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Abstract. Neural Radiance Fields (NeRFs) have revolutionized the re-
construction of static scenes and objects in 3D, offering unprecedented
quality. However, extending NeRFs to model dynamic objects or object
articulations remains a challenging problem. Previous works have tackled
this issue by focusing on part-level reconstruction and motion estimation
for objects, but they often rely on heuristics regarding the number of
moving parts or object categories, which can limit their practical use.
In this work, we introduce LEIA, a novel approach for representing dy-
namic 3D objects. Our method involves observing the object at distinct
time steps or “states” and conditioning a hypernetwork on the current
state, using this to parameterize our NeRF. This approach allows us to
learn a view-invariant latent representation for each state. We further
demonstrate that by interpolating between these states, we can generate
novel articulation configurations in 3D space that were previously un-
seen. Our experimental results highlight the effectiveness of our method
in articulating objects in a manner that is independent of the viewing an-
gle and joint configuration. Notably, our approach outperforms previous
methods that rely on motion information for articulation registration.
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1 Introduction

Our world is full of dynamic objects moving and interacting in space and time.
Humans develop this (rather impressive) understanding of how these everyday
objects move and interact in three-dimensional space at a very early stage of the
brain development [31]. The task involves understanding not only the static ge-
ometry but also the dynamic movements and spatial relationships between parts
of an object, often referred to as articulations of the object. Understanding and
representing object articulations from images and/or videos is also pivotal in
enabling machines to perceive and navigate the physical world with finesse. In
this work, we propose a novel method to model the object articulations by learn-
ing view-invariant latent embeddings of the 3D object from multiview images.
Existing works in modeling object articulation in the three dimensional space
typically use priors in the form of pre-trained large scale models [51], videos [27],
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Fig. 1: Our method LEIA, takes in multi-view images of an object in four articulation
states and is able to learn a view-invariant latent embedding for the state. We show
that we can interpolate between the latents to generate any number of intermediate
unseen states for the object using LEIA, given the camera position.

or assumptions regarding rigidity/shape of the object [17]. These approaches of-
ten fail to generalize for the long-tail of objects, especially in the case when
a video of the object with articulation is unavailable, or in presence of large
and multiple articulations in the object. In our work, we postulate that multi-
view images of an object in different states can provide enough signal to model
its 3D shape and articulation, even without priors from large-scale foundation
models or information from videos. We achieve this by learning a generalizable,
view-invariant latent embedding of the object for different states. We train these
embeddings jointly with a hypernetwork that predicts weights of a NeRF [19]
parameterizing the object state. The hypernetwork can be trained using multi-
view images of discretized states of the object, each state representing a different
object articulation. In Figure 1, we show three objects from our dataset in two
different articulation states. The latent embeddings representing each state or
articulation can be interpolated during test time to generate the weights of a
NeRF that is able to reconstruct a never seen before state of the object.

Our key contributions can be summarized as following:
– We introduce an end-to-end method LEIA for generating novel states for

articulated objects solely with multiview images captured at multiple states.
– We demonstrate that interpolating between embeddings can generate states

of articulations of object not seen during training. The embedding space
becomes interpolable with a manifold loss that encourages the latents to
follow a structure that establishes a linear relationship between them, by
minimizing the distance between the nearest neighbours in the latent space.

– Remarkably, LEIA achieves this without the need for any ground-truth 3D
supervision, motion information, or articulation codes, establishing its ver-
satility and effectiveness in capturing complex articulations.

– Our analyses demonstrate LEIA’s robustness to single and multiple articu-
lations, as well as combinations of motions. We can disentangle articulations



LEIA: Latent View-invariant Embeddings for Implicit 3D Articulation 3

in different object parts if multiple are movable, making it scalable without
constraints on the number of parts or motion types, unlike prior work.

2 Related Work

Neural Radiance Fields. Neural Radiance Fields [1,19,21,42] have proven to
be a massive success in modeling 3D scenes, due to the high fidelity of 3D recon-
struction and novel view synthesis for static scenes. For dynamic scenes, Neural
Volumes [18] utilizes an encoder-decoder voxel-based representation, comple-
mented by an implicit voxel warp field. Occupancy Flow [24] tackled non-rigid
geometry by assigning a motion vector to each point in both space and time,
but requires full 3D ground truth supervision. Some of the first dynamic NeRF
approaches [26, 28, 39] optimize an underlying volumetric deformable function
and [15] conditions the NeRF on time. [16,26,45] followed this work, by learning
a 5D spatiotemporal neural field. However, the approaches above usually require
a video as input and do not handle well the case of large articulations in everyday
objects given multiple states of objects as input.
3D Representations for Articulation. Due to the fine-grained nature of the
task, deep neural network models for representing articulation require condi-
tioning or refining parts of the architecture to suit the task. Category-specific
reconstruction of deformable objects from images [7, 11–13], sparked interest
in identifying and recovering the deformation in the 3D space [13, 22, 52]. Sev-
eral works focus on shape reconstruction from videos [38, 47–49] that estimate
a shape template for humans and animals. Other works that learn articulation
from videos include Qian et al. [29] that detects and segments articulation planes
from in-the-wild videos and [44,53] which decouple the static and dynamic parts
of videos. These works focus on modeling humans and animals where a large
amount of data is available. Preliminary work in using images and shape started
with A-SDF [28], which generates unseen articulations using Signed Distance
Function [25], by providing an input shape and articulation code. CaDeX [14] is
a unified representation for shape and motion, obtained from a point cloud input.
Ditto [10] is a similar work that uses implicit representations for joint geome-
try and articulation modeling, with ground truth point clouds. CLA-NeRF [40]
learns unseen articulated states from observing multi-view image input along
with articulation information. Wei et. al [43] obtains an SDF-based articula-
ble representation of common objects by feeding in images of articulated states
across multiple categories, and CARTO [9] uses stereo images as input and uses
a stereo encoder to infer the 3D shape, 6D pose etc. of multiple unknown ob-
jects. [4] focuses on manipulating object shapes to deform according to specified
articulation commands. Moving away from 3D supervision and articulation anno-
tations, Jiayi et al. [17] proposed PARIS, a method that is able to obtain unseen
articulated states of an object, given multi-view images of just the start and end
state of articulation. PARIS employs a composite rendering based approach, by
decoupling the object into a static and moving part and then separately estimat-
ing and compositing the static and mobile neural radiance fields. In our work,
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Table 1: Comparison of LEIA with existing methods. We show that LEIA is
the first approach that does not use or learn any explicit prior along with not having
any articulation input. This gives us flexibility in scaling to modeling articulations of
objects with more than one part, and can thus handle a wide range of motion. We
also have one universal model that can learn to represent both prismatic and revolute
motion, unlike PARIS that has two separate models. 3D Sup. refers to “3D Supervision”.

Method Image/Shape Input Dataset Articulation Input 3D Sup.? Prior # States # Parts

A-SDF [28] Shape Code Shape2Motion Articulation Code ✓ Articulation ≥ 4 ≥ 1
CLA-NeRF [40] Multiview Images PartNet-Mobility Articulated Pose ✗ Articulation ≥ 4 1
NASAM [43] Multiview Images++ PartNet-Mobility N/A ✗ Category ≥ 4 ≥ 1
CARTO [9] Stereo Images Custom Joint Code ✓ Articulation ≥ 4 1
Ditto [10] Point Clouds Shape2Motion Annotations ✓ Articulation 2 1
PARIS [17] Multiview Images PartNet-Mobility N/A ✗ Motion (learned) 2 1

LEIA Multiview Images PartNet-Mobility N/A ✓ No 4 ≥ 1

we start LEIA with a similar input setting, by preparing multi-view renderings
of objects in different articulation states. Unlike PARIS, we do not decouple the
object into static and moveable parts, we rather learn to predict the weights of
a single NeRF for any unseen articulated state using a state-modulated Hyper-
Network. We aren’t limited by the decoupling and the learned motion prior in
the case of PARIS, which enables us to scale and learn any amount and kind of
motion an object can possibly have, including combinations. We show a summed
comparison of LEIA with prior work in Table 1.
Hypernetworks with Implicit Neural Representations. Hypernetworks, a
specialized class of networks designed to predict parameters for another network,
aim to achieve generalization across novel tasks [8]. In the realm of stylizing 3D
scenes, [3] employed a hypernetwork for applying diverse styles, while scene re-
constructions from limited data points were achieved by [35, 36]. Despite the
promise shown in representation, these hypernetworks operate on input data
points, necessitating test-time optimizations and rendering them unsuitable for
compression tasks. Rather than using the provided data (image/video) as in-
put for the hypernetwork, an alternative approach involves employing an auto-
decoder framework. In this framework, a learnable latent, without the need for
an encoder, represents a data point. This technique, applied by [33] to represent
a dataset of videos, assigns each latent to a distinct video. While this method
yields a representation for each set of frames, the lack of decoupling in spatial-
temporal coordinates limits its scalability to real-world frames. On a related
note, [34] extended a similar approach to 3D shapes and scenes, effectively ac-
quiring a latent representation suitable for various downstream tasks. We use
a similar framework for learning the latents corresponding to each articulated
state in our method.

3 Method

Background. Our architecture is based on neural radiance fields, or NeRF [19],
which parameterizes the radiance and volume density at a 3D location of a
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scene as observed from a camera placed in a particular position using a neu-
ral network. FNeRF : (x,d) −→ (c, σ), where c = (r, g, b), and σ represent the
radiance and volume density, and x and d represent the 3D location and view-
ing direction respectively. To render a pixel, the radiance C(r) of a camera ray
r(s) = o + s · d is integrated from near to far bounds sn and sf such that,
C(r) =

∫ sf
sn

T (s)σ(r(s))c(r(s),d) ds, where the function T (s) denotes the accu-
mulated transmittance from sn to s. To optimize the parameters of the MLP,
a loss function is used that measures the discrepancy between the ground-truth
and rendered images. Traditionally, the L2 loss is used for this purpose. However,
to make the training more robust to outliers and to improve convergence, the
Smooth L1 Loss can be employed as an alternative. The Smooth L1 Loss is a
combination of L1 and L2 losses, behaving like L1 loss for large errors and like
L2 loss for small errors. The loss function for the NeRF model using the Smooth
L1 Loss is defined as:

SmoothL1Loss(x) =

{
0.5 · x2 if |x| < 1

|x| − 0.5 otherwise
(1)

LSmoothL1-NeRF =
∑
r∈R

SmoothL1Loss
(
Ĉ(r)− C(r)

)
(2)

where R is the set of rays used for sampling, and Ĉ(r) and C(r) represent the
ground-truth and rendered colors, respectively. By minimizing this loss function,
the NeRF model learns to accurately reproduce the radiance of the scene, leading
to high-quality image synthesis from novel viewpoints. While this formulation
works well for generating novel scene viewpoints for a static scenes, it cannot han-
dle dynamic scenes. [45] tried to address this shortcoming by making the MLP
learn a spatiotemporal radiance field and used time, t, as an additional input.
This works in principle but it becomes expensive to scale to lengthier videos due
to constantly increasing sampling space for NeRF. We use the LSmoothL1-NeRF
loss along with AdamW optimization to train LEIA, along with a Lmask that is
the BCE loss between the predicted opacity and ground truth foreground loss.

3.1 Approach

Hypernetworks, or hypernets for short, are neural networks that generate weights
for another neural network, known as the target network. Hypernets can be
conditioned on various domains and can predict the weights for multiple neural
networks simultaneously, if trained appropriately.

In this work, we use a hypernet to modulate a Neural Radiance Field (NeRF)
based on the state of articulation, thereby learning a parametrization for each
state. We employ a learnable latent embedding, Z, as input to this hypernet
hl, l ∈ L where L is the number of layers of the hypernet. This approach allows
us to not only modulate the NeRF but also create useful representations for each
state. Our system can thus be represented as follows:

Fθt(x,d) = (ct, σt)

θt = h(zt), zt ∈ Z
(3)
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Fig. 2: Overview of our method. We take multi-view images in different states as
input. A learnable latent dictionary based off an autoencoder learns an embedding per
state id. The latent embedding is used as an input to the hypernet, that modulates
and generates weights of the NeRF to reconstruct the state that is fed in. At inference
time, we do a weighed interpolation of the learnt latents to obtain a corresponding
newly generated intermediate state.

The latents Z, give us an additional ability to interpolate across seen states
and generate novel states of the object, as we show in our work. The set of
latents, Z, in Eq. (3) can be understood as a learnable dictionary where keys
are the state ids. Formally, we represent this as

Z = { t : zt | t ∈ [0, 1, 2...T ]} (4)

where, T is the total number of discretized states sampled for the object. Each of
these states, zt, is used as an input to the hypernet to get the parameterization
for NeRF as shown in Figure 2. Once parameterized, the NeRF is trained using
multi-view images of the object taken from various camera angles, providing a
comprehensive view of the object’s articulation in the current state. We sample
only one state per batch.

Directly predicting the weights θ of the base network fθ, using the hypernet
hl, is expensive, parameter-heavy, and unsuitable for compression. Hence, we
follow [32, 37] and instead predict low-rank matrices, which are then applied to
the base network weights. This type of modulation acts as a form of subnetwork
selection, analogous to systems proposed in [6, 30]. For a base network fθ with
L layers, our formulation now looks like

fθ((x,d)|θl1t , θl2t ...θlLt ) = ct, σt

θlt = η(P l ×Ql) ◦ θl

hl(zt) = [P l, Ql]

(5)

where θl represents the weights of the l-th layer and θlt denotes the modulated
weights for frame t. Here, η signifies an activation function on the matrix-product
of low rank matrices Pl ∈ RK×r , Ql ∈ Rr×K , where K is the width of the
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base network fθ and rank r ≪ K. These matrices are responsible for adjust-
ing the weights θl as dictated by the corresponding hypernetwork hl. Note that
all hypernetworks use the same latent zt ∈ RD as input. The rank r acts as
a hyperparameter that controls the compression-performance trade-off. We fur-
ther elaborate on details about model architecture and design choices for the
hypernet, NeRF and the learnable latent dictionary in the supplementary.

3.2 Interpolation

Given an object with states t1 and t2, and a scale α, the task of state interpolation
involves creating α − 1 coherent states between the given states. In order to
achieve this, we do a linear interpolation on the state latents z1 and z2 and
pass the resulting latent through the hypernetwork. This gives us the weight
modulation required in the NeRF, and the updated base network is used to
obtain different viewpoints of the intermediate state.

zinter = (1− βi) · zt + βi · zt−1

cinter, σinter = fθinter(x,d;h(zinter))
(6)

where, βi ∈
[
1

α
,
2

α
, ...,

α− 1

α

]
(7)

essentially generating α − 1 states between any two given states. In our exper-
iments, we quantitatively evaluate the result of the interpolation with unseen
ground truth obtained from our dataset of all states, by linearly averaging the
two extreme states present in the training, to obtain a latent for a state id.

3.3 Model Architecture

In our experiments, both the base network fθ and hypernetworks hl are sim-
ple MLPs that take in a coordinate input, and an id depicting the state of
articulation. A network ln is used to learn the latent dictionary for the states,
which is a linear layer learnt in conjuction with the hypernet, and uses the
torch.nn.Embedding class as a lookup table for the learnable latent embed-
dings, depicted by zt for t ∈ T . This latent is fed to the hypernetwork hl, that
modulates the weights of the base network fθ for reconstructing the output of
the corresponding state id t. The base network fθ is based off the NeRF ar-
chitecture of Instant-NGP [21]. This architecture has separate fully-connected
blocks for the geometry and texture of the scene, and we use separate hypernets
to modulate each layer of these two FC blocks.

3.4 Optimization: Loss functions and regularizers

Latent Manifold Loss. We use the latent manifold loss function that enforces
a structured latent space by encouraging local consistency among learnt latents.
For each latent vector, the loss computes the average Euclidean distance between
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the vector and its K nearest-neighbours on the manifold. This process enforces
a smooth and continuous latent manifold, which is beneficial for models that
rely on meaningful linear interpolations between the points on the manifold,
and for tasks where the geometry of the latent space is crucial. Mathematically,
we represent this loss for a particular state-id i as:

Lmanifold(li) =
1

K

K∑
k=1

∥li − nk∥22 (8)

where nk are the K nearest neighbors of li in the latent space, and ∥·∥2 denotes
the Euclidean (L2) norm. The loss is averaged over the selected latents and their
nearest neighbors to ensure local uniformity in the manifold’s geometry, where
K is a hyperparameter that determines the number of neighbors considered.
Depth and Occlusion Regularization. Our depth and occlusion regulariza-
tions are designed to refine the clarity of rendered images by addressing occlusion
and depth smoothness [23, 50]. The occlusion regularization loss, Locc, aims to
mitigate the obscuring of objects located beyond a specified depth threshold dur-
ing rendering. This is accomplished by generating a binary mask, mk, where the
mask elements are set to 1 up to a certain index M reflecting the regularization
range, and 0 thereafter. The occlusion loss is then articulated as the normalized
sum of the product of the mask and the sampled density values σk along a ray,
as given by

Locc =
1

K

K∑
k=1

σk ·mk, (9)

where K is the total number of sampled points on the ray. This formulation
drives the model to prefer representations that reduce occlusions close to the
camera, ensuring objects further away are not improperly concealed.

For depth continuity, the depth smoothness regularization loss, LDS(θ,R),
enforces the gradual transition of depth values among neighboring pixels, reduc-
ing sharp depth disparities that cause visual inconsistencies. If a ray r intersects
with a single depth value, this value is evaluated directly. In contrast, for multiple
depth values, the loss is the aggregate of squared differences between adjacent
depth estimates. Formally, for depth predictions d̂0(r), the loss is quantified as

LDS(θ,R) =
∑
r∈R

Patch−1∑
i,j=1

(
d̂0(rij)− d̂0(r(i+1)j)

)2

+
(
d̂0(rij)− d̂0(ri(j+1))

)2

.

(10)
This measure is averaged across the rays to yield a measure of the depth map’s
smoothness. By integrating these regularizers into our training regimen, we sig-
nificantly dampen the disturbances introduced by overlapping and obscured pix-
els, resulting in a more consistent interpolation between states. These benefits
are substantiated through extensive ablation studies and quantitative analyses
presented in the experiments.
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Positional Encoding of the Latent. We incorporate positional encoding to
capture the order of input elements, crucial for understanding articulation. Po-
sitional encoding injects the sequence with its inherent order, a key factor in
articulation semantics. We employ the scheme from [41], which uses sine and
cosine functions parameterized to encode varying frequencies. The computed po-
sitional encodings are added to the latent vector zt, enriching it with semantic
information that more accurately encodes the state of articulation. We analyze
the effects of positional encoding on our model in the experimental section.

4 Experiments

4.1 Setup

Datasets. In this work, we use the PartNet-Mobility dataset [2,20,46], a large-
scale synthetic collection of articulated objects in over 40 categories. The dataset
has a variety of articulations defined, with objects comprising of single and
multi-joint parts. Two types of motion, revolute (rotational) joint and prismatic
(translation) articulation are represented in the dataset. To make up our training
dataset, we choose 100 camera views that are arranged in a dome-like setup, cap-
turing the upper hemisphere of the object. This is similar to the setup used by
PARIS. We use the SAPIEN [46] library that the PartNet-Mobility dataset was
released with, to render our RGB images at linearly spaced intervals of articula-
tion to make up frames of a video that depicts the range of motion and obtain the
camera parameters accordingly, converting it into the Blender [5] coordinate sys-
tem to fit in our codebase. We use instances from 8 different common household
item categories storage, microwave, laptop, oven, washer, dishwasher,
sunglasses, box and choose 1-4 objects per category, bringing our total num-
ber of objects to 12. We also show the efficacy of our method on 68 images from
a real-world scene of a chest of drawers, which are captured with a mobile phone
and post-processed to remove background. Throughout LEIA, we train with a
total of four states and interpolate between the two extreme states.
Baselines. The closest prior work with a setup similar to ours is PARIS, which
takes in multi-view images of objects in two states and disentangles the static and
moving part of the object. While we run experiments with four input states, we
don’t focus on learning a defined articulation for the object, instead we are able
to recognize any arbitrary motion and combinations of motions given relevant
states. We emphasize on the following differences:
1. PARIS uses separate models to train objects that have rotation and transla-

tion motion, respectively. While they have a method to estimate the type of
motion, once determined, it is necessary to train on the appropriate model.

2. As PARIS also learns motion parameters for the articulation, given their
pipeline of disentanglement of the static and moving parts of the object, this
restricts the learning of motion parameters if there are multiple parts in the
object, moving differently.



10 A. Swaminathan et al.

Table 2: Quantitative Results for Interpolated State Reconstruction. We
compared our method with the PARIS baseline, trained on selected objects from
the SAPIEN dataset. The results from three experiments are summarized below. The
VanillaInt experiment involves simple interpolation of the latents. Our best-performing
method, LEIA, introduces structure to the latents with a manifold loss and regularizers.
Although PARIS learns a motion prior and LEIA implicitly performs state interpola-
tion, both methods perform similarly for single-part objects. However, our approach
excels with multi-part objects, outperforming PARIS significantly due to its flexibility
in handling various motion types and articulations without constraints.

Single-Part Articulation Multi-Part Articulation

45135 7128 10211 101917 103778 12085 44781 45427 45575 101297 7187 102377
Metrics Methods Storage1 Microwave Laptop Oven Washer Dishwasher Storage2 Storage3 Storage4 Sunglasses Oven Box Average

PSNR↑ PARIS 28.66 25.94 24.97 28.13 34.46 27.24 26.35 24.41 25.73 32.33 29.30 26.20 27.81
VanillaInt 24.20 22.00 22.63 24.53 36.03 24.16 30.96 29.78 29.10 32.11 30.35 27.85 27.81
LEIA 26.69 26.38 25.04 28.71 36.14 26.49 31.07 29.78 29.80 35.60 30.80 28.05 29.55

SSIM↑ PARIS 0.99 0.97 0.97 0.97 0.98 0.96 0.95 0.95 0.94 0.96 0.96 0.93 0.96
VanillaInt 0.95 0.91 0.90 0.93 0.99 0.92 0.95 0.95 0.93 0.97 0.95 0.93 0.94
LEIA 0.97 0.95 0.95 0.98 0.99 0.95 0.96 0.95 0.95 0.97 0.96 0.95 0.96

LPIPS↓ PARIS 0.02 0.06 0.19 0.03 0.03 0.06 0.05 0.05 0.04 0.06 0.05 0.08 0.06
VanillaInt 0.05 0.10 0.17 0.03 0.02 0.08 0.03 0.03 0.05 0.09 0.05 0.13 0.07
LEIA 0.03 0.07 0.10 0.02 0.02 0.07 0.03 0.03 0.04 0.09 0.05 0.12 0.06

CD ↓ PARIS 0.18 0.08 0.12 0.75 0.06 0.45 0.62 0.42 0.60 0.20 0.99 0.91 0.45
VanillaInt 0.24 0.07 0.06 0.10 0.06 0.20 0.48 0.47 0.46 0.97 0.50 0.83 0.37
LEIA 0.29 0.06 0.36 0.10 0.05 0.27 0.52 0.38 0.41 0.96 0.35 0.62 0.36

3. LEIA is motion-prior free, and we have a universal architecture that implic-
itly learns intermediate states, so we are able to train with multiple types of
motion occurring in the same object, with no change in the code.

For comparing with PARIS, we run authors’ original source code with our
dataset, using the hyperparameters provided by the authors and training un-
til convergence. We test our work and PARIS with the appearance quality of
the reconstructed image of the interpolated state. We also set up a simple base-
line that does just vanilla interpolation between the learnt latent embeddings,
without enforcing any structure or constraints on them. We call this baseline
VanillaInt and compare it with LEIA, which has been finetuned to do inter-
polation with the addition of the manifold loss and the depth and occlusion
regularization for denoising the resulting output.
Quantitative Metrics. We use three appearance quality metrics, PSNR (Peak
Signal-to-Noise Ratio), SSIM (Structural Similarity Index), and LPIPS (Learned
Perceptual Image Patch Similarity). These are computed between reconstructed
images of the interpolated state, and the unseen ground truth of the state from
our dataset. We also report the Chamfer Distance to measure quality of 3D
reconstruction by doing point sampling.

4.2 Main Results

Novel State Synthesis. We show the qualitative and quantitative results of
interpolating our learned latent embeddings corresponding to the start and end
states, in Table 2 and Figure 3. Our results show that the latent embeddings can



LEIA: Latent View-invariant Embeddings for Implicit 3D Articulation 11

State 1 State 2 Intermediate PARIS LEIA

Single-Part Articulation

Multi-Part Articulation

Washer
(103778)

Dishwasher
(12085)

Storage1
(45135)

Storage2
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Sunglasses
(101297)

Storage4
(45575)

Storage3
(45427)

Box
(102377)

Fig. 3: Qualitative Results. We show results of PARIS and LEIA for reconstructing
the unseen intermediate state, for both single and multiple articulations. We see that
PARIS especially fails when there are two parts of the object moving differently, as the
motion parameters are not registered correctly. LEIA handles this case successfully as
it is not dependent on part disentanglement to identify and register articulation. LEIA
also performs comparable to PARIS for single-part articulation, despite not having a
dedicated model for the motion or part disentanglement.

be linearly interpolated, and have a structure in the latent space. We can gener-
ate any number of states between the start and the end state by doing a weighted
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State 1 State 1 State 2State 2State 1.5 State 1.5

Fig. 4: Real World Results. LEIA is able to faithfully interpolate and reconstruct
between two states of images from our real world data, proving its ability to generalize
and work in an in-the-wild setting.

combination of the latents representing the start and the end states. For train-
ing, we choose four states, using the two additional states compared to PARIS
to enforce structure in the latent space with the latent manifold loss, thereby
making them amenable to interpolation. This helps us extend our formulation
to multiple articulations without restriction. We also show results of our base-
line VanillaInt and show that the numbers are boosted with the addition of the
latent manifold loss and regularizers. For single-part objects, we perform compa-
rably to PARIS despite having no part disentanglement and no dedicated model
to represent the exact type of motion. For multiple-part articulations, we beat
PARIS across all objects, as shown in Figure 3. Our comparable performance
in 3D reconstruction shows that LEIA’s learnt view-invariant latent embeddings
are powerful in preserving spatio-temporal consistency. We also show that our
method can work in the real world setting, in Figure 4. Ablations are shown for
number of states, latent manifold loss, and depth and occlusion regularizations
in Table 3 and Figure 6.
Analysis on Disentanglement of Joints. To check separability of the latent
space, we train LEIA with multi-view images across multiple states, captured
from a video that showed three parts of an object Storage1, move one after
the other. We do a t-SNE based dimensionality reduction on the embeddings
and plot them, shown in Figure 5. The latents exhibit clear separability, with
the motion of each joint represented in a smooth trajectory, moving outward as
the respective drawer in the object moves away from the starting “closed” state.
This shows that the separated latent space is an indicator of multiple joints,
positioning us to be capable of learning representations of multiple articulations.

4.3 Ablation Analysis

We perform ablations to tune various design choices, with results shown in Ta-
ble 3 and Figure 6. The first experiment we performed was testing out the impact
of the latent manifold loss. We notice qualitatively that without the manifold
loss, our latent space lacked structure and the linear relationship between the
embeddings was not captured. As shown in Figure 6, the intermediate state
overfits to the extreme state without the latent manifold while the addition of
the loss enables it to accurately capture the intermediate state. This figure also
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Fig. 5: t-SNE plot. After dimension-
ality reduction on jointly-learned state
embeddings of an object with different
moving parts. Our learned representa-
tions are separated and follow a smooth
trajectory for each of the moving parts.

Table 3: Ablations. Our ablations reveal
that latent manifold loss, depth, and occlu-
sion regularization enhance LEIA’s visual
metrics. Opting for four states improved la-
tent structure with the manifold loss.

Latent Manifold Loss PSNR SSIM LPIPS

with 29.40 0.95 0.05
without 28.54 0.94 0.06

Depth Regularization PSNR SSIM LPIPS

with 29.63 0.96 0.05
without 26.93 0.93 0.07

Occlusion Regularization PSNR SSIM LPIPS

with 29.64 0.95 0.05
without 28.64 0.95 0.06

Positional encoding PSNR SSIM LPIPS

with 27.11 0.94 0.06
without 28.48 0.95 0.06

Number of States PSNR SSIM LPIPS

2 28.04 0.95 0.06
4 29.69 0.96 0.05

GT 
Intermediate

LEIA with 
Positional 
Encoding, 
with Latent 
Manifold

LEIA w/o 
Positional 
Encoding, 
with Latent 
Manifold

LEIA with 
Positional 
Encoding, 
w/o Latent 
Manifold

LEIA with 
Positional Encoding

LEIA w/o 
Positional Encoding

LEIA 
Without 
Latent 

Manifold

LEIA 
With 

Latent 
Manifold

GT 
Intermediate

GT 
State 1

GT Intermediate

Scale for 
reference

GT State 1 GT State 2 GT Intermediate 2 states 4 states

Latent Manifold Ablation Positional Encoding Ablation

Number of States Ablation

Fig. 6: Qualitative Results of Ablations. We show some qualitative results of
using latent manifold loss, positional encoding and varying the number of states. Using
the manifold loss prevents us from overfitting to the extreme states, and using four
states help us interpolate with a lot of clarity. Positional encoding helps add missing
information for thin parts, but for large objects it doesn’t help much.

shows the effect of positional encoding which adds detail when the latent em-
bedding fails to capture it, as evidenced in the results of sunglasses. This can
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State 1 State 2 Intermediate LEIA State 1 State 2 Intermediate LEIA

Fig. 7: Failure cases. Our model fails at at reconstructing the geometry correctly at
camera positions where the two states we interpolate between have a change in the
visible shape, like these examples where the microwave and oven being closed shows a
deformation in the figure as compared to the open state, as the relationship between
the motion is not easily captured in the latent due to the structure change.

happen for thin parts of the object that may not be not well-captured across
camera views. Notably, the inverse happens in the case of large objects, where
the positional encoding adds extra noise to the reconstruction, resulting in over-
smoothing. We also show how adding just two more intermediate states in LEIA
makes a huge difference in reconstruction results for both single and multi-part
objects, enabling us to scale and be flexible. Quantitative numbers for depth and
occlusion regularization ablation are shown in Table 3. However, they didn’t uni-
versally help in the cases where the latent embedding already learned the state
representation well enough but reduced noise when it appeared.

5 Limitations

While LEIA works in achieving good quality reconstruction of intermediate
states, our latent embeddings do not yet ensure accurate physical consistency in
the motion of the intermediates, which is a tradeoff we chose while opting for not
decoupling the object and learning the motion parameters for the moveable part.
This allowed us to scale our approach to interpolate between multiple moving
parts of the object, which would be more representative of the real world where
common objects can be articulated in multiple ways. LEIA also struggles when
there is severe occlusion, as referenced by Figure 7, as the occlusion occurs at
gaps in the learnt embeddings between two states.

6 Conclusion

In this work, we present LEIA, a method capable of successfully interpolating
between two discrete articulation states of a deformable object with moving
parts. LEIA handles multiple joints, including cases where moving parts are
separated by static regions. It outperforms existing methods, especially when
multiple parts move independently. The learned latent embeddings are view-
invariant and separable, demonstrating LEIA’s scalability and flexibility. We
conducted comprehensive evaluations on synthetic and real data to investigate
inherent challenges. Despite advancements, significant occlusion scenarios remain
challenging. We hope future research builds upon our work.
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