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Abstract. How to explore useful features from images as prompts to
guide the deep image restoration models is an effective way to solve im-
age restoration. In contrast to mining spatial relations within images
as prompt, which leads to characteristics of different frequencies being
neglected and further remaining subtle or undetectable artifacts in the
restored image, we develop a Frequency Prompting image restoration
method, dubbed FPro, which can effectively provide prompt compo-
nents from a frequency perspective to guild the restoration model address
these differences. Specifically, we first decompose input features into sep-
arate frequency parts via dynamically learned filters, where we introduce
a gating mechanism for suppressing the less informative elements within
the kernels. To propagate useful frequency information as prompt, we
then propose a dual prompt block, consisting of a low-frequency prompt
modulator (LPM) and a high-frequency prompt modulator (HPM), to
handle signals from different bands respectively. Each modulator contains
a generation process to incorporate prompting components into the ex-
tracted frequency maps, and a modulation part that modifies the prompt
feature with the guidance of the decoder features. Experimental results
on several popular datasets have demonstrated the favorable performance
of our pipeline against SOTA methods on 5 image restoration tasks, in-
cluding deraining, deraindrop, demoiréing, deblurring, and dehazing. The
source code is available at https://github.com/joshyZhou/FPro.

Keywords: Image Restoration · Frequency Prompt · Transformer

1 Introduction

Capturing images in unsatisfactory environments, e.g., rain, haze, usually leads
to low-quality ones that accordingly affect the application of downstream tasks
in practice. Thus, developing an effective image restoration method to restore
clear images from degraded ones is an important task.
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Significant progress has been made due to kinds of the deep learning mod-
els [4,5,81], and these deep learning-based approaches become predominant ones
as they achieve better performance than the conventional hand-crafted prior-
based approaches [3, 21,31,44,84].

Existing methods, e.g., [33, 72, 81] achieve promising performances in kinds
of image restoration tasks. However, these learning-based methods intend to
learn a mapping function between degraded images and clear ones, where the
characteristics of the specific degradation are less considered. For example, rain
streaks tend to obscure the background partially, whereas raindrops typically
result in a more pronounced regional occlusion. Accordingly, these models are
hindered from generating better results.

More recently, prompt-learning based methods [50,67,68] serve as an alterna-
tive approach to encode useful content of specific degradation for modulating the
network, and make a clear performance boost for image restoration. However,
we notice that these methods [50,68] pay attention to mining spatial correlations
to provide degradation information, whereas the task-specific frequency cues are
less studied. Indeed, since various forms of degradation exhibit distinct im-
pacts on image content, they affect information from different frequency bands.
Hence, it is crucial to develop an efficient prompt mechanism that explores use-
ful prompts from a frequency perspective for identifying specific characteristics
of diverse degradation, which can boost the model to effectively restore images
with finer details and non-local structures of the scenes.

This paper proposes a Frequency Prompting image restoration method,
dubbed FPro, to modulate the network by encoding degradation-specific fre-
quency cues as prompts. As mentioned above, existing prompt strategies [50,68]
focus on mining spatial relations as useful prompts. In this way, differences be-
tween the restored image and the real one within frequency domain [25] are
ignored, which remain subtle or undetectable artifacts in the spatial domain.
Instead, our FPro aims to enjoy benefits from the capability of prompt learning
in different frequency bands at multi-scale resolutions to recover clean images.

We present two designs to enhance FPro for general image restoration: 1).
We first decouple input features into separate low-/high-frequency parts using a
gated dynamic decoupler, as signals in different frequency bands encode image
patterns from distinct views, i.e., local details and global structures. To this
end, a gating mechanism is introduced to help learn the enhanced low-pass fil-
ters by suppressing the less informative elements within the kernel, which are
then employed to generate low-frequency maps. Meanwhile, the corresponding
high-pass filter is obtained by subtracting the low-pass filter from the iden-
tity kernel, for generating high-frequency maps. 2). We propose a Dual Prompt
Block (DPB), which consists of two modulators, i.e., the Low-frequency Prompt
Modulator (LPM) and the High-frequency Prompt Modulator (HPM), to handle
low- and high-frequency information respectively. Each modulator includes (a)
a generation part that incorporates prompting components into the extracted
frequency maps, which is supposed to help distinguish various elements within
features, such as rain patterns in the context of deraining; and (b) a modu-
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lation part that modifies the prompt feature with the guidance of the feature
in the restoration process. In terms of functionality, LPM enhances the low-
frequency characteristics through a gating mechanism in the Fourier domain be-
fore injecting the prompting components, which is proven equivalent to dynamic
large-kernel depth-wise convolution in the spatial domain while computationally
efficient, and then encodes low-frequency interactions via global cross-attention.
As a complement, HPM applies a locally-enhanced gating mechanism to obtain
useful high-frequency signals, and then encodes high-frequency interactions via
local cross-attention.

We summarize our main contributions as follows:

– We propose FPro, which benefits from prompting learning of frequency com-
ponents for general image restoration. Instead of mining spatial relations as
in previous methods, we explore frequency maps to encode specific degra-
dation information as prompts to guide the image restoration model for
restoring finer details and the global structure of the scenes.

– We decouple input features into different frequency bands using learnable
low-pass filters, and propose a dual prompt block, which is composed of low-
frequency prompt modulator (LPM) and high-frequency prompt modulator
(HPM), to explore both details and structures for better restoration.

– Experimental results on 5 restoration tasks: deraining, deraindrop, demoiréing,
deblurring and dehazing, show that FPro achieves favorable performance
against state-of-the-art methods.

2 Related Work

Image Restoration. The goal of the image restoration task is to recover high-
quality images from the degraded ones. Going beyond conventional prior-based
solutions [3, 21], this community has witnessed the great success of a body of
learning-based approaches [34, 48, 79]. Despite the promising results obtained
by various CNN-based architectures [9, 35, 58], the main concern for methods
of this kind is that they pose a limited receptive field problem of the basic
convolution operation. This means that the feature map contains less global
context (corresponding to low-frequency characteristics in an image), and the
final prediction can get stuck in this limitation. This drawback has motivated
the increased interest in exploring components to capture desired global cues,
like attention mechanisms [10,45,60], where better restoration performance can
be achieved. For instance, MIRNet [82] proposes a dual attention unit to capture
contextual information in dual dimensions. NLSN [41] employs a self-attention
mechanism to collect global correlation information for super-resolution.
Transformer-based Restoration. In recent years, the idea of using Trans-
former architecture [64] to address various computer vision-related tasks has
been popular. Thanks to their discriminative feature representation capabil-
ity, they not only earn advantages in solving high-level vision tasks [13, 14, 71],
but also are extended to low-level image restoration tasks [27, 85, 88]. Unfortu-
nately, as the complexity of vanilla self-attention is quadratic to the image size,
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this mechanism suffers from non-trivial computational costs in handling high-
resolution input. To address this, some attempts have been made to explore ef-
ficient transformer architectures [4,72,87]. Specifically, SwinIR [33] introduces a
window-based self-attention scheme to improve efficiency. Restormer [81] adopts
channel-wise self-attention to reduce the computational costs. The majority of
these works have offered reliable solutions to recover clean images, however, some
works [11,49] realized that the low-pass filter nature of self-attention, which could
lose the high-frequency information, such as textures and edges. Even though
these models have achieved superior performance, few high-frequency details can
be leveraged to implement image restoration, limiting better recovery as a result.
Visual Prompt Learning. Prompt learning, which emerged recently in the
NLP field [1], has resulted in rapid advancements in its adaptation to computer
vision tasks [17,24,26]. Contrary to high-level vision problems, motivated by high
effectiveness, some works also consider seeking proper prompts for the low-level
pipelines [40,74,78].

The aim of this paper is not to prompt models for addressing the ALL-in-
One problem (in fact, the previous works of [32,40,50] have addressed this nicely
by designing various degradation prompt modules). However, our approach is
relevant to recent studies [67, 68] exploring degradation-specific information for
better image restoration results. In contrast to these attempts that generate
raw degradation features with a pre-trained model, we prompt the restoration
models from a frequency perspective.

3 Proposed Method

3.1 Overall Pipeline

As depicted in Fig. 1, the overview of our proposed FPro contains the upper
restoration branch, like existing works [33, 81], and the bottom prompt branch
to extract informative frequency maps and then modulate them as prompts.
Restoration Branch. Given a degraded image I ∈ RH×W×3 as input, FPro
first employs a convolution layer to obtain shallow feature Fs ∈ RH×W×C ; where
H×W represents the spatial dimension and C is the number of channel. Next, the
shallow feature passes through the upper N1-level encoder-decoder restoration
branch to extract deep feature Fd ∈ RH×W×C . Early layers in Transformer-based
models focus on aggregate local patterns [76], whereas the self-attention module
acts as a low-pass filter and tends to dilute high-frequency local details [49].
To alleviate the two contradictory factors, we remove the attention mechanism
within the encoder of the restoration branch. Specifically, each level of the en-
coder includes N2 feed-forward network (FFN) [81] and the paired convolution
layer for down-sampling. The encoder features are then fused with the ones in
the decoder through skip connections by 1×1 convolution. For the decoder part,
each level is composed of N2 pairs of FFN and multi-head self-attention mech-
anisms (MSA) [81], along with the convolution layer for up-sampling. Finally, a
3 × 3 convolution layer is employed to deep feature Fd for generating residual
image R ∈ RH×W×3. The restored image Î is estimated by: Î = I+R.
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Fig. 1: Overview of the proposed FPro. Except for the common upper restoration
branch, which is similar to existing methods [33, 81], FPro contains another bottom
prompt branch to extract informative features from a frequency perspective. Specifi-
cally, the primary components of the prompt branch in this framework are the gated
dynamic decoupler (GDD) and dual prompt block (DPB). The GDD is employed to
decompose the low-frequency components and corresponding high-frequency charac-
teristics from the input features. Then these frequency-specific features are further
processed in DPB, i.e., the high-frequency prompt modulator (HPM) and the low-
frequency prompt modulator (LPM), which generates representative frequency prompt
to facilitate the clear image reconstruction.

Prompt Branch. In this branch, we take as input the shallow feature Fs to
generate useful frequency prompts, which are further leveraged to facilitate the
latent clear image reconstruction. To achieve this goal, we first decompose the
input feature into different frequency bands using a gated dynamic decouple
(GDD) (see Section 3.2). After that, low-/high-frequency maps are injected with
prompt components to distinguish informative elements according to specific
tasks, and then modulated as different prompts (i.e., Fout

hi and Fout
low) to interact

with the decoder features by 1×1 convolution (see Section 3.3). Next, we present
the modules of the prompt branch.

3.2 Gated Dynamic Decoupler

Each type of degradation affects image content in different ways. For instance,
rain streaks partially occlude the background while raindrops often cause much
greater obstruction, which corresponds to touch high-/low-frequency bands re-
spectively. To handle these differences, as shown in Fig. 2, we decompose the
input features into separate frequency parts based on gated and dynamically
learned filters. The key ingredient is to introduce a gating mechanism to help
generate the gated learnable low-pass filter and the corresponding high-pass
filter, which are then employed to obtain low- and high-frequency maps, respec-
tively. These filters are dynamically learned for each spatial location and channel
group to balance computation burden and feature diversity. Specifically, given
the input shallow feature map Fs ∈ RH×W×C , we firstly predicts the low-pass
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Fig. 2: Illustrations of the Gated Dynamic Decoupler.

filter for each feature channel group, which can be formulated as:

F̂s = Conv1×1(GAP(Fs)),

F̃s = F̂s ⊙ ϕ(Conv1×1(F̂s)),

Fl = Softmax(B(F̃s))

(1)

where Fl ∈ Rg×k2×1×1, g is the number of channel groups and k2 corresponds to
the kernel size of the learned filter; GAP(·) and Conv1×1(·) are global average
pooling layer and convolution operation with the filter size of 1×1, respectively;
ϕ(·) denotes sigmoid activation, ⊙ refers to the element-wise product, and B(·)
means Batch Normalization. Particularly, Softmax(·) is a softmax layer, which
ensures the generated filters are low-pass [89]. Then, we apply these learned filters
to each group input feature Fi ∈ RH×W×Ci to obtain low-frequency components:

Flo
i,c,h,w =

∑
p,q

FL
i,p,qFi,c,h+p,w+q, (2)

where FL ∈ Rg×k×k is the reshaped filter, i denotes the group index, Ci =
C
g

refers to number of the group channel, c means the index of a channel, h and w
are spatial coordinates, p, q ∈ {−1, 0, 1} point to the surrounding locations.

Meanwhile, we invert this process by subtracting the low-pass filter from the
identity kernel to attain the high-pass filter, which is employed to generate the
corresponding high-frequency components Fhi.

3.3 Dual Prompt Block

Considering that the extracted features, i.e., low-/high-frequency maps, encode
image patterns from distinct views (local detail and main structure of the im-
age). We design the Dual Prompt Block that includes two components, i.e.,
High-frequency Prompt Modulator (HPM) and Low-frequency Prompt Modula-
tor (LPM), to deal with these feature maps, respectively.
High-frequency Prompt Modulator. Given the two input feature maps, in-
cluding the l-level feature Fl ∈ RĤ×Ŵ×Ĉ and high-frequency feature Fhi ∈
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(b) Low-frequency Prompt Modulator (LPM)

(a) High-frequency Prompt Modulator (HPM)

FF
T

Prompt Components
𝐏!"

R
es
iz
e

IF
FT

𝐐!"

S

R

𝐊!"

𝐕!"

𝐅 !"#$%

A
A
P

C
on
v

C
on
v

C
on
v

C
on
v

Prompt Components
𝐏&'

R
es
iz
e

S

D
co
nv

3×
𝟑

C
on
v

C
on
v

C
on
v

C
on
v

D
C
on
v

3×
3

𝟏×
𝟏

) H
×
) 𝑊
×
, C

H
×
W
×
C‘

) H
×
) 𝑊
×
C‘

) H
×
) 𝑊
×
C‘

) H
×
) 𝑊
×
C‘

) H
) 𝑊 𝑀
2
×
𝑀

2 ×
C′

)H )W
M2

×M2×,C

)H )W
M2

×,C×M2

) H
) 𝑊 𝑀
2
×
𝑀

2 ×
3 𝐶 )H )W

M2
×M2×,C

···	M2×M2

) H
) W M
2
×
M
2 ×
, C

R

R

R

) H
) W M
2
×
M
2 ×
, C

) H×
) W
×
, C

H
×
W
×
C‘

) H
×
) W
×
, C

) H×
) 𝑊
×
C‘

) H
×
(! " #

+
1)
×
2C
‘

) H×
) 𝑊
×
C‘

R

) H
) W
×
, C

1×
C‘

C‘×1

1×C‘

)H )W×,C

)H )W×1

) H
) W
×
, C

) H
×
) W
×
, C

) H
×
) W
×
, C

) H
×
) 𝑊
×
C‘

)𝐅𝑙𝑜

𝐅!

𝐅&' )𝐅ℎ𝑖

*F𝑙𝑜 𝐅!"
<="><?

𝐅&'
<="><?

𝐐&'

𝐊&'

𝐕&'
𝐅&'#$%

𝐅!

𝐅!"

*Fℎ𝑖

R ReshapeGELU

FFT

IFFT

Fast Fourier Transform

Inverse FFT

Matrix Multiplication

Fig. 3: Illustrations of the proposed components. (a) High-frequency Prompt Modula-
tor (HPM); (b) Low-frequency Prompt Modulator (LPM).

RH×W×C′
, we first resize Fhi and obtain F̃hi ∈ RĤ×Ŵ×C′

. Towards highlight-
ing high-frequency characteristics, we employ a gating mechanism to adaptively
determine the useful frequency information:

F̂hi = F̃hi ⊙ σ(DConv3×3(F̃hi)), (3)

where F̂hi ∈ RĤ×Ŵ×C′
is the processed feature, DConv3×3(·) denotes a depth-

wise convolution operation with the filter size of 3×3, and σ(·) is the GELU
activation function [22]. Then, we leverage the learnable high-frequency prompt
components Phi ∈ RĤ×Ŵ×C′

to make adjustments to the input features, which
aims to help distinguish various elements, such as rain patterns and streaks of
different orientations and magnitudes in the context of deraining:

Fprompt
hi = F̂hi ⊙Phi, (4)

where Fprompt
hi ∈ RĤ×Ŵ×C′

is the obtained high-frequency feature prompt.
Next, we modify the high-frequency prompt Fprompt

hi according to the in-
put feature Fl. To be specific, we utilize a depth-wise convolution operator,
which acts as a high-pass filter [49], to enhance the high-frequency sources
in the input Fprompt

hi . Then, we generate query (Qhi) projection from Fl, key
(Khi) and value (Vhi) projections from the processed feature map F̂prompt

hi =

DConv3×3(F
prompt
hi ), respectively. Meanwhile, as the high-frequency information

usually corresponds to image details and is a local feature, it could be redun-
dant to calculate global attention. Therefore, before leveraging the linear layer to
obtain the matrices of Qhi, Khi, and Vhi, the local window self-attention mecha-
nism is adopted to save computational complexity and capture fine-grained high
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frequencies, which yields Qhi = WQhi
p ·R(Fl), Khi = WKhi

p ·R(F̂prompt
hi ), Vhi =

WVhi
p ·R(F̂prompt

hi ). Where W
(·)
p represents the projection matrices, and R(·) de-

notes the window partition strategy [39]. Generally, we have Qhi ∈ R
ĤŴ
M2 ×M2×Ĉ ,

Khi ∈ R
ĤŴ
M2 ×Ĉ×M2

, and Vhi ∈ R
ĤŴ
M2 ×M2×Ĉ , where M2 is the size of split win-

dows. The attention matrix is thus calculated to tune the high-frequency prompt:

Fout
hi = Vhi · Softmax(Khi ·Qhi/

√
d), (5)

where Fout
hi ∈ RĤ×Ŵ×Ĉ is the output feature map of the high-frequency prompt

modulation branch; d is the query/key dimension, following [33].
Low-frequency Prompt Modulator. Given the two input feature maps, in-
cluding the l-level feature Fl ∈ RĤ×Ŵ×Ĉ and low-frequency feature Flo ∈
RH×W×C′

, we first resize Flo and obtain F̃lo ∈ RĤ×Ŵ×C′
. Towards handling

low-frequency signals effectively, we project F̃lo into the frequency domain via
the fast Fourier transform (FFT). Then, a gating mechanism is adopted to con-
trol the useful low-frequency components flow forward:

F̂lo = F(F̃lo)⊙ σ(Conv1×1(F(F̃lo))), (6)

where F̂lo ∈ RĤ×( Ŵ
2 +1)×2C′

is the processed feature, F(·) represents the FFT.
Next, we calibrate the input features by injecting learnable low-frequency prompt
components Plo ∈ RĤ×( Ŵ

2 +1)×2C′
, which is then transformed to spatial domain:

Fprompt
lo = F−1(F̂lo ⊙Plo), (7)

where Fprompt
lo ∈ RĤ×Ŵ×C′

is the generated low-frequency feature prompt, and
F−1(·) denotes the inverse FFT.

Noted, we perform the feature transformation in the Fourier domain for effi-
cient global information interaction. The convolution theorem [46, 55] indicates
the Hadamard product of two signals in the Fourier domain equals to implement
the Fourier transform of a convolution of these two signals in the original spatial
domain. Base on this insight, we can combine Eq.(6) and Eq.(7):

Fprompt
lo = F−1(F(F̃lo)⊙ σ(Conv1×1(F(F̃lo)))⊙Plo)

= F−1(F(F̃lo ⊛ F−1(σ(Conv1×1(F(F̃lo)))⊙Plo)))

= F̃lo ⊛ F−1(σ(Conv1×1(F(F̃lo)))⊙Plo)

(8)

where ‘⊛’ is the convolution operation. Since F−1(σ(Conv1×1(F(F̃lo))) ⊙ Plo)
is a tensor that shares the same shape with F̃lo, it can be served as a dynamic
depth-wise convolution kernel as large as F̃lo in spatial domain while introducing
less model complexity.

Subsequently, we further modulate the low-frequency visual prompt Fprompt
lo

with the guidance of the input feature Fl. Specifically, we adopt an adaptive
average pooling operator, which serves as a low-pass filter [65], to enhance the
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Table 1: Quantitative comparison on the SPAD dataset [70] for image deraining.

Method DDN PReNet RCDNet MPRNet SPAIR Uformer-S SCD-Former IDT Restormer DRSformer FPro
[16] [56] [69] [83] [51] [72] [18] [75] [81] [7] (Ours)

PSNR ↑ 36.16 40.16 43.36 43.64 44.10 46.13 46.89 47.34 47.98 48.53 48.99
SSIM ↑ 0.9463 0.9816 0.9831 0.9844 0.9872 0.9913 0.9941 0.9929 0.9921 0.9924 0.9936

Table 2: Quantitative comparison on the AGAN-Data [52] for image deraindrop.

Method Eigen’s Pix2pix Uformer-S WeatherDiff128 TransWeather DuRN RaindropAttn AttentiveGAN IDT Restormer FPro
[15] [23] [72] [47] [63] [38] [54] [52] [75] [81] (Ours)

PSNR ↑ 21.31 28.02 29.42 29.66 30.17 31.24 31.37 31.59 31.63 31.68 31.96
SSIM ↑ 0.757 0.855 0.906 0.923 0.916 0.926 0.918 0.917 0.936 0.934 0.937

low-frequency content in the input Fprompt
lo . After that, we generate query (Qlo)

projection from reshaped Fl, key (Klo) and value (Vlo) projections from the
average-pooled feature F̂prompt

lo = AAP(Fprompt
lo ), respectively. Here, AAP(·)

means the adaptive average pooling operation. Then, we employ 1×1 convolu-
tions to yield Qlo = WQlo

p Fl, Klo = WKlo
p F̂prompt

lo , and Vlo = WVlo
p F̂prompt

lo .
Here W

(·)
p is the 1×1 convolution. Next, we calculate the dot-product of query

and key projections, which generates the transposed-attention A ∈ RĤŴ×1.
Overall, the process of modulating the low-frequency prompt is defined as:

Fout
lo = Vlo · Softmax(Klo ·Qlo/α), (9)

where Fout
lo ∈ RĤ×Ŵ×C′

is the output feature map of the low-frequency prompt
modulation branch; Qlo ∈ RĤŴ×C′

, Klo ∈ RC′×1, and Vlo ∈ R1×C′
are the

input matrices; α is the learnable scaling parameter.
For both low/high-frequency modulators, we perform the attention map cal-

culation several times in parallel, and these results are then concatenated for
multi-head self-attention (MSA) [64].

4 Experiments

4.1 Experimental settings

Metrics. We adopt commonly used peak signal-to-noise ratio (PSNR) [73] and
structural similarity (SSIM) metrics to evaluate restored images. Meanwhile,
perceptual metric NIQE [42] is employed as a non-reference metric. Following
previous works [69, 72], PSNR/SSIM computations are implemented on the Y
channel in the YCbCr space for the image deraining task, while calculated in
the RGB color space for other restoration tasks. In the reported tables, the best
and second-best scores are highlighted and underlined, respectively.
Implementation Details. FPro contains N1 = 3 levels encoder-decoder, where
the encode and decoder share the same N2=[2,3,6] blocks. We set embedding
dimensions C as 48, and the attention heads as [2,4,8]. The expanding channel
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Table 3: Quantitative comparison on the TIP-2018 [61] for image demoiré.

Method AMNet DMCNN UNet WDNet MopNet TAPE-Net FHD2eNet MBCNN Uformer-S Wang et al . FPro
[80] [61] [59] [36] [19] [37] [20] [86] [72] [66] (Ours)

PSNR ↑ 25.47 26.10 26.49 27.12 27.48 27.52 27.79 28.40 28.63 28.87 29.25
SSIM ↑ 0.833 0.844 0.864 0.854 0.861 0.866 0.867 0.871 0.872 0.894 0.879

Table 4: Quantitative comparison on the SOTS [29] for image dehazing.

Method AODNet MSCNN DehazeNet EPDN FDGAN AirNet Restormer PromptIR FPro
[28] [57] [2] [53] [12] [30] [81] [50] (Ours)

PSNR ↑ 20.29 22.06 22.46 22.57 23.15 23.18 30.87 31.31 32.85
SSIM ↑ 0.877 0.908 0.851 0.863 0.921 0.900 0.969 0.973 0.983

capacity factor in FFN is 3. The default split window size in HPM is set as
M = 8. The pixel-unshuffle and pixel-shuffle are employed for downsampling
and upsampling. We use the AdamW optimizer with an initial learning rate of
3×10−4, which is gradually reduced to 1×10−6 using cosine annealing, to train
FPro. Additionally, we adopt the widely used loss function [68] to constrain the
network training.

4.2 Main Results

Rain Streak Removal. The proposed FPro is compared with general restora-
tion approches [51,72,81,83] as well as with task-specfic methods [7,16,18,56,69,
75]. Tab. 1 shows that FPro makes superior performance over current methods
for real image deraining on SPAD [70]. Compared to the previous best approach
DRSformer [7], FPro achieves a 0.46 dB performance boost. In addition, FPro
obtains 2.1 dB PSNR improvement when compared to the recent model SCD-
Former [18]. Fig. 4 provides a visual deraining example, where FPro successfully
removes the rain degradation while maintaining the structural information.
Raindrop Removal. For image deraindrop, we compare FPro with some exist-
ing deraindrop methods, including Eigen’s [15], Pix2pix [23], TransWeather [63],
Uformer [72], WeatherDiff128 [47], DuRN [38], RaindropAttn [54], Attentive-
GAN [52], IDT [75], and Restormer [81]. We report the quantitative results on
AGAN-Data [52] in Tab. 2. Our FPro obtains the best performance against all
considered methods in terms of both PSNR/SSIM scores. FPro makes a 0.28
dB PSNR performance boost over Restormer [81], and 2.3 dB over the recent

Rainy Reference DRSformer [7] RCDNet [69] Restormer [81] FPro

Fig. 4: Qualitative comparisons on the SPAD [70] for real image deraining.
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Table 5: Quantitative comparison on the GoPro [43] for image deblurring.

Method CODE IPT MPRNet MIMO HINet MAXIM Restormer PromptRestorer FPro
[85] [4] [83] [9] [6] [62] [81] [68] (Ours)

PSNR ↑ 31.94 32.58 32.66 32.68 32.71 32.86 32.92 33.06 33.05
SSIM ↑ 0.928 - 0.959 0.959 0.959 0.961 0.961 0.962 0.961

Table 6: Effectiveness of GDD.

Models PSNR SSIM

(a) w/o prompt branch 48.40 0.9920
(b) Multi DC [8] 48.52 0.9926
(c) Multi GDD 48.91 0.9934
(d) Single GDD 48.99 0.9936

Table 7: Ablation study of DPB.

Models PSNR SSIM

(a) w/o prompt branch 48.40 0.9920
(b) w/o HPM 48.77 0.9931
(c) w/o LPM 48.89 0.9933
(d) Full 48.99 0.9936

method WeatherDiff128 [47]. Fig. 5 shows the visual comparisons, where FPro
generates a result with finer details.
Moiré pattern Removal. We perform image demoiréing experiments on TIP-
2018 [61] dataset, and compare FPro with ten demoiréing methods, including
AMNet [80], DMCNN [61], UNet [59], WDNet [36], MopNet [19], TAPE-Net [37],
FHD2eNet [20], MBCNN [86], Uformer-S [72], and Wang et al . [66]. In Tab. 3,
FPro yields a 0.38 performance boost against the previous best method Wang et
al . [66], and outperforms the recent model TAPE-Net [37] by 1.73 dB.
Haze Removal. We perform image dehazing experiments on SOTS [29] bench-
mark. We compare FPro with eight representative approaches, including AOD-
Net [28], MSCNN [57], DehazeNet [2], EPDN [53], FDGAN [12], AirNet [30],
Restormer [81], and PromptIR [50]. As shown in Tab. 4, FPro achieves the best
scores among all considered methods. Compared to the recent prompt-based
method PromptIR [50], FPro makes a substantial performance gain of 1.54 dB.
Motion Blur Removal. We evaluate image deblurring performance on the
GoPro dataset [43]. For synthetic deblurring, we compare FPro with eight rep-
resentative models: CODE [85], IPT [4], MPRNet [83], MIMO [9], HINet [6],
MAXIM [62], Restormer [81] and PromptRestorer [68]. Tab. 5 shows that our
FPro achieves competitive performance against recent prompt-based PromptRe-
storer [68], where we cost half FLOPs. Meanwhile, compared to the recent
method CODE [85], FPro obtains a 1.11 dB gain on PSNR while using lower
FLOPs.

Raindrop Reference RaindropAttn [54] Uformer [72] Restormer [81] FPro

Fig. 5: Qualitative comparisons on the AGAN-Data [52] for image deraindrop.
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4.3 Analysis and Discussion

For the ablation studies, we study different models for rain streak removal on
SPAD [70] with 256×256 patches for 300K iterations. Testing is conducted on
SPAD testing dataset [70].
Effectiveness of Gated Dynamic Decoupler. To demonstrate the effec-
tiveness of the Gated Dynamic Decoupler, we conduct experiments on different
model variants in Tab. 6. Compared to the model equipped with Multiple Dy-
namic Convolution [8] (DC) for separating different frequency parts (b), directly
replacing it with GDD (c) results in a performance gain of 0.39 dB in terms of
PSNR. Meanwhile, instead of injecting GDD into each DPB (c) to employ mul-
tiple decouplers, we attempt to share one GDD module to divide the low-/high
frequency information (d), which slightly reduces the complexity (0.02 M) of the
whole framework and brings a 0.08 dB performance boost.
Effectiveness of Dual Propmt Block. To investigate the developed DPB,
ablation studies are performed in Tab. 7. Disabling HPM or LPM leads to a
clear drop of 0.22 dB and 0.1 dB, respectively. These experimental results in-
dicate that both HPM and LPM play a positive role in restoring high-quality
images. Moreover, we present visualizations to better show the effect of DPB.
As shown in Fig. 7, we visualize the generated low-/high-frequency feature maps
from each branch along with the analysis in the Fourier domain, where the low-
frequency prompt feature encodes information such as structures while the high-
frequency prompt one focus on information such as edges and texture. Meantime,
we provide visual comparisons in Fig. 8 to show the effectiveness of the proposed
HPM/LPM.
Perceptual Quality Assessment. To test the perceptual quality of the pro-
posed FPro, following [7], we randomly choose 20 rainy images under real-world
scenes from Internet-Data [70] to perform the evaluation. As shown in Tab. 9,
compared to other considered methods, FPro achieves a lower NIQE score, which
means the generated results contain clearer content and better perceptual qual-
ity. Through qualitative comparison in Fig. 6, FPro obtains a visually pleasant
result against other models, indicating that it handles unseen degradation well.
Model Efficiency. We provide the comparison of performance (PSNR), com-
plexity (FLOPs and Parameters), and latency (Run-times) for image deraining.
FLOPs and Runtimes are measured when input with the size of 256×256, and
PSNR scores are tested on SPAD [70]. As shown in Tab. 8, though FPro achieves
better performance in terms of PSNR metric, it has less model complexity than

Rainy Restormer [81] Uformer [72] IDT [75] DRSformer [7] FPro

Fig. 6: Qualitative comparisons with state-of-the-art methods on Internet-Data [70]
for real rain removal. (Zoom in for a better view.)
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(a)Low-frequency (b)High-frequency

Fig. 7: Feature analysis. we
visualize the features from
the LPM branch (a), and
the HPM one (b). In the
right-bottom, we show the
results of the average fea-
tures over the channel di-
mension in the Fourier do-
main. (Zoom in for a better
view.)

(a) w/o LPM (b) Diff. (c) w/o HPM (d) Diff.

(e) w/ LPM (f) Diff. (g) w/ HPM (h) Diff.

Fig. 8: Effect of DBP. Columns 1 and 3 show low-pass
and high-pass filtered results, while columns 2 and 4
show the difference (Diff.) between processed results
with corresponding filtered ground-truth. Compared
with (a), FPro w/ LPM (e) performs better in captur-
ing information such as structures, resulting in fewer
erroneous predictions (f). Compared with (c), FPro w/
HPM (g) restores clear edges and shapes, which indi-
cates it enjoys the benefits from the high-frequency in-
formation prompt. (Zoom in for a better view.)

Restormer [81] and DRSformer [7]. Compared to other CNN-/Transformer-based
approaches, FPro still has a less or comparable model complexity.

Table 10: Comparisons with al-
ternatives to FPro.
Models Params FLOPs PSNR

PromptIR [50] 35.6 173 37.04
PromptRestorer [68] 24.4 186 39.04

FPro 22.3 82 39.20

Comparisons with Alternatives to FPro.
To further demonstrate the superiority of
FPro, we compare it with recent prompt-
based methods that mine spatial relations
as prompts, including PromptIR [50] and
PromptRestorer [68]. As shown in Tab. 10, fol-
lowing PromptIR [50], we train and validate
FPro on Rain100L [77]. We achieve a substan-
tial gain of 2.16 dB over PromptIR, and a 0.16
dB performance boost against PromptRestorer.

Table 8: Model efficiency analysis on SPAD [70].

Method MPRNet [83] SwinIR [33] Uformer-S [72] Restormer [81] IDT [75] DRSformer [7] FPro

FLOPs/G 175.8 238.0 43.9 174.7 61.9 242.9 81.9
Parameters/M 20.1 11.5 20.6 26.1 16.4 33.7 22.3
Run-times/s 0.03 1.83 0.12 0.14 0.28 0.08 0.08
PSNR/dB 43.64 44.97 46.13 47.98 47.34 48.53 48.99
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Table 9: Quantitative results (NIQE) for real-world image deraining.

Methods Input Uformer-S [72] Restormer [81] IDT [75] DRSformer [7] FPro

NIQE ↓ 5.8012 5.6971 5.6631 5.6085 5.5942 5.2999

(a) Input (b) FPro

Fig. 9: Examples of erroneous reconstruction are shown, where heavy degradation in
nighttime real-world scenes leads to typical failures of FPro.

5 Conclusion

In this work, we explore the benefits of prompt learning from a frequency per-
spective for the task of image restoration. First, when dynamic decoupling the
input features with a gating mechanism to select representative elements, we
obtain the related frequency components with regard to the specific degrada-
tion removal task. Then, we propose modulating the low-/high-frequency signals
with separate branches, which concern the intrinsic characteristics of feature
maps from different frequency bands. With these modules, our proposed FPro
surpasses previous state-of-the-art methods in several image restoration tasks,
while performing competitively in terms of computational cost.
Limitations. There remain many avenues for further improvements. For in-
stance, one could achieve better performance by addressing failure cases shown
in Fig. 9, where FPro meets challenges in dealing with heavy degradation in the
nighttime real-world scene. Intuitively, collecting a large-scale real-world dataset
is a potential direction for improvements.
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