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Appendix

A Additional Comparisons

Sparse-view reconstruction. To further evaluate our proposed Deceptive-
NeRF and Deceptive-3DGS in few-view reconstruction tasks, we compared our
method against baseline approaches FreeNeRF [6] and DiffusioNeRF [5] in novel
view synthesis on mip-NeRF 360 [1] and Hypersim [2] datasets, with 10 input
views. As illustrated in Figure A and Figure B, our method’s synthesized novel
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Fig.A: Qualitative comparisons of few-view reconstruction on mip-NeRF
360 dataset [1]. For each scene, we reconstruct with 10 input views. Our methods can
provide high-quality reconstructions, whereas baseline methods may yield completely
unreasonable and incorrect reconstructions.

views do not produce floating artifacts and achieve better restoration of dis-
tant scenes. Even in the challenging 360-degree scenes, our method consistently
delivers high-quality reconstructions, outperforming baseline methods that may
result in wholly unreasonable and incorrect reconstructions. This showcases our
method’s advanced few-view reconstruction capabilities over the baselines.
Novel view super-resolution. We further validate the capability of our method
to perform novel-view super-resolution in 360-degree scenes. Utilizing 20 input
views and downsampling the input images by a factor of 4 for each scene on the
mip-NeRF 360 dataset [1], our method, Deceptive-3DGS, achieves high-quality
super-resolution at novel viewpoints. It recovers details of objects, such as Lego
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Fig. B: Qualitative comparisons of few-view reconstruction on Hypersim
dataset [2]. For each scene, we reconstruct with 10 input views. Novel views synthe-
sized by our proposed Deceptive-NeRF and Deceptive-3DGS do not exhibit floating
artifacts. They offer better restoration of distant scenes (such as the sky and buildings
viewed seen through the windows).

toys and flower petals, more effectively than competing approaches like FreeN-
eRF [6] and NeRF-SR [4].

B Additional Evaluations

“Regularizer” v.s. “view densifier” Different from the straightforward utiliza-
tion of the 2D diffusion model as a “scorer” for synthesized novel views to regular-
ize NeRF/3DGS training, our approach uses it to generate pseudo-observations
to densify observations. To better validate the advantages of this choice, we eval-
uate the reconstruction quality and efficiency between the two methods of using
diffusion models to enhance 3D reconstruction. We experiment on the Hyper-
sim dataset [2] with 10 input views. In Table A, the “view densifier” refers to
our proposed Deceptive-NeRF, while the “regularizer” denotes a variant of our
method that uses a diffusion prior to regularize NeRF training. Our proposed
“view densifier” approach outperforms the “regularizer” in all metrics of ren-
dering quality. Moreover, our approach achieves nearly ten times faster training
speed and increased rendering speed. This improvement is primarily because our
method does not require inferring the diffusion model at every training step.
Number of input views. We run Deceptive-NeRF on Scene 027_003 from
Hypersim across a range of 2 to 10 input views and examine the testing PSNRs
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Fig. C: Qualitative comparisons of novel view super-resolution on mip-
NeRF 360 dataset [1]. For each scene, we utilize 20 input views and downsample
the input images by a factor of 4. Our method (Deceptive-3DGS) manages to achieve
high-quality super-resolution at novel viewpoints, recovering details of objects such as
Lego toys and flower petals more effectively than baseline approaches.

Table A: Quantitative comparison of two methods to utilize 2D diffusion models for
3D reconstruction.

Method PSNR (↑) SSIM (↑) LPIPS (↓) Training Time (↓) Rendering FPS (↑)

“Regularizer” 19.31 0.710 0.253 2h40min 1.1
“View Densifier” (ours) 20.44 0.748 0.173 17min 5.3

of initial NeRFs and final NeRFs (10x densification). As depicted in Figure D,
our pseudo-observations consistently enhance the reconstruction quality, demon-
strating that our method can work effectively with as few as 3 input images.
Geometry recovery. We quantitatively evaluate geometry recovery on scan
65 of the DTU dataset with 9 input views, applying TSDF (truncated signed
distance function) Fusion to extract meshes from trained Deceptive-NeRF and
baseline methods. In Table B, we report their Chamfer distances to the ground
truth, and our approach achieves higher reconstruction accuracy than baselines.
Uncertainty guidance. We conducted an ablation study on our uncertainty
guidance on the Hypersim dataset [2]. As shown in Table C, without the guid-
ance of our proposed uncertainty measure, there is a significant decline in recon-
struction quality. Without uncertainty guidance, the deceptive diffusion model
cannot effectively remove artifacts in coarse renderings, leading to inconsisten-
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Table B: Quantitative comparison on geometry recovery.

NeRF FreeNeRF DiffusioNeRF Deceptive-NeRF (Ours)

Chamfer Distance (↓) 3.75 1.93 3.63 1.86
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Fig.D: Initial and final testing PSNRs across different numbers of input views.

cies between pseudo-observations and input images. In Figure E, we visualize the
uncertainty map and compare the coarse and final renderings under its guidance.
Areas of high uncertainty (highlighted in brighter colors) correspond to artifacts,
which are removed in the final rendering.

Table C: Quantitative ablation study on the uncertainty guidance.

Method PSNR (↑) SSIM (↑) LPIPS (↓)

w/o uncertainty 18.61 0.703 0.28
w/ uncertainty (ours) 20.44 0.748 0.173

C Experimental Details

We adopt Nerfacto and Splatfacto from NerfStudio [3] as the backbones for
Deceptive-NeRF and Deceptive-3DGS, respectively, utilizing the default pro-
posal sampling, scene contraction, and appearance embeddings. We randomly
initialize the Gaussians for Deceptive-3DGS, without utilizing Colmap point
clouds. We alternately generate pseudo-observations and train scene represen-
tations five times, ultimately densifying observations to ten times their original
amount. We randomly sample novel views {ϕi

pseudo} within the bounding box
defined by the outermost input cameras.
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