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Abstract. Online action detection aims at identifying the ongoing ac-
tion in a streaming video without seeing the future. Timely and reliable
response is critical for real-world applications. In this paper, we intro-
duce Bayesian Evidential Deep Learning (BEDL), an efficient and gen-
eralizable framework for online action detection and uncertainty quan-
tification. Specifically, we combine Bayesian neural networks and ev-
idential deep learning by a teacher-student architecture. The teacher
model is built in a Bayesian manner and transfers its mutual infor-
mation and distribution to the student model through evidential deep
learning. In this way, the student model can make accurate online in-
ference while efficiently quantifying the uncertainty. Compared to ex-
isting evidential deep learning methods, BEDL estimates uncertainty
more accurately by leveraging the Bayesian teacher model. In addition,
we designed an attention module for active OAD, which actively selects
important features based on the Bayesian mutual information instead
of using all the features. We evaluated BEDL on benchmark datasets
including THUMPS’14, TVSeries, and HDD. BEDL achieves compet-
itive performance while keeping efficient inference. Extensive ablation
studies demonstrate the effectiveness of each component. To verify the
uncertainty quantification, we perform experiments of online anomaly
detection with different types of uncertainties.

Keywords: Online action detection · Evidential deep learning · Bayesian
neural networks · Knowledge distillation · Uncertainty quantification

1 Introduction

Online action detection (OAD) [12] aims at identifying the ongoing action in a
streaming video based on the historical observations. Different from the offline
setting [54, 69], it only use the past information and makes the prediction as
soon as the action takes place. It has many important applications such as au-
tonomous driving [9], visual surveillance [55], and human-robot interaction [25].
OAD is challenging due to the incomplete observations of actions and redun-
dant information among inputs such as background and irrelevant actions. In
addition, capturing the predictive uncertainty and generalizing to unseen envi-
ronments are difficult, which are required by most safety-critical applications
such as autonomous driving.
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To address these challenges, we introduce Bayesian Evidential Deep Learn-
ing (BEDL) for active online action detection and uncertainty quantification.
Specifically, we combine Bayesian neural networks and evidential deep learning
by a teacher-student architecture. Firstly, combining Bayesian neural networks
and evidential deep learning enables accurate and efficient uncertainty quantifi-
cation. Secondly, we introduce Bayesian mutual information (BMI) for OAD to
actively select important features with minimal redundance and irrelevance.

Evidential deep learning (EDL) [1,52,57] is a technique developed for identi-
fying the unknowns by quantifying uncertainty. Specifically, it uses deep neural
networks to predict a Dirichlet distribution over the class probabilities, which
is treated as an evidence collection process. Then the learned evidence are used
to quantify the uncertainty by a single forward pass. EDL is computationally
efficient and it has been widely used for open-set recognition [3, 4, 71] as it en-
ables efficient uncertainty quantification without sampling. However, existing
EDL methods cannot accurately model the epistemic and aleatoric uncertainty,
which are critical as they provide different perspectives and information about
the prediction. On the other hand, Bayesian neural networks (BNN) [20, 38, 47]
can accurately estimate both epistemic and aleatoric uncertainty. But BNN con-
fronts intractability of exact posterior inference and expensive sampling process,
which prevents it from practical applications.

Therefore, we combine EDL and BNN in this work to take advantages of
their respective strengths, i.e. to efficiently and accurately estimate both epis-
temic and aleatoric uncertainty by a single forward pass. Specifically, we use
BNN to augment EDL for uncertainty estimation by a teacher-student model.
First, BNN model (teacher model) is built in a Bayesian manner to model the
posterior distribution of model parameters. Then we transfer the knowledge of
the teacher model to the EDL model (student model) by knowledge distillation
(KD). Different from existing KD approaches that distill prediction scores or
features, our BEDL distills both the uncertainties and mutual information of
teacher model to student model. In this way, the BEDL model inherits the mer-
its of Bayesian neural networks for accurately quantifying both epistemic and
aleatoric uncertainty, while preserving its computational efficiency. As a result,
the BEDL model can accurately and efficiently estimate both types of uncer-
tainties by a single forward pass. The distilled mutual information as used as for
feature selection as below.

To address the background and irrelevant contents issue, we also designed an
attention module for the BEDL model based on the distilled Bayesian mutual
information (MI). We measure the dependency between the ongoing action and
historical features by MI. Then the attention module is learned to generate an
attention mask that can select informative features with high MI. In this way,
the prediction benefits from better features and the online action detection can
be improved.

We evaluated BEDL’s accuracy and efficiency on benchmark datasets in-
cluding THUMOS’14 [31], TVSeries [12], and HDD [50]. We also demonstrated
BEDL’s other properties such as data-efficiency and generalization by extensive



BEDL 3

ablation studies. In addition, we validated the effectiveness of EDL by uncer-
tainty quantification and online anomaly detection.

In summary, the main contributions of this paper are as follows:

– We introduce BEDL based on combining Bayesian neural newtorks and ev-
idential deep learning, which enables efficient and accurate online inference
and uncertainty quantification.

– We design a mutual information based attention module for the BEDL model
to select informative features that are more discriminant and reliable.

– Our proposed BEDL achieves competitive performance on online action de-
tection benchmark datasets in terms of accuracy and efficiency. And we
validated its uncertainty quantification capability.

2 Related Work

Uncertainty quantification. Bayesian neural networks (BNNs) have tradi-
tionally been employed for quantifying uncertainty by considering neural network
parameters as probabilistic variables and analyzing their posterior distributions.
Techniques for uncertainty quantification (UQ) primarily involve Markov Chain
Monte Carlo (MCMC) methods [11,63,70] and variational inference (VI) meth-
ods [19, 42, 43]. Ensemble approaches [26, 27, 40, 58, 59, 64] also serve as effective
alternatives for precise UQ. While traditional BNNs offer several benefits, their
need for a wide range of parameter samples for Bayesian inference results in in-
efficiency in UQ. This inefficiency is due to the requirement for several forward
passes through the neural network, each utilizing uniquely sampled parameters
from the posterior distribution. To address this issue, evidential deep learning
approaches assume the parameters of the target distribution follow a conju-
gate prior distribution, enabling a closed-form expression for uncertainty that
facilitates fast inference. Yet, these methods need additional knowledge to accu-
rately learn the parameters of the prior distribution, including out-of-distribution
(OOD) information [44, 45], ensemble models [46], and density estimations [7].
Even with these resources, point-estimation-based evidential networks may not
effectively measure epistemic uncertainty, as indicated by [56]. Our strategy,
therefore, involves utilizing BNNs to guide the training of evidential networks,
aiming at enhancing the accuracy of evidential deep learning models while en-
suring high efficiency for inference.

Evidential deep learning (EDL). EDL [3, 4, 71] is proposed to address the
challenge of making the model know the unknown when the input data is unfa-
miliar. In addition, it allows uncertainty estimation in a single model and forward
pass [57]. Recently, EDL has been widely used for open-set recognition tasks.
Bao et al . introduced DEAR [3] for open-set action recognition. By formulating
action recognition in an EDL framework, the unknown actions can be recog-
nized by computing the predictive uncertainty. Zhao et al . proposed multi-label
evidential learning (MULE) [71] for open-set action recognition and novelty de-
tection. The proposed evidence debiasing constraint enables the model to handle
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general problems of single or multiple actors in the same scene, with simulta-
neous action(s) by any actor. Later, EDL has been applied for open-set action
localization [4,10,23]. By quantifying the frame-level uncertainty, the model can
distinguish unknown actions from background video framew. Park et al . pro-
posed MEH-HUA [48] for object detection. By aggregating the uncertainty from
EDL in a bottom-up order, the context within the image can be better captured
for object detection. In this paper, we introduce EDL for online action detection
and anomaly detection, which has not been explored yet.

Online action detection. For the model architecture, RNN-based designs [8,
13,15,16,21,24,28,36,41,65,68] are widely adopted because of RNN’s temporal
modeling capability. Typically, Xu et al . [65] proposed temporal recurrent net-
work (TRN) that leverages both the historical information and predicted future
features to detect the ongoing action. Thanks to the self-attention mechanism
and the parallel computing property, Transformer-based methods [5, 29, 34, 51,
60, 62, 66, 67, 73] become the mainstream for online action detection. Wang [62]
proposed OadTR that makes use of both historical information and future pre-
diction. Xu [62] proposed long short-term Transformer (LSTR) that captures
both the long-range and short-term dependencies by two memory units. To over-
come the latency of feature extraction, [5] proposed E2E-LOAD for end-to-end
online action detection. Besides RNN and Transformer, graph modeling is also
studied for online action detection [14]. To leverage the video-level annotations
instead of the dense frame-level annotations, weakly-supervised methods detec-
tion [24,68] are also explored for OAD.

3 Approach

In this section, we first give an overview of the proposed Bayesian evidential deep
learning (§ 3.1) and formulate the online action detection problem (§ 3.2). Then
we introduce BEDL’s Bayesian teacher model (§ 3.3) and evidential student
model (§ 3.4). In the end, we show the training procedures (§ 3.5).

3.1 Overview

The overall framework of BEDL is shown in Figure 1. BEDL is built as a teacher-
student framework, which is composed of a Bayesian neural network as the
teacher model and an evidential neural network as the student model. Given a
streaming video as input, a pretrained backbone first extracts features. Then the
Bayesian tearcher model outputs the action predictions and mutual information
based on the features, which are used to train the evidential student model by
knowledge distillation. During the testing, only the student model is kept to
perform fast inference and efficient uncertainty quantification.
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Fig. 1: Overall framework of Bayesian evidential deep learning (BEDL).
The input of model is a streaming video. A pretrained backbone is used to extract
the features for each frame. During the training, the Bayesian teacher model generates
the mutual information (MI) and multiple sets of predictions. The evidential student
model leverages MI to train the attention module for feature selection and predictions
for uncertainty quantification. During testing, the student model actively selects in-
formative features and quantifies predictive uncertainty accurately and efficiently by a
single forward pass.

3.2 Problem formulation

Online action detection(OAD) aims at recognizing the ongoing action in a
streaming video with only the past and current observations. Denote the input
video as V = [I1, I2, ..., IT ], where T is the length of video and It denotes
the frame at current time t. The online action detection is formulated as a
classification problem: y∗t = argmaxc p(ŷt = c|V t), where ŷt is the prediction,
c is the class label, and V t = {I1, ...It} is the available frame set at time t. A
feature extractor is used to process each frame and generate the corresponding
feature vector. Denote the feature set at time t as F t = {F t

1 , ..., F
t
t }. The feature

at time i is F t
i ∈ RJ , where J is the feature dimension of each frame.

3.3 Bayesian teacher model

To take advantages of Bayesian neural networks for modeling both epistemic and
aleatoric uncertainty, we build a Bayesian teacher model (BTM). BTM’s objec-
tives include: 1) generating mutual information to train the attention module
for feature selection. 2) providing distribution knowledge for the student model
for uncertainty quantification.

The mutual information (MI) between past features and ongoing action indi-
cates the relevance of features. Denote a past feature as F t

ij , where i ∈ {1, ..., t}
is the time index, j ∈ {1, ..., J} is the feature index within each frame, and t
denotes the current time. We aim to obtain the mutual information between F t

ij

and the ongoing action yt. An illustration is shown in Figure 2. To compute
mutual information, we take advantage of Bayesian modeling. Different from
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point estimation, Bayesian method constructs a posterior distribution of model
parameters. By integrating predictions from multiple models, it is less likely to
be overfitting and the predictive uncertainty can be accurately quantified. Addi-
tionally, Bayesian method is more robust when training data is insufficient. We
term the mutual information computed using the Bayesian method Bayesian
Mutual Information (BMI).
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Fig. 2: Illustration of mu-
tual information in OAD.
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Fig. 3: Illustration of distribution distillation by
Bayesian evidential deep learning.

Denote the model parameters of the teacher model as θ and we treat them
as probability distributions. Then the BMI between a past feature F t

ij and the
ongoing action yt can be written as:

I[yt;F t
ij |D] = H[yt|F t

−ij ,D]−H[yt|F t,D] (1)

where D denotes the training data, H denotes the entropy, and F t
−ij is the

feature set at time t excluding F t
ij , i.e. F t

−ij = F t/F t
ij . By definition, the entropy

term is written as:

H[yt|F t,D] = −
∑
yt∈Y

p(yt|F t,D) log p(yt|F t,D) (2)

where Y = {0, 1, ..., C} is the action class set. 0 represents background class and
C is the number of action classes. The prediction distribution in Eq. (2) can be
computed as:

p(yt|F t,D) =

∫
p(yt|F t, θ)p(θ|D)dθ ≈ 1

K
p(yt|F t, θk), where θk ∼ p(θ|D) (3)

In Eq. (3), we use the sample average to approximate it since it is imprac-
tical to integrate over all the possible parameters. Similarly, we can compute
H[yt|F t

−ij ,D].
To obtain the posterior distribution p(θ|D), we perform the Laplace approx-

imation (LA). To reduce the computation cost, we adopt a last-layer Bayesian
setting [39]. Only the posterior distribution of last-layer parameters is modeled,
while keeping the remaining parameters deterministic. Later, we will show this
is efficient and effective. Specifically, we assume the last-layer parameters follows
a Gaussian distribution.
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Firstly, we train the teacher model under the deterministic setting by a cross
entropy loss:

θ∗ = argmin
θ

L(D; θ) = argmin
θ

( N∑
n=1

l(xn, yn; θ) + r(θ)
)

= argmin
θ

( N∑
n=1

− log p
(
yn|fθ(xn)

)
− log p(θ)

) (4)

where D = {xn, yn}Nn=1 is the training set and r(θ) is a regularizer such as weigh
regularizer (a.k.a. weight decay). So θ∗ is indeed a maximum a posteriori (MAP)
estimate.

The Laplace approximation uses a second-order Taylor expansion of L(D; θ)
around θ∗ to construct a Gaussian approximation to p(θ|D):

L(D; θ) ≈ L(D; θ∗) +
1

2
(θ − θ∗)T (∇2

θL(D; θ)|θ∗)(θ − θ∗) (5)

where the first-order term vanishes at θ∗. So the Laplace posterior approximation
can be obtained as:

p(θ|D) ≈ N (θ∗, Σ), with Σ := (∇2
θL(D; θ)|θ∗)−1 (6)

After the LA, we sample K times from p(θ|D) to obtain K sets of parameters
{θ1, ..., θK}. Then we approximate the prediction distribution in Eq. (3) and
further compute the mutual information of each feature. The BMI we computed
are based on multiple models from the teacher model. We use BMI to supervise
the attention module of student model as the importance of past feature is
measured by MI. Different from the traditional MI estimated from probabilistic
models such as Uncertainty-OAD [27], BEDL uses BMI and hence is more robust
and accurate.

3.4 Evidential student model

Evidential deep learning (EDL). Softmax-based deep neural networks are
unable to accurately estimate the predictive uncertainty since the softmax prob-
ability is a point estimation of the predictive distribution and it tends to be
over-confident in wrong predictions. To address such issue, EDL is proposed by
combing Dempster-Shafer Theory [53] and subjective logic [33]. Specifically, it
assumes the classification probability follows a prior Dirichlet distribution. The
training is considered as a process of collecting evidence. The learned parameters
of Dirichlet distribution are used as evidence to compute the predictive uncer-
tainty. In this way, the uncertainty can be estimated in a single forward pass. In
this work, we build the evidential student model under the EDL framework so
that it can output both epistemic and aleatoric uncertainty in a forward pass.
Distribution distillation. Common knowledge distillation (KD) methods aim
at transferring prediction scores, features, or evidence [22], so the student model
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cannot estimate the predictive uncertainty. Differently, we transfer the uncer-
tainty of the Bayesian teacher model to the evidential student model, i.e. distill-
ing the ditribution. In this way, the student model can learn from predictions of
the teacher model as well as the capability of capturing the uncertainty.

Under the classification setting, the target output of student model y follows
a categorical distribution with parameter λ, y ∼ p(y|λ) = Cat(λ). For example,
λ represents the probability after the final softmax layer. We treat λ as a ran-
dom variable and assume it follows Dirichlet distribution, i.e. λ ∼ p(λ|α(x, ψ)) =
Dir(α(x, θ)), where α denotes the parameters of the Dirichlet distribution and
ψ denotes student model parameters. Similarly, the teacher model has posterior
distribution p(λ|x,D) =

∫
p(λ|x, θ)p(θ|D)dθ. During the distillation, we trans-

fer teacher posterior distribution p(λ|x,D) to the student posterior distribution
p(λ|α(x, ψ)). An illustration is shown in Figure 3. Specifically, we minimize the
KL-divergence between these two distributions as below:

Ldis = KL(p(λ|x,D)||p(λ|α(x, ψ)))

∝ −
C∑

c=1

log(Γ (αc)) + logΓ (

C∑
c=1

αc)− Ep(θ|D)[

C∑
c=1

(αc − 1) log λc(x, θ)]
(7)

where C is the number of action classes. Detailed derivation of Ldis can be found
in Appendix. Since the different predictions of the teacher model are combined,
the model is more robust. The complete distribution distillation algorithm is
available in the supplementary.

Mutual information based attention module. The attention module ac-
tively selects informative features from the inputs by generating a spatial-temporal
attention mask At using a fully-connected network and applying to the original
features by element-wise product. In this way, irrelevant features are masked out
since they have low mutual information to the ongoing action. The training of
the attention module is supervised by the BMI It from the teacher model. In
this way, the BMI from the Bayesian teacher model is distilled to the student
model. By minimizing the mean squared error (MSE) loss Latt between At and
It, the attention module can directly generate the BMI-aware attention mask
without computing the BMI. Latt can be written as below:

Latt = MSE(At, σ(It)) =
1

tJ

∑
i,j

||At
ij − σ(I[yt;F t

ij |D])||2 (8)

where σ(·) is the sigmoid function.

Uncertainty quantification. After the distillation through evidential deep
learning, the Dirichlet distribution of the student model gains the knowledge of
the Bayesian teacher model. The uncertainty can be computed efficiently in a
closed-form solution by a single forward pass. Specifically, the total uncertainty
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and epistemic uncertainty can be quantified as:

H[p(y|x, θ)] =
C∑

c=1

αc

α0
log

αc

α0
, where α0 =

C∑
c=1

αc

I[y;λ|α] = −
C∑

c=1

αc

α0

(
ln
αc

α0
Ψ(αc + 1) + Ψ(α0 + 1)

) (9)

where Ψ(·) is the dgamma function. To be simple, the aleatoric uncertainty can
be computed by taking the difference between total uncertainty and epistemic
uncertainty. The uncertainty can be also used to detect the anomaly. Details
derivations are available in the supplementary.

3.5 Training

The evidential student model is jointly trained for online action detection, at-
tention distillation, and distribution distillation. Specifically, we adopt a two-
strategy. We first train the attention module using the attention loss Latt in
Eq. 8. Then we jointly train the evidential student model by total loss L below:

L = Lce + λ1Latt + λ2Ldis (10)

where Lce is the cross-entropy loss for online action detection. λ1 and λ2 are
hyper-parameters that emphasize the attention module and distribution distil-
lation. Although the distribution distillation can make the student model per-
form online action detection, we still perform joint training because the Bayesian
teacher model is not perfect and its posterior distribution is approximated, which
may introduce error to the student model. The joint training brings two benefits:
1) the online action detection can be improved with the supervision of ground-
truth label; 2) the negative log-likelihood Lce makes the training faster and more
stable as indicated in [18]. We demonstrate the two-stage training works better
in Sec. 4.6.

4 Experiments

4.1 Datasets and evaluation metrics

THUMOS’14 [31] is a dataset for video-based temporal action localization. We
use the validation set with 200 videos for training and test set with 213 videos
for evaluation. There are 20 action classes and a background class. We ignore
the frames with ambiguous labels. Following the settings in [21, 65], we adopt
the mean Average Precision (mAP) as the evaluation metric.
TVSeries [12] is a dataset collected from real TV series. It contains 27 episodes
with 30 daily actions. It is a challenging dataset due to the viewpoints chang-
ing and occlusions in the videos. To counter the imbalanced data distribu-
tion, we adopt the mean calibrated Average Precision (mcAP) [12] as the
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evaluation metric. It is computed as cAP =
∑

k cPrec(k) × 1(k)/P , where
cPrec = TP/(TP +FP/ω), P is the total number of positive frames and 1(k) is
an indicator function that is equal to 1 if frame k is a true positive. The mcAP
is the mean of calibrated average precision of all action classes.
HRI Driving Dataset (HDD) [50] is a dataset for learning driver behavior
in real-life environments. It contains 104 hours of real human driving in the San
Francisco Bay Area collected by an instrumented vehicle with different sensors.
There are 11 goal-oriented driving actions. Following the settings in [50], we use
100 sessions for training and 37 sessions for testing. And only the sensor data is
used as the input. mAP is used as the evaluation metric for this dataset.

Table 1: Online anomaly detec-
tion results on THUMOS’14 and
TVSeries.
Uncertainty THUMOS’14 (%) TVSeries (%)
EDL [3] 64.72 42.39
Total 81.04 65.16
Aleatoric 62.51 39.83
Epistemic 86.48 69.44 Fig. 4: ROC curves of online anomaly

detection using epistemic uncertainty on
THUMOS’14 (left) and TVSeries (right).

4.2 Implementation Details

Feature extraction. Following the settings in [15, 65, 66], we use TSN [61] to
extract the features for THUMOS’14 and TVSeries. Video frames are extracted
at 24 fps and the chunk size is set to 6. To better capture the spatial-temporal
dependencies, we adopt the multi-scale vision Transformer [17] to extract RGB
features. The optical flow features are extracted with BN-Inception [32]. The
backbone is pretrained on ActivityNet [30] and Kinetics-400 [6] separately for
evaluation. For HDD dataset, the sensor data is used as the input. More details
can be found in the supplementary.
Settings. The BEDL is implemented in PyTorch [49]. The model is trained
by the Adam optimizer [37] with a learning rate of 10−4 and a weight decay
of 5 × 10−5. The batch size is set to 32. The experiments were conducted on
two Nvidia RTX 3090 Ti GPUs. The number of epochs is set to 20. Ablation
studies on existing methods are based on their officially released codes. Detailed
model architectures are available in the supplementary. And csode will be made
publicly available.

4.3 Online action detection results

We evaluate BEDL on three benchmark datasets and make a comparison with
other methods in Table 2. From the results, our proposed BEDL achieves state-
of-the-art performance on most benchmarks. On THUMOS’14, BEDL achieves
70.6% and 72.7% mAP using ActivityNet and Kinetics pretrained features. On
TVSeries, BEDL achieves 88.9% and 90.1% mcAP using ActivityNet and Kinet-
ics features respectively. On HDD, we only use the sensor data as the input and
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achieve 33.0% mAP, which is higher that the SOTA MAT [60]. The OAD per-
formance demonstrate the effectiveness of BEDL for accurate online inference.
In the following parts, we show other superior properties of BEDL while keeping
accurate inference.

Table 2: Experiment results on THUMOS’14, TVSeries and HDD. The re-
sults on THUMOS’14 and HDD are reported as mAP (%). The results on TVSeries
are reported as mcAP (%). For HDD, ⋆ indicates RGB data is used as the input.

Method Architecture THUMOS’14 TVSeries HDD
ANet Kinetics ANet Kinetics Sensor

RED [21]

RNN

45.3 - 79.2 - 27.4
FATS [35] - 59.0 81.7 84.6 -
TRN [65] 47.2 62.1 83.7 86.2 29.2
IDN [15] 50.0 60.3 84.7 86.1 -
PKD [72] - 64.5 - 86.4 -
WOAD [24] - 67.1 - - -
OadTR [62]

Transformer

58.3 65.2 85.4 87.2 29.8
CoOadTR [29] 56.1 64.2 87.6 87.7 30.6
Colar [67] 59.4 66.9 86.0 88.1 30.6
LSTR [66] 65.3 69.5 88.1 89.1 -
Uncertainty-OAD [27] 66.0 69.9 88.3 89.3 30.1
TeSTra [73] 68.2 71.2 - - -
GateHUB [8] 69.1 70.7 88.4 89.6 32.1
MiniROAD [2] 69.3 71.8 88.5 89.6 -
MAT [60] 70.4 71.6 88.6 89.7 32.7
E2E-LOAD [5] - 72.4 - 90.3 48.1⋆

BEDL (ours) 70.6 72.7 88.9 90.1 33.0

4.4 Uncertainty quantification and online anomaly detection

To verify the uncertainty quantification of BEDL, we quantified different types
of uncertainties and perform online anomaly detection on THUMOS’14 and
TVSeries. Specially, we divide the data into known classes and unknown classes
(anomaly). Unknown classes do not appear in the training set. During testing,
both known and unknown data will appear and the model is required to identify
if the input belong to known or unknown classes. For THUMOS’14, we treat
the “ambiguous” class that are difficult to identify during labeling process as
anomaly. For TVSeries, we randomly select 5 out of 30 classes as the anomaly
and repeat the process for ten times. Inputs that lead to high predictive uncer-
tainty above the pre-defined threshold are declared as anomalies.

The experiment results are shown in Table 1 and ROC curves are plotted in
Figure 4. From the results, BEDL can accurately identify the unknown classes
during the testing, which validates the effectiveness of its uncertainty quantifica-
tion. Since epistemic uncertainty represents the lack of knowledge of the model
and it is inversely proportional to the data density, it has better anomaly detec-
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tion accuracy compared to aleatoric uncertainty, which represents the noise level
of the data. Detailed experiment procedures can be found in the supplementary.

4.5 Computational efficiency and model complexity

We leverage evidential deep learning for BEDL in order to make it more practical
for real-time applications. A comparison of computation efficiency and model
complexity is shown in Table 3. While keeping a high detection accuracy, our
proposed BEDL has much less model complexity and computational cost. And
the inference speed of the model is much higher compared to other methods.
Recently, [5] proposed an end-to-end OAD framework to avoid the latency from
the frame and feature extraction parts, which leads to higher overall inference
speed. To make fair comparisons, we used the same feature extraction procedures
as prior works and we mainly compare the model inference speed since it only
depends on the model architecture and pipeline.

Table 3: Comparison of computation efficiency and model complexity. Our
proposed BEDL has less model complexity and computational cost. And the inference
speed is much faster than other methods.

Method Modality
Model Inference Speed (FPS)

Parameter GFLOPs Optical Flow RGB Feature Flow Feature ModelCount Computation Extraction Extraction
TRN

RGB + Flow

402.9M 1.46 8.1 70.5 14.6 123.3
OadTR 75.8M 2.54 8.1 70.5 14.6 110.0
LSTR 58.0M 7.53 8.1 70.5 14.6 91.6
GateHUB 45.2M 6.98 8.1 70.5 14.6 71.2
MAT 94.6M - 8.1 70.5 14.6 72.6
BEDL (ours) 19.4M 0.48 8.1 70.5 14.6 163.2

4.6 Ablation studies

Training strategies. To demonstrate the effectiveness of two-stage training
strategy, we compared it with two other training strategies. One is jointly train-
ing the attention module and EDL model by the total loss in Eq. 10. The other
is firstly training the attention module by the attention loss and then we freezing
the weights of attention module to train the EDL model by the Latt and Lce.
We refer the first one as joint training and the second one as separate training.
The performance comparison is shown in Table 4. The results show that the
two-stage training outperforms the other two strategies on both THUMOS’14
and TVSeries with different features, which demonstrates its effectiveness.
Number of historical frames. At time t, BEDL takes a certain number of
past frames to predict the ongoing action. To study the long-range and short-
term modeling capability of BEDL, we vary the number of past frames as the
input. The experiment results are shown in Table 5. THUMOS’14 and TVSeries
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Table 4: Ablation study of train-
ing strategies. The two-stage training
gives the best performance.

Training THUMOS’14 TVSeries
ActivityNet Kinetics AcivityNet Kinetics

Joint 69.5 70.7 85.4 88.2
Separate 64.9 67.8 81.6 84.0
Two-stage 70.6 72.7 88.9 90.1

Table 5: Ablation study of different number
of historical frames.

Dataset Feature Number of past frames
8 16 32 64 128

THUMOS’14 ANet 41.6 59.2 68.7 70.6 66.5
Kinetics 49.3 61.6 71.4 72.7 70.0

TVSeries ANet 63.5 76.7 87.6 88.9 84.9
Kinetics 68.2 79.3 88.5 90.1 88.2

HDD Sensor 30.4 31.8 33.0 32.1 30.2

(a) THUMOS’14-ANet (b) THUMOS’14-K400 (c) TVSeries-ANet (d) TVSeries-K400

Fig. 5: Experiment results of training with small-scale data. We reduce the
training data from 100% to 10% and compared with LSTR [66], MAT [60], and E2E-
LOAD [5]. The results are plotted for THUMOS’14 and TVSeries with both ActivityNet
and Kinetics pretrained features. Our proposed BEDL outperforms all others when
training data is limited.

are extracted at 6 fps. HDD is extracted at 3 fps. So the optimal number of
frames on HDD is 32.

Data-efficiency. By applying the mutual information based attention mecha-
nism, we expect BEDL to be more data-efficient when the amount of training
data is limited. We reduce the training data from 100% to 10% and compare
with other methods. The results on THUMOS’14 and TVSeries are plotted in
Figure 5. When training data is reduced, BEDL has less performance decay
and outperforms other methods, which demonstrates that BEDL is more data-
efficient.

Loss function. In the second training stage of BEDL, the total loss in Eq. 10
is composed of three terms. λ1 and λ2 are the weights for attention loss and
distribution distillation loss. To study the balance of all three terms, we train
the model with different λs on THUMOS’14 and TVSeries. the comparisons are
plotted in Figure 6. We empirically choose λ1 = 0.4 and λ2 = 6 since they give
the best performance.

Generalization. To test the generalization capability of the model, we perform
the Cross-View and under occlusion experiments on TVSeries dataset. Following
the settings in [27], the training set and test set are from different view angles.
For the occlusion, the training data does not contain occlusion and the testing
data is occluded. The experiment results and comparison are shown in Table 6.
The results show that BEDL generalizes better under different conditions.
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Fig. 6: Ablation study of loss function for
λ1 and λ2 on THUMOS’14 with Activi-
tyNet and Kinetics features.

Table 6: Cross-view and occlusion
experiments results on TVSeries.
Method CV (%) Occ. (%)
TRN [65] 65.8 85.2
OadTR [62] 66.2 87.7
U-OAD [27] 67.3 89.5
Colar [67] 66.7 88.3
LSTR [66] 69.5 89.4
TeSTra [73] 70.2 89.9
BEDL (ours) 74.3 91.8

Attention module. To verify the effectiveness Bayesian mutual information, we
first compare with the model without BMI. Specifically, we trained the student
model with the same evidential neural network without the attention module.
The total loss function is L = Lce + λ2Ldis and we grid-searched λ2 to obtain
the best accuracy. In addiction, we compute the mutual information based on a
single prediction instead of BMI and trained the model by the same loss function
in Eq. 10. The results are shown in Table 7. From the results, the BEDL with
BMI outperforms other two methods, which demonstrates the effectiveness of
attention mechanism using BMI.
Last-layer Bayesian. For the teacher model, we adopt the last-layer Bayesian [39]
method to reduce the difficulty of training. We also performed the Laplace ap-
proximation over all the model parameters. The comparison is shown in Ta-
ble 8. The full-Bayesian method has consistent improvement on THUMOS-14
and TVSeries. But the LA in training takes much longer time than the last-layer
Bayesian and the model needs careful tuning, so we adopt the last-layer Bayesian
in the LA process.

Table 7: Effectiveness of BMI. BEDL-No-
BMI denotes the model without attention
module and BEDL-MI denotes the model
with non-Bayesian MI.

Model THUMOS’14 TVSeries
ActivityNet Kinetics AcivityNet Kinetics

BEDL-No-BMI 63.1 64.8 86.5 87.4
BEDL-MI 67.6 68.4 88.0 88.5
BEDL 70.6 72.7 88.9 90.1

Table 8: Comparison of full-
Bayesian and last-layer Bayesian.
Full-Bayesian improves the performance
since it models the distribution of all
model parameters.

Method THUMOS-14 (mAP %) TVSeries (mcAP %)
ActivityNet Kinetics AcivityNet Kinetics

Last-layer 70.6 72.7 88.9 90.1
Full-Bayesian 71.1 73.0 90.2 90.3

5 Conclusion

Conclusions. In this paper, we introduce Bayesian evidential deep learning
for active online action detection and uncertainty quantification. By combining
Bayesian neural networks and evidential deep learning, BEDL can accurately
and efficiently quantify predictive uncertainty and make online inference.
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