
Rethinking Data Augmentation
for Robust LiDAR Semantic Segmentation

in Adverse Weather

Supplementary Material

In this appendix, we supplement more materials to support the findings and
conclusions in the main body of this paper. Specifically, this appendix is orga-
nized as follows. Section A provides additional explanations of Selective Jittering.
Section B provides detailed explanations for Learnable Point Drop. Section C
presents toy experiments conducted with SynLiDAR. Section D details class-level
results. Section E offers further ablation studies. Section F provides additional
qualitative results.

A Detailed Explanation for Selective Jittering

Selective Jittering is devised to address the primary distortion of geometric per-
turbation and consists of two types: Depth-Selective Jittering (DSJ) and Angle-
Selective Jittering (ASJ). DSJ adds noise to points along discretized depth levels.
The number of depth levels, randomly selected within a specific range, is a hy-
perparameter. ASJ perturbs points along angles, with the maximum angular
range as a hyperparameter. In addition, Range Jittering (RJ) perturbs points in
the range direction with Gaussian noise, which DSJ and ASJ do not.

B Detailed Explanation for Learnable Point Drop

(1) Concept: In Section 3, we claimed that adverse weather causes point drops
and degrades performance. Therefore, once critical point drops that degrade the
model performance are identified, we presume it can sufficiently mimic the effects
of adverse weather. This is why LPD receives a reward as LLPD −Laug +HLPD −
Haug, encouraged to find adverse point drops.
(2) Loss: The update loss in LPD is identical to that in the original DQN paper
[5], with reward r, discount rate γ, frozen target model Q′ and policy model Q:

LDQN = Ei,s,a

[(
r + γmax

a′
Q′(s′, a′; θi−1)−Q(s, a; θi)

)2
]
. (1)

(3) The network needs only one backpropagation, and our training with LPD
is performed only once. The loss of LPD from eqn. 1 and Laug and LLPD are
combined and backpropagated together:

Ltotal = Laug + LLPD + LDQN . (2)
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Fig.A.1: Illustration of proposed selective jittering. (a) Original points from clean
data. (b) Depth-selective jittering (DSJ) adds Gaussian noise to a random range of
depths. (c) Angle-selective jittering (ASJ) adds Gaussian noise to a random range of
angles. (d) Range Jittering adds Gaussian noise in the range direction and is used
alongside points treated with DSJ or ASJ.

C Toy Experiment in SynLiDAR

In the main paper, the toy experiment conducted on the SemanticKITTI [1]
validation set was also performed using SynLiDAR [8]. As illustrated in Table
A.1, the toy experiment in SynLiDAR yielded results akin to those observed
in SemanticKITTI. Additionally, a detailed representation of the toy example’s
outcomes in SynLiDAR can be examined through Figure A.2.

Table A.1: Results of toy experiments from validation set of SynLIDAR [8].
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mIoU

Clean 0.0 54.9 94.1 0.0 0.0 94.8 93.7 0.0 94.8 0.0 89.8 0.0 98.2 53.7 76.8 90.3 0.0 86 95.2 53.8

D1 : soft 0.0 37.0 86.7 0.0 0.0 89.5 87.8 0.0 92.6 0.0 85.1 0.0 93.8 32.4 39.5 80.9 0.0 84.7 93.0 50.2
D1 : hard 0.0 9.1 53.9 0.0 0.0 56.0 48.6 0.0 20.9 0.0 23.7 0.0 31.0 0.4 4.8 26.7 0.0 39.6 74.4 21.6
D2 : soft 0.0 4.2 86.7 0.0 0.0 88.2 87.8 0.0 92.5 0.0 48.4 0.0 52.1 7.0 1.4 68.8 0.0 28.8 26.8 31.2
D2 : hard 0.0 0.2 52.5 0.0 0.0 50.3 48.4 0.0 20.6 0.0 3.1 0.0 4.0 0.2 0.1 10.5 0.0 2.2 8.7 11.1
D3 : soft 0.0 55.7 79.6 0.0 0.0 86.5 87.4 0.0 45.0 0.0 50.4 0.0 55.3 22.3 6.8 74.1 0.0 69.5 29.1 34.8
D3 : hard 0.0 12.5 11.3 0.0 0.0 63.3 32.9 0.0 0.2 0.0 3.5 0.0 6.6 1.9 2.8 45.6 0.0 4.1 0.1 9.7
D4 : soft 0.0 54.8 94.1 0.0 0.0 94.8 93.8 0.0 94.8 0.0 89.8 0.0 98.2 53.8 76.6 90.2 0.0 86 95.2 53.8
D4 : hard 0.0 54.8 94.1 0.0 0.0 94.8 93.8 0.0 94.8 0.0 89.8 0.0 98.2 53.8 76.6 90.2 0.0 86 95.2 53.8
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Fig.A.2: Qualitative results of toy experiments in SynLiDAR [8]. MinkUnet is em-
ployed and trained in train set of the SynLiDAR dataset. The red points represent
incorrect predictions, whereas the green points indicate correct predictions.

D Detailed Class-level Results

We provide detailed class IoU for the Table 2 of the main paper. As seen in Table
A.2 for SemanticKITTI→SemanticSTF, our method has significantly improved
the performance of categories such as other vehicle, motorcyclist, sidewalk, pole,
and traffic sign, which initially had lower baseline performance. Specifically, it
achieved increases of +12.0 IoU for other vehicle, +36.6 IoU for motorcyclist,
+11.9 IoU for sidewalk, +4.9 IoU for pole, and +28.2 IoU for traffic sign. This
demonstrates that our methodology is effective in predicting classes that are
likely to be overlooked due to adverse weather conditions. Furthermore, the
superiority of our method is evident as it shows better performance than the
existing state-of-the-art method, PointDR, across most classes.

Table A.2: LiDAR segmentation results (mIoU) on the SemanticSTF validation set
of models trained with SemanticKITTI. D-fog and L-fog denote dense fog and light
fog weather conditions in all experiments. ∗ is the reproduced result with the same
segmentation backbone. The best score is in bold and the second best is underlined.
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mIoU

Oracle 89.4 42.1 0.0 59.9 61.2 69.6 39.0 0.0 82.2 21.5 58.2 45.6 86.1 63.6 80.2 52.0 77.6 50.1 61.7 54.7

Baseline 67.1 5.0 28.1 38.5 14.6 45.8 8.3 13.8 40.1 16.1 26.1 3.3 71.6 52.7 53.8 33.9 39.2 25.3 12.7 31.4
LaserMix [4] 18.6 5.4 0.0 9.9 1.6 0.6 7.9 10.5 47.6 6 12.1 1.8 21.6 20.2 48.4 6.6 37.8 19 2.8 14.7
PolarMix [7] 21 2 0.0 3.8 1.6 2.8 0.6 0.0 58.3 4.4 17.4 1.4 40.7 36.4 41.3 6.6 35 14.6 2.8 15.3
PointDR∗ [9] 69.2 1 8.9 41.9 7.6 48.9 17.0 36.2 57.8 15.9 32.3 4.0 75.7 46.4 54.0 36.2 43.9 23.7 24.2 33.9

Baseline+SJ+LPD 86.1 4.8 13.8 39.7 26.6 55.4 8.5 50.4 63.7 14.9 37.9 5.5 75.2 52.7 60.4 39.7 44.9 30.1 40.8 39.5
Increments to baseline +19.0 -0.2 -14.3 +1.1 +12.0 +9.6 +0.2 +36.6 +23.5 -1.2 +11.9 +2.2 +3.6 0.0 +6.7 +5.8 +5.7 +4.9 +28.2 +8.1
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Table A.3: LiDAR segmentation results (mIoU) on the SemanticSTF validation set of
models trained with SynLiDAR. D-fog and L-fog denote dense fog and light fog weather
conditions in all experiments. ∗ is the reproduced result with the same segmentation
backbone. The symbol ‡ indicates that the validation for model selection was performed
on sequence 0 of SynLiDAR, rather than SemanticSTF. The best score is in bold and
the second best is underlined.
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Oracle 89.4 42.1 0.0 59.9 61.2 69.6 39.0 0.0 82.2 21.5 58.2 45.6 86.1 63.6 80.2 52.0 77.6 50.1 61.7 54.7

Baseline 33.76 1.71 3.29 15.54 0.24 25.52 1.65 3.43 15.27 9.16 16.76 0.05 33.38 21.89 39.49 18.7 44.03 8.75 0.84 15.45
LaserMix [4] 52.41 5.6 1.05 7.91 1.96 25.59 1.62 2.92 44.58 6.44 21.21 0.88 16.95 23.61 40.75 18.91 41.45 5.65 0.7 16.85
PolarMix [7] 48.93 4.23 2.32 14.64 2.37 24.55 2.14 4.64 34.64 7.66 19.8 0.39 37.44 22.3 44.85 21.32 43.18 7.08 1.3 18.09
PointDR∗ [9] 41.07 2.81 3.43 18.05 0.17 31.3 2.81 3.3 34.39 10.23 19.72 0.96 52.72 21.98 48.49 21.33 38.31 19.19 5.61 19.78
PointDR∗‡ [9] 36.13 3.47 2.15 21.93 0.31 28.72 1.69 5.09 42.92 9.31 20.71 0.58 50.83 26.88 46.85 24.49 37.69 22.74 6.45 20.47

Baseline+SJ+LPD 42.13 2.79 2.68 19.22 0.67 29.22 1.91 4.8 42.32 8.67 21.05 1.56 48.23 25.97 47.17 22.11 32.8 21.74 6.54 20.08
Increments to baseline +8.4 +1.1 -0.6 +3.7 +0.4 +3.7 +0.3 +1.4 +27.0 -0.5 +4.3 +1.5 +14.9 +4.1 +7.7 +3.4 -11.2 +13.0 +5.7 +4.6
Baseline+SJ+LPD‡ 39.26 2.89 0.89 19.39 0.75 27.68 2.19 3.78 42.5 9.35 21.55 0.3 51.89 33.48 47.38 23.11 33.31 23.22 6.78 20.51
Increments to baseline +5.5 +1.2 -2.4 +3.8 +0.5 +2.2 +0.5 +0.4 +27.2 +0.2 +4.8 +0.3 +18.5 +11.6 +7.9 +4.4 -10.7 +14.5 +5.9 +5.1

In the experiment for SynLiDAR→SemanticSTF, our methodology signifi-
cantly improves performance on key classes in a driving environment, increasing
the IoU for ’car’ by +5.5, ’person’ by +2.2, and ’road’ by +27.2 as shown in
Tab. A.3. Additionally, it shows substantial performance gains compared to the
baseline, with increases of +4.8 IoU for ’sidewalk’, +18.5 IoU for ’building’, and
+11.6 IoU for ’fence’. This indicates that our methodology effectively aids in
predicting classes that become challenging to forecast due to adverse weather
conditions.

E More Ablation Studies

Analysis of DSJ and ASJ. Our study compared DSJ and ASJ against jittering
applied to all points. Additionally, to evaluate Cube-Selective Jittering (CSJ),
which involves jittering points within a random cubic area. According to Tab.
A.4, jittering all points improved robustness in +5.5 mIoU but resulted in a -2.2
mIoU performance decrease on clean data. In contrast, CSJ led to a decrease
in mIoU across all adverse weather conditions in a -0.2 mIoU. This outcome
suggests that not considering the prior spherical shape of LiDAR data when
choosing jittering locations may be inadequate for countering adverse weather.
Conversely, ASJ demonstrated improvements (+2.6 mIoU in dense fog, +5.3
mIoU in light fog, +7.9 mIoU in rain, and +6.3 mIoU in snow) with a relatively
minor -1.8 mIoU performance decrease in clean data. Also, DSJ showed similar
trends with increases in mIoU across various adverse weather conditions and a
more moderate -1.7 mIoU drop in clean data performance. These results indicate
that ASJ and DSJ effectively simulate coordinate distortion while minimizing
the performance gap with clean data.
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Table A.4: Experiments on ASJ/DSJ relative to all-point jittering/CSJ. All models
were trained on SemanticKITTI and validated on SemanticSTF. The values in paren-
theses indicate the performance improvement or decrease over the baseline model.
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mIoU

Baseline 63.9 30.7 30.1 29.7 25.3 31.4
Jittering 61.7 (-2.2) 34.3 36.3 33.2 32.4 36.9 (+5.5)

CSJ 63.2 (-0.7) 32.9 31.1 28.8 23.2 31.2 (-0.2)

ASJ 62.1 (-1.8) 33.3 35.4 37.8 31.6 36.8 (+5.4)

DSJ 62.2 (-1.7) 34.6 36.8 36.1 31.2 38.0 (+6.6)

Analysis of LPD. In our research, we investigated how LPD differs from ran-
dom dropout. As indicated in Tab. A.5, LPD increasingly drops points as the
distance increases. Fog tends to obscure objects that are further away more sig-
nificantly. Therefore, this demonstrates that LPD effectively represents point
drop due to occlusions such as fog, which it is designed to simulate. Conse-
quently, LPD is a more reasonable point dropout method to deal with adverse
weather conditions than random point drop.

Table A.5: Ratio of points remaining after LPD compared to original data. This
contrasts with random drop, which exhibits a uniform remaining ratio across different
distances.

Distance 0∼10m 10∼20m 20∼30m 30∼40m 40∼50m 50∼60m 60∼70m 70∼80m 80∼90m

Ratio 80.6 78.6 78.7 77.4 76.2 75.5 76.2 76.4 72.5

Augmentation Configurations and Parameter Ablation. (1) DSJ adds
noise to points along discretized depth levels. The number of depth levels, ran-
domly selected within a specific range, is a hyperparameter. More depth levels
improved rain resistance. (2) ASJ perturbs points along angles, with the max-
imum angular range ∆θ as a hyperparameter. A larger angle range improved
dense fog resistance. (3) Gaussian noise determines the jittering severity in SJ
with its standard deviation σ as a hyperparameter. Higher σ improved resistance
to rain and snow; lower σ to fog. (4) LPD involves a batch size, discount rate
γ, and exploration decay ϵ as hyperparameters related to DQN learning. Higher
γ improved fog resistance. Ablation studies in Tab. A.6 show that we achieve
generalized performance, less sensitive to hyperparameter choices.
Comparison with Domain Generalization and Adaptation Methods.
CosMix [6] and UniMix [10] offer unsupervised domain adaptation (DA) tech-
niques, with UniMix also providing domain generalization (DG) techniques. Do-
main generalization methods train models using only source domain data, while
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Table A.6: Hyperparameter ablation in SemanticKITTI-to-SemanticSTF. The values
we chose are highlighted in bold.

Selective Jittering
DSJ range mIoU ASJ ∆θ mIoU Gaussian σ mIoU

[2, 5] 39.3 1
2
π 38.1 0.001 37.5

[3, 6] 38.8 3
4
π 39.9 0.005 38.4

[4, 7] 37.8 π 39.5 0.01 39.5
[5,8] 39.5 5

4
π 40.0 0.05 37.3

[6, 9] 37.8 3
2
π 39.3 0.1 37.9

deviation 0.8 deviation 0.2 deviation 1.3

Learable Point Drop
Batch size mIoU Discount γ mIoU Decay ϵ mIoU

8 37.1 0.5 37.8 100 38.5
16 37.1 0.8 38.4 500 38.7
32 39.5 0.9 38.4 1000 39.5
64 38.2 0.99 39.5 2000 37.3
128 37.0 0.999 38.8 3000 40.3

deviation 1.7 deviation 0.9 deviation 0.7

unsupervised domain adaptation methods train models with unlabeled target
domain data. Our method, however, exclusively uses source data, making it fun-
damentally more challenging than UDA and not directly comparable. As shown
in Tab. A.7, our method outperforms CosMix and UniMix (DG) by +7.9 and
+4.9 mIoU, respectively. This result demonstrates that our proposed method ef-
fectively represents adverse weather conditions without real weather-conditioned
data. Additionally, our method performs comparably to UniMix (DA) despite
not using target domain data as DA does. Because UDA can complement data
augmentations, combining our method with UniMix could further enhance per-
formance.

Table A.7: Comparison with CosMix and UniMix. DA and DG denote domain adap-
tation and domain generalization.

Methods mIoU

CoSMix(DA) 28.4
UniMix(DA) 37.2
UniMix(DG) 31.4

MinkowskiNet18+Ours 36.3

Time cost of augmentation process. First, we emphasize that the inference
runtime does not change. Regarding the training overhead, it takes 3.4 hours to
train the original MinkowskiNet 15 epochs with four A6000 GPUs, and our aug-
mentations take an extra 2.28 hours (+ 67%). In comparison, existing weather
simulations [2,3] took over 12 hours for SemanticKITTI’s train set, highlighting
our method’s efficiency relative to traditional simulations.

F More Qualitative Results

The figures below show the qualitative examples of LiDAR semantic segmenta-
tion results on the SemanticSTF validation set.
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As observed in Fig. A.3, proposed SJ and LPD were found to improve the
prediction of roads and sidewalks in dense fog conditions. Similarly, in light fog
conditions, as demonstrated in the third and fourth rows of Fig. A.3, there was
a significant enhancement in the performance for road predictions. Moreover,
as shown in the black circle in the third row of Fig. A.3, accurate predictions
were also achieved for road-related classes such as cars. This trend of improved
performance under adverse weather conditions continued, as can be seen in Fig.
A.4.

This observed trend of improved performance persists even when training on
SynLiDAR and performing validation on SemanticSTF. As seen in Fig. A.5, our
method successfully executes accurate predictions in locations where the baseline
model previously erred. Similarly, in the third row of Fig. A.5, enhanced preci-
sion in predicting objects like cars is evident. This consistent trend of enhanced
accuracy under various weather conditions can also be found in Fig. A.6.
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Fig.A.3: Qualitative examples of LiDAR semantic segmentation result on the dense
fog and light fog condition of the SemanticSTF validation set. All models are trained
on SemanticKITTI. In all qualitative results, the red and green points indicate incorrect
and correct predictions respectively. Best viewed in colors.
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Fig.A.4: Qualitative examples of LiDAR semantic segmentation result on the rain
and snow condition of the SemanticSTF validation set. All models are trained on
SemanticKITTI. In all qualitative results, the red and green points indicate incorrect
and correct predictions respectively. Best viewed in colors.
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Fig.A.5: Qualitative examples of LiDAR semantic segmentation result on the dense
fog and light fog condition of the SemanticSTF validation set. All models are trained
on SynLiDAR. In all qualitative results, the red and green points indicate incorrect
and correct predictions respectively. Best viewed in colors.
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Fig.A.6: Qualitative examples of LiDAR semantic segmentation result on the rain
and snow condition of the SemanticSTF validation set.. All models are trained on
SynLiDAR. In all qualitative results, the red and green points indicate incorrect and
correct predictions respectively. Best viewed in colors.
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