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Abstract. The advancement of real-time 3D scene reconstruction and
novel view synthesis has been significantly propelled by 3D Gaussian
Splatting (3DGS). However, effectively training large-scale 3DGS and
rendering it in real-time across various scales remains challenging. This
paper introduces CityGaussian (CityGS), which employs a novel divide-
and-conquer training approach and Level-of-Detail (LoD) strategy for
efficient large-scale 3DGS training and rendering. Specifically, the global
scene prior and adaptive training data selection enables efficient train-
ing and seamless fusion. Based on fused Gaussian primitives, we gener-
ate different detail levels through compression, and realize fast render-
ing across various scales through the proposed block-wise detail levels
selection and aggregation strategy. Extensive experimental results on
large-scale scenes demonstrate that our approach attains state-of-the-
art rendering quality, enabling consistent real-time rendering of large-
scale scenes across vastly different scales. Our project page is available
at https://dekuliutesla.github.io/citygs/.

Keywords: Large-Scale Scene Reconstruction · Novel View Synthesis ·
3D Gaussian Splatting

1 Introduction

3D large-scale scene reconstruction, as a pivotal component in AR/VR [6, 11],
aerial surveying [36], smart city [4, 8], and autonomous driving [34], has drawn
extensive attention from academia and industry in recent decades. Such a task
pursues high-fidelity reconstruction and real-time rendering at different scales
for large areas that typically span over 1.5 km2 [36]. In the past few years, this
field has been dominated by neural radiance fields (NeRF) [21] based methods.
Representative works include Block-NeRF [34], BungeeNeRF [41], and ScaNeRF
[40]. But they still lack fidelity in details or exhibit sluggish performance.

Recently, 3D Gaussian Splatting (3DGS) [12] emerged as a promising al-
ternative solution. In contrast to NeRF, it employs explicit 3D Gaussians as
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PSNR=27.32
SSIM=0.855
LPIPS=0.229

PSNR=23.67
SSIM=0.735
LPIPS=0.384

(a) Ground Truth (b) 3DGS† (c) CityGS (d) CityGS, no LoD (e) CityGS 
Z=0.5km
FPS=17
VRAM=13G

Z=0.5km
FPS=67
VRAM=6G

Z=2.5km
FPS=13
VRAM=14G

Z=2.5km
FPS=29
VRAM=8G

Fig. 1: (a, b, c) Our proposed CityGS achieves the SOTA rendering fidelity on Small
City scene (5620 training images, 740 test images) of MatrixCity dataset. The setting of
baseline 3DGS† is discussed in Sec. 4.1. (d, e) Here Z denotes camera height. Without
LoD, CityGS would render over 20 million points, leading to considerable VRAM and
time costs. The LoD saves VRAM and enables real-time performance under various
scales. Note that the FPS is tested with CUDA synchronization for objective evaluation.

primitives to represent the scene. Thanks to highly efficient rasterization algo-
rithm, 3DGS achieves high-quality visual effects at real-time rendering speed.
Most existing academic exploration around 3DGS mainly focuses on objects or
small scenes. However, devils emerge when 3DGS is applied to large-scale scene
reconstruction. On the one hand, directly deploying 3DGS to large-scale scenes
results in prohibitive overhead in GPU memory during training. For instance,
the 24G RTX3090 raises out-of-memory errors when the Gaussian number grows
above 11 million. But to reconstruct over 1.5 km2 city area with high visual qual-
ity from aerial view, over 20 million Gaussians might be required. 3DGS of such
capacity can’t be directly trained even on 40G A100. On the other hand, the ren-
dering speed bottleneck lies in depth sorting. As the number of Gaussians rises
to the order of millions, the rasterization becomes extremely slow. For instance,
a small Train scene of Tanks&Temples [13] dataset of 1.1 million Gaussians is
rendered with an average visible Gaussians number of around 0.65 million and a
speed of 103 FPS. But the 2.7 km2 MatrixCity scene of 23 million Gaussians can
only be rendered at the speed of 21 FPS even though the average visible Gaus-
sians number is also around 0.65 million. And how to free unnecessary Gaussians
from rasterization is the key to real-time large-scale scene rendering.

To address the problems mentioned above, we propose the CityGaussian
(CityGS). Inspired by MegaNeRF [36], we adopt a divide-and-conquer strategy.
The whole scene is first partitioned into spatially adjacent blocks and parallelly
trained. Each block is represented by much fewer Gaussians and trained with
less data, the memory cost of a single GPU is well attenuated. For Gaussian
partitioning, we contract unbounded regions to normalized bounded cubic and
apply uniform grid division, to better balance workloads across different blocks.
For training data partitioning, a pose is kept only if it is inside the considered
block, or if the considered block has a considerable contribution to the rendering
result. This novel strategy efficiently avoids distraction from irrelative data, while
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enabling higher fidelity with less Gaussian consumption, as depicted in Tab. 4.
To align trained Gaussians from adjacent blocks, we guide the training of each
block with a coarse global Gaussian prior. This strategy can efficiently avoid
interactive interference among blocks and enable seamless fusion.

To alleviate the computation burden when rendering large-scale Gaussians,
we propose a block-wise Level-of-Detail (LoD) strategy. The key idea is to only
feed necessary Gaussians to the rasterizer while eliminating extra computation
costs. Specifically, we take the previously divided blocks as units to quickly decide
which Gaussians are likely to be contained in the frustum. Furthermore, due to
the perspective effect, distant regions occupy a small area of screen space and
contain fewer details. Thus the Gaussian blocks that are far from the camera
can be replaced with the compressed version, using fewer points and features. In
this way, the processing burden of the rasterizer is significantly reduced, while
the introduced extra computation remains acceptable. As illustrated in (d,e) of
Fig. 1, our CityGS can maintain real-time large-scale scene rendering even under
drastically large field of view.

In a nutshell, this work has three-fold contributions:

• We propose an effective divide-and-conquer strategy to reconstruct large-
scale 3D Gaussian Splatting in parallel manner.

• With the proposed LoD strategy, we realize real-time large-scale scene ren-
dering under drastically different scales with minimal quality loss.

• Our method, termed as CityGS, performs favorably against current state-
of-the-art methods in public benchmarks.

2 Related Works

2.1 Neural Rendering

Neural Radiance Field is an instrumental technique for 3D scene reconstruc-
tion and novel view synthesis. As an implicit neural scene representation, it
employs Multilayer Perceptrons (MLPs) as the mapping function between query
positions and corresponding radiances. Volumetric rendering is then applied to
render such a representation to 2D images. The success of NeRF has spawned
a wide range of follow-up works [2, 3, 19, 20, 25–27, 35, 42] that improve upon
various aspects of the original method. Among them, Mip-NeRF360 [3] serves
as a recent milestone with outstanding rendering quality. However, NeRFs suffer
from intensive sampling along emitted rays, resulting in relatively high training
and inference latency. A series of methods [5, 10, 23, 32, 46] have been proposed
to alleviate this problem. And the most representatives include InstantNGP [23]
and Plenoxels [10]. Combined with a multiresolution hash grid and a small neu-
ral network, InstantNGP achieves speedup of several orders of magnitude while
maintaining high image quality. On the other hand, Plenoxels represents the
continuous density field with a sparse voxel grid, to get considerable speedup
and outstanding performance together.



4 Y. Liu et al.

Point-based Rendering Another parallel line of works renders the scene with
point-based representation. Such explicit geometry primitives enable fast render-
ing speed and high editability. Pioneering works include [14, 39, 44, 45, 51], but
discontinuity in rendered images remains a problem. The recently proposed 3D
Gaussian Splatting (3DGS) [12] solved this problem by using 3D Gaussians as
primitives. Combined with a highly optimized rasterizer, the 3DGS can achieve
superior rendering speed over the NeRF-based paradigm with no loss of visual
fidelity. Nevertheless, the explicit millions of Gaussians with high dimensional
features (RGB, spherical harmonics, etc) lead to significant memory and storage
footprint. To mitigate this burden, methodologies such as [9,15,22] are proposed.
Apart from vector quantization [24], [9] and [22] further combine distillation and
2D grid decomposition respectively to compress storage while improving speed.
Joo et al. [15] realize similar performance by exploiting the geometrical similarity
and local feature similarity of Gaussians. Despite the success in compression and
speedup, these researches concentrate on small scenes or single objects. Under
large-scale scenes, the excessive memory cost and computation burden lead to
difficulty in high-quality reconstruction and real-time rendering. And our CityGS
serves as an efficient solution for these problems.

2.2 Large Scale Scene Reconstruction

3D reconstruction from large image collections has been an aspiration for many
researchers and engineers for decades. Photo Tourism [30] and Building Rome
in a Day [1] are two representatives of early exploration in robust and parallel
large-scale scene reconstruction. With the advance of NeRF [21], the paradigm
has shifted. In Block-NeRF [34] and Mega-NeRF [36], the divide-and-conquer
strategy is adopted and each divided block is represented by a small MLP.
Switch-NeRF [49] further improves the performance by introducing learnable
scene decomposition strategy. Urban Radiance Fields [28] and SUDS [37] fur-
ther explores the large scene reconstruction with modalities beyond RGB images,
such as LiDAR and 2D optical flow. To better balance the model storage and
performance, Grid-NeRF [43] introduces guidance from the multiresolution fea-
ture planes, while GP-NeRF [48] and City-on-Web [31] utilizes hash grid and
multiresolution tri-plane representations. To realize real-time rendering, UE4-
NeRF [11] transforms the divided sub-NeRF to polygonal meshes and combines
the matured rasterization pipeline in Unreal Engine 4. ScaNeRF [40] further
counteracts the crux of inaccurate camera poses in realistic scenes. VastGaus-
sian [17] explores the application of 3DGS under large-scale scenes and deals with
appearance variation. However, the low rendering speed of such a large scene re-
mains a problem. In contrast, our approach combines 3D Gaussian primitives
with well-designed training and LoD methodology, elevating real-time render
quality by a large margin.
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2.3 Level of Detail

In computer graphics, Level of Detail (LoD) techniques regulate the amount
of detail used to represent the virtual world so as to bridge complexity and
performance [18]. Typically, LoD decreases the workload of objects that are be-
coming less important (e.g. moving away from the viewer). In recent years, the
incorporation of LoD and the neural radiance field has received extensive con-
cern. BungeeNeRF [41] equips NeRF with a progressive growing strategy, where
each residual block is responsible for a finer detail level. On the other hand,
NGLoD [33] represents different detail levels of neural signed distance functions
(SDFs) with multi-resolution sparse voxel octree, while VQ-AD [32] uses hier-
archical feature grid to compactly represent LoD of 3D signals. Motivated by
Mip-NeRF [21], both Tri-MipRF and LoD-NeuS [50] apply cone casting with
multiresolution tri-plane representation for anti-aliased LoD. City-on-Web [31]
generates coarser detail levels by training feature grid of lower resolution and
corresponding deferred MLP decoder. By realizing LoD on explicit 3D Gaussian
representation, we efficiently improve its real-time performance under large-scale
scenes.

3 Method

Overview The training and rendering pipelines are respectively shown in
Fig. 2 and Fig. 3. We first generate a 3DGS that offers global scene depiction
with normal 3DGS training strategy described in Sec. 3.1. Building upon this
global prior, we employ the training strategy presented in Sec. 3.2 to adaptively
divide the Gaussian primitives and data for further parallel training. Based on
the fused large-scale Gaussians, our Level of Detail (LoD) algorithm discussed
in Sec. 3.3 dynamically selects required Gaussians for fast rendering.

3.1 Preliminary

We begin with a brief introduction of 3DGS [12]. The 3DGS represents the scene
with discrete 3D Gaussians GK = {Gk|k = 1, ...,K}, each of them is equipped
with learnable properties including 3D position pk ∈ R3×1, opacity αk ∈ [0, 1],
geometry (i.e. scaling and rotation used to construct Gaussian covariance), spher-
ical harmonics (SH) features fk ∈ R3×16 for view-dependent color ck ∈ R3×1.
In rendering, given the intrinsics κ and pose τi of i-th image, the Gaussians are
splatted to screen space, sorted in depth order, and rendered via alpha blending:

ci (x) =

K∑
k=1

αkckG
2D
k (x)

k−1∏
t=1

(
1− αtG

2D
t (x)

)
, G2D

k = proj (Gk, κ, τi) , (1)

where proj is projection operation, ci (x) is the color at pixel position x, G2D
k is

projected Gaussian distribution. We refer the readers to the original paper [12]
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for details. The final rendered image is denoted as IGK
(τi). During training, a

typical initialization choice is the point cloud generated with the Structure-from-
Motion (SfM), such as COLMAP [29]. Then based on gradients derived from
differentiable rendering, the Gaussians would be cloned, densified, pruned, and
consistently refined. However, the depiction of large-scale scenes can consume
over 20 million primitives, which easily causes out-of-memory errors in training
process, and rendering time is slowed down as well.

3.2 Training CityGS

Coarse Global 
Gaussian Priors

Gaussian 
Partitioning Data Partitioning

Adaptive Enlarge

Little 
Contribution

View Point

Block j

Parallel Training 
with Global Prior

Block 
Fusion

Fine-Grained
Result

unbounded bounded

Fig. 2: The training process of CityGS. The pink square bounds the foreground area,
facilitating subsequent unbounded space contraction and Gaussian partitioning. Then
for a specific block, a pose is assigned to training set if it is inside the block or if the
block has a considerable contribution to the rendering result. These blocks are then
parallelly trained and merged togethor to depict the whole scene.

In this section, we first illustrate the necessity of a coarse global Gaussian
prior and how to generate it. Based on this prior, we describe the Gaussian
and data primitives division strategy. At the end of this section, we present the
training and post-processing details. The pipeline is shown in Fig. 2.

Global Gaussian Prior Generation This part serves as the basis for further
Gaussian and data division. An intuitive large-scale scene training strategy in-
volves applying a divide-and-conquer strategy to the COLMAP points. However,
due to a lack of depth constraints and global awareness, many geometrically in-
accurate floaters will be generated to overfit regions outside the block, making
a reliable fusion of different blocks difficult. Additionally, the rendered images
from COLMAP points tend to be blurred and inaccurate, making it difficult to
assess whether a specific view is important to training the block. To this end,
we propose a simple yet effective way to solve the problems. Specifically, we first
train the COLMAP points with all observations for 30,000 iterations, yielding
a coarse description of the overall geometry distribution. The resulting set of
Gaussian primitives are denoted as GK = {Gk|k = 1, ...,K}, where K is the
total amount. In further block-wise finetuning, such a strong global geometry
prior leads point to geometrically appropriate positions, eliminating severe in-
terference in fusion. As proved in Tab. 4, this strategy can efficiently improve
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rendering fidelity. Moreover, this coarse Gaussian provides more accurate geom-
etry distribution and cleaner rendered images, facilitating subsequent primitives
and data division.

Primitives and Data Division Considering most real-world scenes are un-
bounded [35], the optimized Gaussians could extend indefinitely. Directly apply-
ing uniform grid division on the original 3D space would lead to many almost
empty blocks, thus making workloads severely unbalanced. To alleviate this prob-
lem, we first contract the global Gaussian prior to a bounded cubic region.

For contraction, the inner foreground region, i.e. the pink square in Fig. 2,
contains a linear space mapping, while the outer background region contains a
non-linear mapping. Specifically, we depict the foreground region with the min-
imum and maximum positions of its corners pmin and pmax. Then we normalize
Gaussian positions as p̂k = 2 (pk − pmin) / (pmax − pmin)− 1. Consequently, the
positions of foreground Gaussians fall within the range [−1, 1]. The subsequent
contraction is executed using the following function [40]:

contract (p̂k) =

{
p̂k, if ||p̂k||∞ ⩽ 1,(
2− 1

||p̂k||∞

)
p̂k

||p̂k||∞
, if ||p̂k||∞ > 1.

(2)

By evenly partitioning this contracted cubic space, a more balanced Gaussian
partitioning is derived.

In the finetuning phase, we hope each block is sufficiently trained. To be spe-
cific, the assigned data should keep training progress focused on refining details
within the block. So one pose needs to be retained only when the considered
block projects a significant amount of visible content to the rendering results.
Distractive cases like severe occlusion or minor content contribution should be
occluded. Since SSIM loss can efficiently capture the structural difference and is
to some extent insensitive to brightness changes [38], we take it as the basis of
our data partition strategy.

Specifically, for the j-th block, the containing coarse global Gaussians are
denoted as GKj

= {Gk|bj,min ⩽ contract (p̂k) < bj,max, k = 1, ...,Kj}, where
bj,min and bj,max defines the x,y,z bound of block j, and Kj is the number of
contained Gaussians. Then whether the i-th pose τi is assigned to j-th block is
determined by:

B1

(
τi,GKj

)
=

{
1, LSSIM

(
IGK

(τi) , IGK\GKj
(τi)

)
> ε,

0, otherwise,
(3)

where GK \ GKj
defines difference set of GK and GKj

. The SSIM loss LSSIM

larger than threshold ε means a considerable contribution of block j to the
rendered image and thus leads to an assignment.

However, solely relying on the first principle can lead to artifacts when view-
ing outside at the edge of the block. Because these cases rarely involve the
projection of considered block, they will not be sufficiently trained under the
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first principle. Therefore we also include poses that fall into considered blocks,
i.e.

B2

(
τi,GKj

)
=

{
1, bj,min ⩽ contract

(
p̂τ i

)
< bj,max,

0, otherwise,
(4)

where p̂τ i
is the position under world coordinate of pose i. And the final assign-

ment is:
B

(
τi,GKj

)
= B1

(
τi,GKj

)
+B2

(
τi,GKj

)
. (5)

Despite having the above strategies in place, empty blocks may still exist in
cases of extremely uneven distributions or high block dimensions. To prevent
overfitting, we enlarge the bound bj,min and bj,max until Kj exceeds certain
threshold. This process is only used in data assignment to ensure enough training
data for each block.

Finetuning and Post-processing After data and primitives division, we pro-
ceed to train each block in parallel. It is worth noting this fine-tuning stage
is under original uncontracted space. Specifically, we utilize the coarse
global prior generated in Sec. 3.2 to initialize the finetuning of each block. The
training loss follows the approach outlined in the original 3DGS paper [12], com-
prising a weighted sum of L1 loss and SSIM loss. Then for each block, we filter
out the finetuned Gaussians contained within its spatial bound. Thanks to the
global geometric prior, interference among blocks is significantly mitigated. Thus
a high-quality overall model can be derived through direct concatenation. Addi-
tional qualitative validation can be found in the Appendix. Further refinement
is left in the LoD part.

Compress
𝑟𝑟0/𝑟𝑟1 /𝑟𝑟2

Fine-Grained
Gaussians

LoD2
LoD1

LoD0

Block-wise LoD 
Selection

Detail Level Generation Bound Estimation &
Intersection Check

Output
Image

Fuse &
Render

Fig. 3: Rendering of CityGS. Based on trained dense Gaussians, we generate detail
levels with different compression rates r0, r1 and r2. When rendering, all the Gaus-
sians in the same block will share the same detail level, which is determined by the
block’s distance to the camera. Since the contraction-based block partition leads to
some irregular block shapes, we estimate their bounding boxes after removing floaters.
The frustum intersection with the estimated block shape determines whether the block
will be fed to rasterizer.

3.3 Level-of-Detail on CityGS

As discussed in Sec. 1, to eliminate the computation burden brought by unnec-
essary Gaussians to rasterizer, our CityGS involves multiple detail levels gener-
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ation and block-wise visible Gaussian selection. We introduce these two parts
respectively in the following two subsections.

Detail Level Generation As objects move away from the camera, they occupy
less area on the screen, while contributing less high-frequency information. Thus
distant, low detail-level regions can be well represented by models of low capac-
ity, i.e. fewer points, less feature dimension, and lower data precision. In prac-
tice, we generate different detail levels with the advancing compression strategy
LightGaussian [9], which operates directly on trained Gaussians, achieving a sub-
stantial compression rate with minimal performance degradation. Consequently,
the memory and computation demand for required Gaussians is significantly
alleviated, while the rendering fidelity is still well maintained.

Detail Level Selection and Fusion A baseline of detail level selection is to
fill frustum regions between different distance intervals with Gaussians from the
corresponding detail level. However, this method necessitates per-point distance
calculation and assignment, resulting in significant computational overhead, as
confirmed in Sec. 4.4. Therefore, we adopt a block-wise strategy, considering
spatially adjacent blocks as the unit, as depicted in the right part of Fig. 3.
Each block is considered as a cubic with eight corners for calculation of frustum
intersection. All the Gaussians contained in certain blocks will share the same
detail level, which is determined by the minimum distance from eight corners
to the camera center. However, in practice, we found the minimum and maxi-
mum coordinates of Gaussians are usually determined by floaters. The resulting
volume would be unreasonably enlarged, leading to many fake intersections. To
avoid the influence of these floaters, we take the Median Absolute Deviation
(MAD) [7] algorithm. The bounds of the j-th block, denoted as pj

min and pj
max,

are determined by:

MADj = median
(∣∣∣pj

k −median
(
pj
k

)∣∣∣) ,

pj
min = max

(
min

(
pj
k

)
,median

(
pj
k

)
− nMAD ×MADj

)
,

pj
max = min

(
max

(
pj
k

)
,median

(
pj
k

)
+ nMAD ×MADj

)
,

(6)

where nMAD is the hyper-parameter. By choosing the appropriate nMAD, this
method can capture the bound of the block more accurately.

After that, all the corners in front of the camera will be projected into screen
space. The minimum and maximum of these projected points composite a bound-
ing box. By calculating its Intersection-over-Union (IoU) with screen area, we
can check if the block has an intersection with the frustum. Along with the block
where the camera is in, all visible blocks of corresponding detail level will be used
for rendering.

In the fusion step, different detail levels are still comprehended via direct
concatenation, which generates negligible discontinuity.
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4 Experimets

4.1 Experiments setup

Dataset and Metrics Our algorithm is benchmarked on five scenes with vari-
ous scales and environments. Specifically, we adopt the 2.7km2 Small City scene
of synthetic city-scale dataset MatrixCity [16], as done in [31]. However, instead
of solely training and evaluating on partial city area, we construct the whole city
and compare performances. And we rescale the image width to 1600 pixels. We
also carried out experiments on public real-world scene datasets, including Res-
idence, Sci-Art, Rubble, and Building [36]. Following the approach in [36,48,49],
the image resolution for these datasets is reduced by a factor of 4×. To further
validate the generalization ability of our CityGS, we also test it on the street
view scene Block_A of MatrixCity [16]. This challenging scene contains 4076
training images and 495 test images. To comprehensively measure the recon-
struction quality of different methods, we take standard SSIM, PSNR, and
LPIPS as our metrics [47]. We also compare FPS to evaluate the rendering
speed. It is noteworthy that we synchronize all CUDA streams before measuring
time, ensuring an objective evaluation of render times for each frame.

CityGSGround Truth 3DGS†MegaNeRF SwitchNeRF GPNeRF

Ru
bb

le
Bu

ild
in

g
Re

sid
en

ce
Sc

i-A
rt

Fig. 4: Qualitative comparison with SOTA methods on real-scene datasets.

Implementations and Baselines Our method first trains coarse global Gaus-
sian priors for further block-wise refinement. The training of priors for Sci-Art,
Residence and Rubble adheres to the parameter settings outlined in 3DGS [12].
But for Building and MatrixCity, we halve the learning rate of position and scal-
ing to prevent underfitting caused by aggressive optimization. In the fine-tuning
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phase, we train each block for another 30,000 iterations with coarse global Gaus-
sian prior as initialization. Furthermore, the learning rate of position is reduced
by 60%, while that of scaling is empirically reduced by 20%, compared to set-
ting in 3DGS [12]. The foreground area of contraction function is chosen as the
central 1/3 area, and detailed block dimensions can be found in the Appendix.
Our method is benchmarked against Mega-NeRF [36], Switch-NeRF [49], GP-
NeRF [48], and 3DGS [12]. Since the datasets contain thousands of images, which
are much larger than that used in the original 3DGS paper [12], we adjust the to-
tal iteration to 60,000, while densifying Gaussians from iteration 1,000 to 30,000
with an iteration interval of 200. This strong baseline is named as 3DGS†. In
LoD, we evaluate on the MatrixCity dataset. We use 3 detail levels, where LoD
2 is the finest and LoD 0 is the coarsest. nMAD mentioned in Sec. 3.3 is set to
4. The blocks within 0m to 200m are represented by LoD 2, blocks within 200m
to 400m are represented by LoD 1, while others are represented by LoD 0.

4.2 Comparison with SOTA

CityGSGround Truth 3DGS†GPNeRF

Fig. 5: Qualitative comparison with SOTA methods on MatrixCity dataset.

For an apple-to-apple rendering quality comparison with the SOTA large-
scale scene reconstruction strategy, we use the performance of the CityGS with
no LoD. The quantitative result is shown in Tab. 1. Due to page limits, we
put results of Sci-Art in the Appendix. It can be observed that our method
outperforms the NeRF-based baselines by a large margin. On the one hand,
as far as we know, our method is the first of all attempts that successfully
reconstructs the whole MatrixCity with highly variable camera altitude, ranging
from 150m to 500m [16]. The PSNR arrives at 27.46 and qualitative results
presented in Fig. 5 also validate the high fidelity of our renderings. Compared
with the baseline 3DGS†, our CityGS can capture much richer details. More
visualizations on MatrixCity can be found in the Appendix. On the other three
realistic scenes, our method enables much higher SSIM and LPIPS, which
indicates outstanding visual quality. As shown in Fig. 4, thin structures like
girder steel and window frames can be well reconstructed. The details of complex
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structures like grass and rubble are well recovered as well. In addition, results in
Tab. 3 validates that our training strategy can generalize well to street scenes.

Table 1: Quantitative Comparison on four large-scale scene datasets. The ’-’ symbol
indicates Mega-NeRF [36] and Switch-NeRF [49] were not evaluated on MatrixCity due
to difficulties in adjusting its training configurations beyond the provided, resulting in
poor performance on this dataset. ’n/a’ means the number of Guassians ’#GS’ does
not apply to NeRF-based methods. The best results of each metric are in bold.

MatrixCity Residence Rubble Building

Metrics SSIM↑ PSNR↑ LPIPS↓ #GS SSIM↑ PSNR↑ LPIPS↓ #GS SSIM↑ PSNR↑ LPIPS↓ #GS SSIM↑ PSNR↑ LPIPS↓ #GS

MegaNeRF [36] - - - n/a 0.628 22.08 0.489 n/a 0.553 24.06 0.516 n/a 0.547 20.93 0.504 n/a
Switch-NeRF [49] - - - n/a 0.654 22.57 0.457 n/a 0.562 24.31 0.496 n/a 0.579 21.54 0.474 n/a
GP-NeRF [43] 0.611 23.56 0.630 n/a 0.661 22.31 0.448 n/a 0.565 24.06 0.496 n/a 0.566 21.03 0.486 n/a
3DGS† [12] 0.735 23.67 0.384 9.7M 0.791 21.44 0.236 6.6M 0.777 25.47 0.2774 6.1M 0.720 20.46 0.305 6.4M
Ours 0.865 27.46 0.204 23.7M 0.813 22.00 0.211 10.8M 0.813 25.77 0.228 9.7M 0.778 21.55 0.246 13.2M

4.3 Level of Detail
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Fig. 6: Validation of LoD. We test rendering speed under looking-down cameras of
different heights. The left part denotes average FPS, while the right part denotes
minumum FPS. The shadowed area under 25 FPS line is the non-real-time zone.

Considering that MatrixCity has test split of over 700 images and various
altitudes, we take it as our benchmark to evaluate effectiveness of our LoD
strategy. Specifically, we first generate three detail levels with compression rates
50%, 34%, and 25%, namely LoD 2, LoD 1, and LoD 0. Our CityGS then applies
the proposed LoD technique to combine all these detail levels. As shown in
Tab. 2, the most fine-grained LoD 2 gains the best rendering quality, while the
coarsest LoD 0 has the fastest rendering speed. Compared with the three detail
levels, the version with LoD technique obtains SSIM and PSNR only second to
LoD 2, while the speed is very close to LoD 1.
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Table 2: Validation of LoD. Without considering the result with no LoD, the best
performances are in bold, while the second best results are in red. Only LoD i means
only using i-th detail level for rendering. And LoD means applying all three detail
levels.

Models SSIM↑ PSNR↑ LPIPS↓ FPS↑

no-LoD 0.865 27.46 0.204 21.6
Only LoD 2 0.863 27.54 0.215 45.6
Only LoD 1 0.848 27.20 0.244 57.2
Only LoD 0 0.825 26.57 0.279 69.4
LoD 0.855 27.32 0.229 53.7

Table 3: Quantitative Com-
parison on MatrixCity street
scene Block_A. The best re-
sults of each metric are in bold.

Method SSIM↑ PSNR↑ LPIPS↓
MipNeRF360 [3] 0.717 22.00 0.488

3DGS† [12] 0.701 21.14 0.441
CityGS 0.808 22.98 0.301

However, the camera altitude of MatrixCity
test split is bounded below 500m. To validate per-
formance under extreme scale variance, we ad-
just the pitch to view straightly downside with
appointed altitude, while keeping other pose at-
tributes unchanged. The rendering results from
different altitudes can be found in parts (d) and
(e) of Fig. 1. The visual disparity between ver-
sions with and without LoD can be observed only
when zooming deeply in.

In Fig. 6, we present how the mean and minimum rendering speed changes
with different camera heights. LoD 0 is not considered for its inferior rendering
quality. Comparing the mean FPS, both results from LoD and single detail level
greatly outperform vanilla by a large margin. And the LoD version wins the
highest speed at all heights. Comparing the minimum FPS, only the LoD version
gains consistent real-time performance under worst cases of various heights, while
the worst speed of single detail level drops dramatically as the camera lifts up.
In other words, the proposed LoD helps smooth real-time transitions among
drastically varying scales.

4.4 Ablation

In this section, we analyze the impact of training strategies as shown in Tab. 4.
As a baseline, we trained using cameras in a 1.5× larger area of each block. The
results in the first and last lines of Tab. 4 indicate that this method significantly
underperforms compared to our CityGS. The main issue is floaters caused by
overfitting areas outside the block, but this is mitigated with guidance from
the global model, improving performance as seen in the second line of Tab. 4.
However, this improved baseline uses 1.5× more Gaussians than CityGS, making
it inefficient. The last three lines demonstrate that Eq.(3) is crucial for data
partitioning, and we found Eq.(4) helps prevent floaters at block edges. Further
hyper-parameter ablations are detailed in the Appendix.
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Table 4: Ablation on training strategy. The experiment is conducted on the Rubble
dataset. The baseline denotes simply selecting cameras within the 1.5× larger area of
the block for training. The best performances are in bold.

SSIM↑ PSNR↑ LPIPS↓ #GS

baseline 0.779 23.98 0.251 12.2
w global, baseline 0.801 25.01 0.227 15.4
w/o Eq.(3), Ours 0.749 23.43 0.252 19.7
w/o Eq.(4), Ours 0.810 25.45 0.233 9.6

Full, Ours 0.813 25.77 0.231 9.7

Table 5: Ablation on LoD Strategy. In-Frustum denotes the strategy used to select
Gaussians within frustum. The block-wise and point-wise strategy are discussed in
Sec. 3.3. Distance Interval here denotes the distance interval used by different detail
levels. The area within the near interval would be represented by a higher detail level.
The best results are in bold.

In-Frustum Distance Interval (m) SSIM↑ PSNR↑ LPIPS↓ FPS↑

block-wise [0,200],[200,400],[400,∞] 0.855 27.32 0.229 53.7
point-wise [0,200],[200,400],[400,∞] 0.849 27.18 0.239 30.3
block-wise [0,150],[150,300],[300,∞] 0.848 27.16 0.242 57.6
block-wise [0,250],[250,500],[500,∞] 0.858 27.39 0.223 46.4

The quantitative ablation on LoD strategy is shown in Tab. 5. Comparing the
first and the second row, the computation burden introduced by the point-wise
strategy leads to the considerably worse real-time performance. Its rendering
quality is on par with the smaller interval setting, i.e. third row. Comparing the
first row with the third and the fourth row, it can be observed that with larger
intervals for LoD 2 and LoD 1, the rendered results would contain richer details,
but downgraded speed. And first row arrives at a balance, which is adopted as
the standard setting.

5 Conclusions

In this work, we present CityGS, which successfully realizes real-time large-scale
scene reconstruction with high fidelity. Through the blocking and LoD strategy
tailored for Gaussian geometry, we obtain state-of-the-art rendering fidelity on
mainstream benchmarks, while significantly reducing time costs when rendering
drastically different scales of the same scene. However, the hidden static scene
assumption limits its generalization ability. Training with the combination of
drastically different views such as aerial and street views also degrades instead
of boosting the performance of CityGS. The inner mechanism deserves to be
further explored and well-resolved.
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