase but do not use their ranking-based loss. With a single Nvidia
2080 Ti, it takes around 3 minutes to reconstruct a textured mesh model. The
mesh could directly use the exported vertex color or be re-textured with the
generated images.

5.4 Mask-aware VAE pre-fine-tuning

We copy the network architecture and model weights of the default VAE and add
additional input and output channels to handle the mask. We found that fine-
tuning Mask-aware VAE (M-VAE) only with object images improves performance.
Concretely, we use approximately 3 million RGBA images rendered from a
collection of 3D objects to fine-tune M-VAE as a pre-processing. We follow the
original VAE hyperparameters with a base learning rate of 4.5e-6 and a batch
size of 64. The training runs for 60,000 iterations. The binary cross entropy loss
is used for the mask channel. The process improves PSNR from 36.6 to 41.2.

6 Experiments

We train the model with a batch size of 1024 using 128 Nvidia H100 GPUs
for about a week. At test time, we use DDPM [9] sampler with 75 steps to
sample the multi-view images, and it takes our model 30s, 77s, 123s, and 181s to
generate 8, 16, 24, and 32 images, respectively. The section presents the single
view experiments in §6.1, the sparse view experiments in §6.2, and text-to-3D
application experiments in §6.3.

6.1 Single-view object modeling

Three state-of-the-art single-view object modeling methods are our main baselines:
SyncDreamer [17], Wonder3D [18], and Open-LRM [8]. Since the evaluation
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Table 1: Single-view object modeling results, evaluating reconstructed meshes (left)
and generated images (right). The ground-truth meshes and images are prepared by
SyncDreamer [17] based on the Google Scanned Object [4] dataset. ICP is necessary to
align reconstructed meshes for methods marked with ∗.

Task → 3D reconstruction Novel view synthesis

Method Chamfer Dist.↓ Vol. IoU↑ PSNR↑ SSIM↑ LPIPS↓

Realfusion [19] 0.0819 0.2741 15.26 0.722 0.283
Magic123 [25] 0.0516 0.4528 - - -
One-2-3-45 [15] 0.0629 0.4086 - - -
Point-E [23] 0.0426 0.2875 - - -
Shap-E [12] 0.0436 0.3584 - - -
Zero123 [16] 0.0339 0.5035 18.93 0.779 0.166
SyncDreamer [17] 0.0261 0.5421 20.05 0.798 0.146
Wonder3D [18]∗ 0.0329 0.5768 - - -
Open-LRM [8]∗ 0.0285 0.5945 - - -
Ours 0.0165 0.6973 21.45 0.844 0.129

pipeline is the same as SyncDreamer, we copy numbers of other baselines in their
paper for comparison, which includes Zero123 [16], RealFusion [19], Magic123 [25],
One-2-3-45 [15], Point-E [23], and Shap-E [12]. The following introduces the three
main baselines and how we reproduce their systems:
• SyncDreamer generates 16 images from fixed viewpoints given a single input
image. The image resolution is 256x256. Their denoising network ϵθ initializes
from Zero123 and leverages 3D feature volumes and depth-wise attention to learn
multi-view consistency. It requires users to provide the elevation of the input
image.
• Wonder3D takes a single input image as the canonical view and generates 6
images as well as the normal maps. The image resolution is 256×256. Multi-view
self-attention and an extra cross-domain attention ensure the consistency of
generation results, while the views are sparser than ours. We run the official
codebase on the GSO input images to get the results. However, the released model
assumes orthographic cameras and we cannot use the same test set to evaluate
the NVS performance. ICP aligns the reconstructed mesh with the ground truth
before computing the metrics.
• Open-LRM is an open-source implementation of Large Reconstruction Model
(LRM) [10], a generalized reconstruction model that predicts a triplane NeRF
from a single input image using a feed-forward transformer-based network. ICP
aligns the reconstructed mesh with the ground truth before computing the CD
and volume IoU.

Results. Table 1 presents the quantitative evaluations of the reconstructed 3D
meshes and the generated images. MVDiffusion++ consistently outperforms
all the competing methods with clear margins. Note that the evaluation is not
completely fair for Wonder3D that assumes orthographic camera projections,
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Wonder3d SyncDreamer OursInput

Fig. 4: Single-view object modeling results of generated images. The input image and
the generated images by Wonder3D and SyncDreamer are in 256×256. Our rendered
images are in 512×512, showing higher fidelity and richer details.

where perspective images are used in the experiments. However, we believe the
clear performance gaps suffice to demonstrate the strength of our method.

Figure 4 and Figure 5 show generated images and reconstructed mesh models.
In Figure 4, our method clearly shows the number on the clock (row 3), while
others exhibit blurry numbers. In Figure 5, our method can recover a plausible
and detailed shape of the turtle example (row 1), while Wonder3D and OpenLRM
fail to recognize it as a turtle and exhibit significant artifacts.

6.2 Sparse-view object modeling

Sparse-view un-posed input images is a challenging setting, where we are aware
of only a few existing approaches such as LEAP [11] and PF-LRM [35], a sparse-
view pose-free extension of LRM [10]. There is no public implementation of
PF-LRM, and we pick LEAP as the first baseline. The literature on multi-view
3D reconstruction is extensive. It would be valuable to contrast our approach, even
though they require camera poses as input. As a compromise, we have selected
NeuS [33] as our second benchmark by providing the ground-truth camera poses
as their input.
• LEAP leverages a transformer to predict neural volumes of radiance fields from
a sparse number of views and is also pose-free. LEAP employs DINOv2 [24] as
the feature extractor and has reasonable generalization capacity.
• NeuS is a 3D reconstruction method, where we provide the ground-truth
camera poses of the condition images as well as surface normals estimated by
Omnidata’s monocular normal estimator [5]. We use the public grid-based NeuS
implementation [7]. This baseline is similar to MonoSDF [43] or NeurIS [32]
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OursSyncDreamer OpenLRMWonder3DInput

Fig. 5: Single-view object modeling results of reconstructed mesh models. Our meshes
are exported from dense (32) and high-resolution (512×512) generated images, demon-
strating finer details.

NeuS (w/ G.T. pose) Ours

Ours

Ours

Ours

LEAP

LEAP

LEAP

Input views Generated novel views Input views Mesh

Fig. 6: Novel view synthesis and 3D reconstruction with sparse-view input images.
Left: a qualitative example of novel view synthesis, comparing LEAP [11] and MVDiffu-
sion++ with different numbers of unposed input images. Right: qualitative comparison
of reconstructed meshes between NeuS [33] with ground-truth relative poses and our
pose-free MVDiffusion++.
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Table 2: Sparse-view object modeling results, evaluating reconstructed meshes (left)
and generated images (right), based on the GSO [4] dataset.

Method Views Chamfer Dist.↓ Vol. IoU↑
Sync-

Dreamer 1 0.0318 0.5610

NeuS[33]
(G.T. pose)

1 0.0536 0.4400
2 0.0307 0.5884
4 0.0158 0.7323
10 0.0096 0.8092

Ours

1 0.0208 0.6689
2 0.0158 0.7260
4 0.0122 0.7737
10 0.0101 0.8046

Method Views PSNR↑ SSIM↑ LPIPS↓
Sync-

Dreamer 1 19.46 0.847 0.188

LEAP[11]

1 14.66 0.47 0.43
2 16.22 0.59 0.36
4 16.54 0.61 0.35
10 16.84 0.64 0.34

Ours

1 20.25 0.862 0.157
2 21.73 0.872 0.137
4 23.44 0.886 0.117
10 25.03 0.899 0.102

Text-to-3D examples

Failure examples

Fig. 7: Text-to-3D application examples. (Top) A text-to-image model generates an
image given a text prompt. (Bottom) MVDiffusion++ turns the generated image into
a 3D model. We also show some failure examples at the bottom.
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equipped with ground-truth foreground masks and camera poses, thus sets a
performance upper bound for methods without generative priors.

Results. Table 2 and Figure 6 present the quantitative and qualitative comparison
results, respectively. Compared to LEAP, MVDiffusion++ generates images
with much better quality. LEAP and our method both exploit multi-view self-
attention to establish global 3D consistency. Therefore, we attribute our better
performance to the strong image priors inherited from the pre-trained latent
diffusion models. Our reconstructed meshes outperform NeuS in most settings, a
notable achievement considering that NeuS uses ground-truth camera poses. This
comparison highlights the practicality of our method, enabling users to achieve
high-quality 3D models from just a few object snapshots.

6.3 Text-to-3D application

MVDiffusion++ shows consistent performance with minimal errors on the GSO
dataset and achieves remarkable generalization capabilities. To further challenge
the system, we demonstrate a text-to-3D application, where a text-to-image
model prepares an input condition image. MVDiffusion++ turns the condition
image into a 3D model. Figure 7 has four examples demonstrating the power of
our approach.

7 Limitations and future challenges

This paper presents a pose-free technique for reconstructing objects using an arbi-
trary number of images. Central to this approach is a sophisticated multi-branch,
multi-view diffusion model. This model processes any number of conditional
images to produce dense, consistent views from fixed perspectives. This capability
significantly enhances the performance of existing reconstruction algorithms,
enabling them to generate high-quality 3D models. Our results show that MVDif-
fusion++ sets a new standard in performance for both single-view and sparse-view
object reconstruction.

Figure 7 presents typical failure modes and the limitations of our approach.
Our method struggles with thin structures as in the leftmost example, which fails
to reconstruct a cable. Our method occasionally generates implausible images
for views occluded in the input, a notable instance being the depiction of a cat
with two tails. These shortcomings are predominantly attributed to the lack of
training data, where one future work will expand the framework to incorporate
videos, which offer richer contextual and spatial information, potentially enabling
dynamic video generation.
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