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A Additional Experimental Results

A.1 Additional Quantitative Comparison

The quantitative comparisons across datasets MatrixCity, Residence, Rubble,
Building, and Sci-Art are presented in Table S1. We not only provide the perfor-
mance of the CityGS with no LoD as done in Sec. 4.2 of our main paper, but also
presents the standard CityGS for reference. It can be observed that our approach
outperforms others in terms of SSIM and LPIPS among all the datasets, and
achieves the highest PSNR on MatrixCity, Rubble, and Building. The relatively
weaker PSNR of Sci-Art and Residence is mainly attributed to the appearance
variations across views in these dataset. We leave solving this issue for future
works. Thanks to the superior efficiency of 3DGS, we have achieved much faster
speed than previous state-of-the-art even without LoD.

Table S1: Quantitative Comparison on five large-scale scene datasets. The ’-’ symbol
indicates Mega-NeRF [2] and Switch-NeRF [4] were not evaluated on MatrixCity due
to difficulties in adjusting its training configurations beyond the provided, resulting in
poor performance on this dataset. The best results of each metric are in bold.

MatrixCity Residence Rubble Building Sci-Art

Metrics SSIM↑ PSNR↑ LPIPS↓ FPS↑ SSIM↑ PSNR↑ LPIPS↓ FPS↑ SSIM↑ PSNR↑ LPIPS↓ FPS↑ SSIM↑ PSNR↑ LPIPS↓ FPS↑ SSIM↑ PSNR↑ LPIPS↓ FPS↑

MegaNeRF [2] - - - - 0.628 22.08 0.489 <0.1 0.553 24.06 0.516 <0.1 0.547 20.93 0.504 <0.1 0.770 25.60 0.390 <0.1
Switch-NeRF [4] - - - - 0.654 22.57 0.457 <0.1 0.562 24.31 0.496 <0.1 0.579 21.54 0.474 <0.1 0.795 26.61 0.360 <0.1
GP-NeRF [3] 0.611 23.56 0.630 0.15 0.661 22.31 0.448 0.31 0.565 24.06 0.496 0.40 0.566 21.03 0.486 0.42 0.783 25.37 0.373 0.34
3DGS† [1] 0.735 23.67 0.384 35.9 0.791 21.44 0.236 62.1 0.777 25.47 0.277 47.8 0.720 20.46 0.305 45.0 0.830 21.05 0.242 72.2
CityGS(no LoD) 0.865 27.46 0.204 21.6 0.813 22.00 0.211 32.7 0.813 25.77 0.228 43.9 0.778 21.55 0.246 24.3 0.837 21.39 0.230 56.1
CityGS 0.855 27.32 0.229 53.7 0.805 21.90 0.217 41.6 0.785 24.90 0.256 52.6 0.764 21.67 0.262 37.4 0.833 21.34 0.232 64.6

Besides, as shown in Table S1, LoD significantly improves efficiency, espe-
cially for extremely large-scale scenes such as MatrixCity. Compared with our
CityGS, the 3DGS† [1] possesses faster speed but significantly lower rendering
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quality. The main reason is that the original 3DGS requires sufficiently large
iterations and memory to optimize the whole scene with thousands of images.
Bounded by computation resources, the capacity of the trained original 3DGS
is too limited to represent the whole large-scale scene well.

A.2 Additional Ablations

We also explored the influence of hyper-parameters in training, namely block
number and data assignment threshold ε mentioned in Sec. 3.2 of main paper.
Here, we control the overall finetuning iterations to be 9 × 32000. As shown
in Table S2, as the block number grows, the average data assigned to blocks
decreases. We achieve optimal results around 3 × 3 partitions. The ε also controls
data assignment. As ε grows, the average poses assigned decreases. And if it is
too high, many necessary training data will be lost, thus leading to lower PSNR
performance.

Table S2: Ablation on block numbers and SSIM threshold ε. The experiment is con-
ducted on the Rubble dataset. The first row is the performance of coarse global Gaus-
sians prior mentioned in Sec. 3.2 of main paper, and thus has no block number or ε
setting. MEAN denotes an average number of assigned training poses among divided
blocks. The best performances are in bold.

ε #Blocks SSIM↑ PSNR↑ LPIPS↓ MEAN

0.1 2× 2 0.762 24.48 0.285 835
0.1 3× 3 0.806 25.41 0.238 552
0.1 4× 4 0.804 25.45 0.241 432
0.12 3× 3 0.813 25.77 0.231 469
0.14 3× 3 0.812 25.43 0.229 415

Table S3: Detailed Parameter Setting. In training, the foreground area for contrac-
tion is bounded by pmin = (xmin, ymin, zmin) and pmax = (xmax, ymax, zmax). Here we
take the height dimension as z. From the bird’s eye view, the longest side is set as the
x-axis, while the shortest is the y-axis. z bound is set as the minimum and maximum
position of all Gaussians, and thus not included. The block dimension along the x-axis
and y-axis is denoted as #Blocks, and ε is SSIM threshold. In rendering, the Distance
Interval decides detail level assignment.

Dataset xmin(m) ymin(m) xmax(m) ymax(m) #Blocks ε Distance Interval (m)

MatrixCity -350 -400 450 200 6× 6 0.05 [0,200],[200,400],[400,∞]
Rubble -50 -5 50 -135 3× 3 0.12 [0,100],[100,200],[200,∞]
Building -140 250 -10 0 5× 4 0.1 [0,100],[100,200],[200,∞]
Residence -270 -25 60 175 5× 4 0.08 [0,250],[250,500],[500,∞]
Sci-Art -205 -110 90 55 3× 3 0.05 [0,250],[250,500],[500,∞]
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B Detailed Parameter Setting

We present the specific hyper-parameter configurations for each dataset in Ta-
ble S3. The roles of training parameters are detailed in Sec. 3.2 of the main
paper, while the role of rendering parameter Distance Interval is specified in
Sec. 3.3 of the main paper. Note that for LoD on datasets except for MatrixCity,
we use three detail levels of compression rate 60%, 50%, and 40%.

CityGSGround Truth 3DGS†GPNeRF

Fig. S1: More qualitative comparison with SOTA methods on MatrixCity dataset.

C More Visualization on MatrixCity Dataset

In this section, we provide additional qualitative comparisons using the Ma-
trixCity dataset, depicted in Fig. S1. Our results showcase the superior recon-
struction quality of intricate details, including crowded cars and crosswalks. The
remarkable enhancement in visual fidelity compared with other methods suffi-
ciently illustrates the superiority of our CityGS.

D Qualitative Validation on Concatenated Fusion

To validate the effectiveness of the concatenated fusion strategy, we perform
rendering at the viewpoints where the visible area spans multiple blocks. The
Gaussians utilized here come from direct concatenation of fine-tuned Gaussians
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of corresponding blocks. As depicted in Fig. S2, rendering from a specific view-
point may involve four or more blocks. Despite that, the rendered images exhibit
no discernible discontinuities, showcasing smooth boundary transitions facili-
tated by our coarse global Gaussian prior, as discussed in Sec. 3.2 of our main
paper.
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Fig. S2: Qualitative validation of boundary continuity on both synthetic and real
datasets when visible Gaussians across multiple blocks. Each subfigure illustrates point
distribution under contracted space on the left and rendered image on the right. For the
point distribution, blue points denote overall Gaussians, while the red points denote
visible Gaussians. The grey grid depicts block partition under contracted space.

E Scene Manipulation

For the implicit representation of NeRF-based methods, it is hard to explain
the correspondence between network parameters and scene structure. However,
since we can reconstruct the explicit city representation with relatively high
geometric precision in CityGS, the geometric and appearance distribution can
be manipulated as desired. The demos are shown in Fig. S3. The appearance of
a specified part of a building can be transformed to the desired style. It is also
possible to delete a building and replace it with another one. By placing cars or
pedestrians, the pre-defined traffic conditions can be simulated in the city. These
demos indicate potential real-time and interactive application of CityGS.
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(a) Repainting (b) Replacement (c) Traffic Simulation

Fig. S3: Illustration of city scene manipulation driven by explicit representation of
CityGS. In Part (a), the dome of the original building in the first row is repainted to
the desired color shown in the second row. In Part (b), the building of the first row
is removed and replaced with the one shown in the second row. In Part (c), the cars
parked at locations shown in the left image are moved to the positions shown in the
right image, so as to simulate the required traffic conditions. NeRF-based methods
struggle to realize such manipulation.
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