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A Implementation detail

All experiments were reproduced by our implementation based on DiffusersE]
library. For quantized checkpoint, we use q—diﬁ'usiorﬂ s official checkpoint. Exper-
iments regarding to Full-precision Dreambootlﬁ and Custom DiffusiorE] are con-
ducted based on Diffusers official implementation without any editing. Pseudo
code for multi channel-wise scale update is available in Algorithm

A.1 Hyperparameter

For single-subject generation inference, we utilize a guidance scale of 7.5 and set
eta to 0, with a DDIM step of 50. For multi-subject generation, we adjust the
parameters to a guidance scale of 5.0, eta of 1.0, and a DDIM step of 100. This
configuration is for preserving the default setting.

In the case of multi-subject generation, prior loss is employed. However, for
single-subject generation, prior loss is excluded, as the quantized model often
fails to fine-tune for the target subject in almost cases.

Table A.1: Learning rate. The values of full precision are same as the default setting
mentioned in the original paper, as discussed in the main paper.

Method Full prec. 4bits  8bits
Dreambooth 5e-6 3e-5 3e-6
CustomDiffusion le-5 le-5 le-5

We used a batch size of 1 for Dreambooth and 2 for Custom Diffusion. We
generated the images with train iteration 400 and 800, then selected the better
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one. For fair comparison, except for the learning rate, all hyperparameters are
set to the same values for both the full precision and quantized models. Learn-
ing rates are displayed in Table [AT1] We searched for the best setting for the
baseline and then applied it to TuneQDM as well. Since we didn’t search for the
best settings for TuneQDM, there might be a possibility of slight performance
improvement through hyperparameter search.

A.2 Metric

To measure subject fidelity, we evaluated DINO-I [4] and CLIP-I [2] scores,
while for prompt fidelity, we measured CLIP-T scores. The CLIP encoder used
ViT-B/32, and DINO-I utilized DINOv2 ViT-S/14. DINO, being trained via
self-supervised methods, is known to measure differences well compared to the
CLIP image encoder when given the similar type of subject.

A.3 Training loss

To fine-tune Stable Diffusion, we utilize the same loss function as employed in
DreamBooth and Custom Diffusion. The loss is defined as the weighted sum of
the prior-preservation loss and the simple diffusion loss. The loss function can
be expressed as follows:

L =E.cctllléo(z,¢) = €l’] + AMprior, (1)

Eprior = Ezpracpr7€7t[||é9(zpr7 CPT) - 6||2]' (2)

Here, L represents the total loss, Lprior denotes the prior-preservation loss,
€9(z,c) and €g(zpr,cpr) are the generated noise vectors corresponding to the
target images and prior examples, respectively. z and c represent the target
image latents and text embeddings, z,, and cp, represent the latent and text
embeddings for the prior examples, € represents the ground truth noise vector,
A is a weighting coefficient, and ¢ ~ N'(1,T) represents the diffusion timestep.

By optimizing the aforementioned loss function during fine-tuning, the adapted
diffusion model becomes capable of generating single and multi-subject images
tailored to specific user preferences or input text prompts.

B Additional results

B.1 Quantitative Results

Table and present the quantitative results for each task, evaluated using
DINO-I, CLIP-I, and CLIP-T scores. While the differences in CLIP-T scores
are negligible, significant differences exist between TuneQDM and the baseline
in terms of DINO-I and CLIP-I scores. However, as mentioned in the main
paper, measuring subject- and prompt fidelity using DINO and CLIP scores is
inaccurate. Therefore, it is necessary to evaluate through qualitative results and
user studies.
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Table A.2: Quantitative Comparison of single-subject generation. TuneQDM*
initializes the multi-channel-wise scale from A/(0,0.01).

Method Bits(W) Size # Params  DINO-I CLIP-I CLIP-T
Full prec. 32 3.20GB 859M 0.431 0.746 0.316
Baseline 4 0.40GB + 1.32mMB  0.33M 0.519 0.787 0.313
TuneQDM 4 0.40GB + 2.48MB  0.62M  0.551 (+6.16%) 0.802 (+1.91%) 0.306 (—2.23%)
Baseline 8 0.80GB + 1.32MB  0.33M 0.581 0.824 0.300
TuneQDM 8 0.80GB + 2.48MB  0.62M  0.584 (+0.52%) 0.830 (+0.73%) 0.298 (—0.67%)
TuneQDM* 8 0.80GB + 2.48MB  0.62M  0.578 (—0.52%) 0.816 (—0.97%) 0.307 (+2.33%)

Table A.3: Quantitative Comparison of multi-subject generation. TuneQDM*
initializes the multi-channel-wise scale from A(0,0.01).

Method Bits(W) Size # Params DINO-I CLIP-I CLIP-T
Full prec. 32 3.20GB 859M 0.345 0.706 0.304
Baseline 4 0.40GB + 1.32mMB  0.33M 0.275 0.677 0.314
TuneQDM 4 0.40GB + 2.48MB  0.62M  0.276 (40.36%) 0.675 (—0.30%) 0.317 (4+0.96%)
Baseline 8 0.80GB + 1.32MB  0.33M 0.330 0.704 0.286
TuneQDM 8 0.80GB + 2.48MB  0.62M  0.329 (—0.30%) 0.708 (+0.57%) 0.295 (+3.15%)
TuneQDM* 8 0.80GB + 2.48MB  0.62M  0.329 (-0.30%) 0.705 (+0.14%) 0.293 (+2.45%)

B.2 Explanation about full precision’s DINO-I, CLIP-I score

The DINO-I and CLIP-I scores are easily influenced by some components un-
related to subject fidelity. In Fig , despite both the (a) and (b) images
effectively reflecting the features of the subject, there are significant differences
in the DINO-I and CLIP-I scores. This difference occurred because the similarity
of the background and subject’s pose to the reference image had an effect on
the score. In the case of the full precision model, various components unrelated
to the prompt (e.g. background or subject pose) exhibited diversity, resulting in
lower scores compared to the quantized model, as illustrated in the table. Thus,
evaluating whether the subject’s features are well-reflected through CLIP-I and
DINO-T scores is hard. Therefore, as repeatedly mentioned, it is essential to
focus on qualitative results or conduct a user study to evaluate the performance
accurately.

B.3 Inference speed

Our method focuses on memory efficiency through weight-only quantization.
When examining its impact on inference speed, two aspects must be considered.
First, quantizing weights to 4 bits reduces the cost of memory allocation on the
GPU to i. However, the overhead of the dequantization process will slow down
the operations such as matrix multiplication. Therefore, to increase inference
speed through weight-only quantization, it is essential to verify if the actual
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Reference image

— DINO-I: 0.634 DINO-I: 0.854
A [V dog wearing 3 ved hat CLIP-I: 0.849 CLIP-I: 0.896
CLIP-T: 0.346 CLIP-T: 0.342

Fig. A.1: Limitation of subject-fidelity metrics

speed improvement occurs by balancing memory and computational efficiency.
As noted by other studies , considering the increasing size of recent mod-
els and the batch sizes in practical use scenarios are often 1 or 2, weight-only
quantization can indeed be expected to improve inference speed.

Since implementing custom kernels for all layers of Stable Diffusion is chal-
lenging, we created a simple benchmark to test the inference time specifically
for the linear layers where TuneQDM was applied. For multiplication operations,
we used the GEMM kernel and conducted experiments on an A6000 GPU. As
shown in Table [A4] both the baseline and TuneQDM were faster compared to
full-precision and half-precision settings. However, the additional multiplication
operations made TuneQDM slightly slower than the baseline.

Table A.4: Inference speed comparison.

Method  Bits(W) Time

full prec. 32 15.60 s
half prec. 16 8.88 s
Baseline 4 6.94 s

TuneQDM 4 6.99 s

B.4 Additional qualitative results

Fig. [A3|[A4] [A5] and [AT6]respectively represent the qualitative results of single-
subject generation with an 8-bit quantized model, multi-subject generation with

4-bit quantized model, and multi-subject generation with an 8-bit quantized
model.



TuneQDM 5

In Fig.[A4] it can be seen that TuneQDM produces images that reflect both
the subject and prompt better than the baseline. In particular, in rows 1, 4, and
5, the prompt is reflected much more harmoniously than in the baseline. While
generating images that reflect the content of the prompt, as seen in the rightmost
example in row 1, unnatural images can also be generated, but TuneQDM gener-
ates such unnatural images less frequently. In the case of row 6, both TuneQDM
and the baseline did not produce satisfactory results.

For multi-subject generation, the overall quality of the generated images is
unsatisfactory. This was influenced by the poor performance of the Full Precision
model. Except for the cases where the cat was used (rows 1 and 2 in Fig. [A.5
and7 our experiments did not produce satisfactory results even when the full
precision model was used for fine-tuning. We conducted experiments with the
original codebase without any modifications when fine-tuning the full precision
model.

Fig. shows the results of multi-subject generation using a 4-bit quan-
tized model. TuneQDM tends to be intermediate between Full Precision and the
baseline. However, significant differences occur in cases where the presence or
absence of subjects changes between the full precision model and the quantized
model, as shown in rows 4 and 5.

Fig. [A6] shows the results of multi-subject generation using an 8-bit quan-
tized model. Similar to the 4-bit results, the 8-bit results show a similar trend.
In particular, in rows 1 and 2, TuneQDM shows better performance than the
baseline, and in the remaining rows, TuneQDM produces images closer to Full
Precision than the baseline.

C User study details

We conducted a survey with a total of 86 questions to 45 participants. The sur-
vey focused on subject fidelity and prompt fidelity, comparing the baseline and
TuneQDM to determine the preferred method. 56 questions were about single-
subject generation, and 30 questions were about multi-subject generation. Base-
line and TuneQDM were compared using the same configuration. An example
of the survey is shown in Fig[A29]

D Discussions

D.1 Low-bits settings

Our approach was generally more effective at 4 bits than at 8 bits. As the low-
bit setting decreased, the capacity of the quantized model decreased, and the
performance improvement achievable with our approach was greater. This is
because our goal is ultimately to increase the training capacity of the model by
providing denoising roles and applying multi-channel-wise scale update methods.
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D.2 Limitations

It has been observed that the performance of multi-subject generation is sig-
nificantly lower compared to single-subject generation. This appears to be due
to inherent limitations in stable diffusion. Previous research [1] has shown that
stable diffusion does not effectively process images of multiple concepts. As a
result, the limitations observed in multi-subject image generation persisted even
in quantized models, and overcoming them is difficult even with our approach.

D.3 future work

The application of prior preservation loss did not yield satisfactory results. It
appeared that the capacity of the quantized model was insufficient to learn new
concepts while preserving the prior. There is a need to explore methods that
facilitate effective tuning while maintaining the prior.

After fine-tuning the quantized model, even with the same seed, the result-
ing images differed from those of the full precision model. Considering other
parameter-efficient fine-tuning methods that produce similar images to full fine-
tuning even after fine-tuning completion using the same seed, our approach seems
to fine-tune in a somewhat different manner compared to fine-tuning the full
precision model. Research into methods to fine-tune such that the results of
fine-tuning the full precision model and the quantized model are similar is war-
ranted.
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Algorithm A.1 Pseudo-Code for multi channel-wise scale update applied on
Linear layer, PyTorch-like

class TQLinear(nn.Module):

def _

bias):
IEE)
:param in_features: size of each input sample
:param out_features: size of each output sample
:param weight: weight tensor (quantized : dtype should be int)
:param bias: bias tensor
:param kwargs: other parameters

:param QuantParam: load from quantized checkpoint
IER)

super (TQLinear, self).__init__(Q)

self.weight = weight

if bias != None:
self.bias = bias
else:

self.register_parameter(’bias’, None)

self.delta = QuantParam[’delta’]
self.zero_point = QuantParam[’zero_point’]
self.n_bits = QuantParam[’n_bits’]
self.sym = QuantParam[’sym’]

self.delta = nn.Parameter(self.delta)
self.double_delta = nn.Parameter(torch.ones((1, self.weight.shape[1])))
torch.nn.init.normal_(self.double_delta, mean=1.0, std=0.1)

def forward(self, input, *args, **kwargs):
return F.linear(input, (self.weight—self.zero_point) * self.delta * self.double_delta

, self.bias)

_init__(self, QuantParam: Dict[str, Dict[str, torch.tensor]], weight: torch.tensor,
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Please choose the methods for generating an object more similar to the one contained in the
following reference image.

Reference Image:

Please choose the methods for generating an image more similar to the given prompt.

A photo of cat sculpture

Fig. A.2: example of the survey
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Targetimages  Full Prec. DM (32bits) TuneQDM (4bits) Baseline (4bits)

subject: A (color)

Prompt: Prompi:

Prowpt: A Photo of [V] dog i 3@ swimwing pool subject: v/ subject: v/
Prompt: PrompL: x

subject: subject: x(under §it)
Prompt: A (Failure cases) Prompt: A

subject: subject: A (only back side)
background: Prompt:

subject: x(color)
Prompt:

subject:
Prompt:

subject: subject:

Prompt: A Phto of [Vv] vase on the beach vomph: o rowmpts o

Fig. A.3: Qualitative results of single-subject generation, 4bits
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Target images TuneQDM (8bits) Baseline (8bits)

tuffed animal in Lego Style

l\ v ’ i - &

Prowmpt: A Photo of [V] s

S

Fig. A.4: Qualitative results of single-subject generation, 8bits
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Target images Full Prec. TuneQDM Baseline Full Prec. TuneQDM Baseline

A [v] ?lant vext to 3 [vz] chaiv

Fig. A.5: Qualitative results of multi-subject generation, 4bits
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Target images Full Prec. TuneQDM Baseline Full Prec. TuneQDM Baseline

A Photo of [VvI] plant and a [vz] chaiv A (V1] Plant next o 3 [v2] chaiv

Fig. A.6: Qualitative results of single-subject generation, 8bits
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