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A Implementation Details

A.1 Proximal Policy Optimization (PPO) Algorithm

Proximal Policy Optimization (PPO) algorithm offers a balance between sample
efficiency and ease of implementation. In this section, we elaborate in more detail
of the PPO algorithm adopted in our paper. First, consider a surrogate objective:

LCPI(ϕ) = Et

[
πϕ(at|st)
πϕold(at|st)

Ât

]
,

where πϕ and πϕold are the policy network before and after the update, respec-
tively. The advantage estimator Ât is computed by:

Ât = −V (st) +R(sT ,aT ),

where V (st) is a learned state-value function. This objective function effectively
maximizes the probability ratio ρt(ϕ) =

πϕ(at|st)
πϕold (at|st)

when considering the ad-
vantage of taking action at in state st. However, directly maximizing LCPI(ϕ)
usually leads to an excessively large policy update, hence, we consider how to
modify the objective, to penalize changes to the policy that move ρt(ϕ) away
from 1. This gives rise to the clipped surrogate objective:

LCLIP(ϕ) = Et

[
min

(
ρt(ϕ)Ât, clip (ρt(ϕ), 1− ϵ, 1 + ϵ) Ât

)]

where ϵ is a hyper-parameter that controls the range of the probability ratio.
Finally, to learn the state-value function, we additionally add a term for value
function estimation error to the objective following [20], which results in the
objective in Eq. 11 in our main paper.

A.2 Architecture

Our policy network consists of a depth-wise convolution layer, a point-wise con-
volution layer and a multi-layer perceptron (MLP). We take the NAT model’s
output feature as the generation status input, and additionally use adaptive
layernorm (AdaLN) [15, 16] layers to incorporate timestep information into the
policy network. The architecture of the adversarial reward model follows the dis-
criminator in StyleGAN-T [18]. Notably, the policy network is highly lightweight,
incurring negligible additional inference cost:

model T infer. cost (all) infer. cost (policy) proportion (policy/all)
AdaNAT-S 4 184.5 GFLOPs 0.064 GFLOPs 0.03%
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A.3 Hyperparameter Details

We perform the optimization loop of AdaNAT in Algorithm 1 for 1000 iterations.
In practice, we perform 5 gradient updates within each loop of Algorithm 1
for both the policy network and the adversarial reward model to facilitate a
more stable and efficient optimization process in the minimax game. For the
optimization of the policy network, we adopt ϵ = 0.2, c = 0.5 for the PPO
objective, and use Adam [9] optimizer with a learning rate of 1 × 10−5, β1 =
0.9, β2 = 0.999. The batch size is set to 4096. The σ hyperparameter in Eq. 9,
which balances exploration and exploitation, is set to 0.6 and reduced to 0.3 after
500 iterations. For the adversarial reward model, we use Adam [9] optimizer
with a learning rate of 1 × 10−4 and β1 = 0.5, β2 = 0.999. The batch size of
updating the adversarial reward model is set to 1024 by default. For experiments
on ImageNet 512×512 [17] and CC3M [21], we reduce the batch size to 512 to fit
the memory constraints. For the pre-training of our NAT models, we generally
follow the training settings used in previous work [1], with modifications on
learning rate to 4e-4 and a larger batch size of 2048 on ImageNet dataset. The
results on CC3M is based on a publicly available Muse model from github1.

B Experiment Details of FID-based Reward

When implementing FID-based reward design as described in Section 4.3, we find
that the FID-based reward model is not able to provide a stable and effective
reward signal for the adaptive policy network, leading to divergence:

FID-50K↓
dataset model T adaptive non-adaptive

ImageNet 256 × 256 AdaNAT-L 8 55.4 (Fail) 2.56

As a result, we adopted a non-adaptive version of policy network, where all
samples share the same generation configuration. Empirically, the non-adaptive
policy network can also be optimized effectively with a low FID. However, as
discussed in Section 5.2, this numerical superiority does not translate to a practi-
cal advantage in terms of sample quality. The FID reward-based policy network
fails to produce images of satisfactory quality.

C Practical Latency

Figure 1 illustrates the comparison of the practical latency of AdaNAT against
several competitive baselines on ImageNet 256×256. This comparison includes
the latency on both GPU and CPU for generating a single image. The results
present a more comprehensive comparison on the efficiency & efficacy tradeoff
of AdaNAT and other methods in practical scenarios.
1 Due to the concern that including the link runs a risk of violating anonymity, we

will provide the specific reference in the camera-ready version of this paper.
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Fig. 1: Practical latency of AdaNAT on ImageNet 256×256. GPU time is
measured on an A100 GPU with batch size 50. CPU time is measured on Xeon 8358
CPU with batch size 1. † : DPM-Solver [11] augmented diffusion models.

(a) AdaNAT (b) AutoNAT

Fig. 2: Qualitative comparisons between AdaNAT and AutoNAT [14] on
ImageNet 256×256. AdaNAT generates images with superior visual quality.

D Comparisons with AutoNAT

Similar to AdaNAT, AutoNAT [14] aims to enhance the policies in non-autoregressive
Transformers. It achieves this by optimizing a FID-based objective. The table
below provides quantitative comparisons between AdaNAT and AutoNAT on
ImageNet 256×256 with T = 8.

method TFLOPs↓ FID-50K↓
AutoNAT-L [14] 0.9 2.68
AdaNAT-L (FID-based) 0.9 2.56
AdaNAT-L (Adv-based) 0.9 2.86

The results demonstrate that the FID-based approach achieves better quan-
titative metrics, with our FID-based AdaNAT model outperforming AutoNAT.
However, as discussed in Section 5.2, this optimization often leads to overfitting,
resulting in subpar image quality. Consequently, we opted for an adversarial-
based approach, which offers a more robust and favorable solution. Qualita-
tive comparisons between AutoNAT and AdaNAT in Figure 2 illustrate that
AdaNAT generates images with superior visual quality.
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E Potential Impact, Limitation, and Future Work

As with any AI-generated content technology, there are potential ethical con-
siderations and risks of misuse, such as creating misleading content, deepfakes,
or spreading misinformation. Additionally, like other data-driven approaches,
the model may inadvertently reinforce biases present in the training data. In
terms of limitations and future work, it is essential to investigate the efficacy of
AdaNAT on larger-scale datasets like laion-5B [19] and explore the performance
of NAT models exceeding 1B parameters to understand scalability and robust-
ness. Additionally, applying AdaNAT across more diverse generative tasks and
domains [4–7] could broaden its impact. Integrating more advanced adaptive in-
ference methods [8,23–25,27–31] and learning techniques [7,13,22,26] can further
enhance the capabilities and applicability of non-autoregressive Transformers.
Finally, better interpreting the decisions made by the policy network and trans-
lating them into insights for designing improved non-autoregressive transformer
generation paradigms presents a valuable direction for future research.

F Scheduling Functions of Existing Works

The scheduling functions of existing works [2, 3, 10, 12] are shown in the table
below:

generation policy scheduling functions
re-masking ratio m(t)

m(t) = cos
π(t+1)

2T

sampling temp. τ (t)
1 τ1

(t) = 1.0

re-masking temp. τ (t)
2 τ2

(t) =
λ(T−t)

T

guidance scale w(t)
w(t) =

k(t+1)
T
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