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Abstract. We introduce a new hair modeling method that uses a dual
representation of classical hair strands and 3D Gaussians to produce ac-
curate and realistic strand-based reconstructions from multi-view data.
In contrast to recent approaches that leverage unstructured Gaussians
to model human avatars, our method reconstructs the hair using 3D
polylines, or strands. This fundamental difference allows the use of the
resulting hairstyles out-of-the-box in modern computer graphics engines
for editing, rendering, and simulation. Our 3D lifting method relies on
unstructured Gaussians to generate multi-view ground truth data to su-
pervise the fitting of hair strands. The hairstyle itself is represented in
the form of the so-called strand-aligned 3D Gaussians. This representa-
tion allows us to combine strand-based hair priors, which are essential
for realistic modeling of the inner structure of hairstyles, with the differ-
entiable rendering capabilities of 3D Gaussian Splatting. Our method,
named Gaussian Haircut, is evaluated on synthetic and real scenes and
demonstrates state-of-the-art performance in the task of strand-based
hair reconstruction. For more results, please refer to our project page:
https://eth-ait.github.io/GaussianHaircut.
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1 Introduction

In recent years, human avatars have attained unprecedented levels of photo-
realism [14, 17, 21, 31, 34, 41, 42, 46]. This advancement has been largely driven
by neural modeling and rendering methods that are incompatible with existing
graphics pipelines. However, many downstream applications require the resulting
avatars to be deployable in physically simulated environments. In particular, the
de facto “gold standard” representation of human hair for simulation and ren-
dering is based on strands, i.e., 3D curves. Yet, strand-based reconstruction of
hairstyles from real-world data, such as multi-view images, remains a challenging
and heavily underconstrained problem, as a substantial part of hair geometry
remains occluded in the image-based captures.
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Stage 1: 3D Lifting
Unstructured Gaussians

Stage 2: Strands fitting
Structured Gaussians

Strand-based HairstyleMulti-view images

Fig. 1: Gaussian Haircut works with multi-view images and uses strand-aligned 3D
Gaussians to reconstruct a hairstyle. In the first stage, 3D lifting, we reconstruct the
scene using unstructured primitives in the form of Gaussians. These unstructured prim-
itives are then used in the second stage, strands fitting, to supervise our dual hair strand
representation consisting of 3D Gaussians that are attached to hair strands. As a re-
sult, we produce a realistic strand-based hairstyle that can be rendered, edited, and
animated using classical computer graphics techniques.

To address this, we leverage latent strand and hairstyle priors introduced by
Rosu et al. [33] and Sklyarova et al. [38] to produce strand-based reconstructions
of hairstyles that have a realistic internal geometrical structure. Following pre-
vious approaches, we first obtain a line-based reconstruction of the visible part
of the hairstyle, where the 3D line segments are used to approximate the hair
strands locally. We then use this reconstruction to fit the strands with the aid
of the pre-trained priors. The classical approach for 3D hair modeling [27] uses
oriented gradient-based filters, the so-called orientation maps, to approximate
projected line directions of the hair strands from the RGB images. However,
these maps are inherently noisy [26, 33, 38] and hard to use directly for strand
fitting. Thus, we use 3D Gaussians to perform an initial 3D lifting and de-noising
of these orientation maps and use the former to supervise the reconstruction of
hair strands. To introduce extra details and fidelity into the reconstructions,
we model a hairstyle using a dual representation of classical hair strands and
3D Gaussian primitives. The resulting method, called Gaussian Haircut, takes
multi-view images as input and produces realistic 3D strands as output.

Our approach is inspired by recent work on 3D Gaussian Splatting (3DGS)
[16], which is capable of reproducing high-fidelity details in novel-view renders
of static scenes and objects. Here, we utilize the 3D Gaussians in a novel way to
enable realistic and animatable hairstyle reconstruction. We emphasize that our
goal differs significantly from the original task of 3DGS, which reconstructs an
unstructured set of 3D Gaussian primitives incompatible with physics-based hair
simulation. These primitives cover only the visible hair surface, while we aim to
reconstruct a hairstyle that includes the inner structure required to perform the
simulation. Both 3DGS and follow-up work [34] show that the learned Gaussian
primitives are often well-aligned with thin structures in a scene, such as hair
strands, without extra supervision. We leverage this observation to compute a
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3D orientation field of hair strands from the multi-view input images, which we
refer to as 3D line lifting. To achieve that, we render the directions of the highest
variance of the Gaussian covariance matrices to obtain 2D orientation maps and
compare them with ground-truth maps produced using Gabor filters. Moreover,
we introduce a camera refinement procedure into our Gaussian lifting approach
designed to recover a more accurate 3D hair shape.

Having obtained accurate outer hair 3D orientations, we optimize a corre-
sponding strand-based hairstyle using a strand-based hairstyle prior. We employ
a dual representation to represent a hairstyle during our coarse-to-fine optimiza-
tion consisting of classical 3D hair strand polylines and 3D Gaussians. The coarse
fitting relies on using a latent space to optimize the hair strands, while during
fine fitting, we directly optimize the parameters of the decoded 3D polylines.
During the coarse-to-fine optimization, we employ differentiable rasterization of
the hair strands to achieve a high accuracy in the reconstructed hairstyle. Specif-
ically, we use 3D Gaussians attached to the line segments of the strand polylines
and propagate the gradients from their rasterization directly into the latter. We
supervise the reconstructions using both photometric and geometric constraints.
To supervise the geometry, we employ the 2D projections of the 3D orientation
field obtained during the line lifting stage. To help the reconstruction process,
we also develop a hair upsampling technique that facilitates the effective use of
the photometric constraints during the coarse optimization stage and a method
for prior-based optimization of the strands in the domain of 3D polylines. Our
method is illustrated in Fig. 1.

We evaluate our approach on both real and synthetic scenes and achieve
improvements in both reconstruction speed and quality compared to the state-
of-the-art. Our contributions can be summarized as follows:

– we propose a new 3D line lifting scheme that uses a modified 3DGS
reconstruction technique to lift 2D orientation maps into a 3D field while
also providing refinement of the camera parameters;

– we introduce a dual representation of hair strand polylines and 3D
Gaussians to achieve differentiable rasterization of hair strands and leverage
photometric constraints for strand-based hair reconstruction;

– based on these components, we propose a coarse-to-fine optimization
method for prior-guided hair reconstruction that leverages both latent
and explicit representations of the hairstyle.

2 Related Work

2.1 3D Gaussian Splatting for Head Avatars

3D meshes are the most widely used representation for head avatars [1, 18].
While a 3D mesh efficiently depicts surface-like areas such as faces, it struggles
to represent complex geometries like hair accurately. To overcome this limita-
tion, volumetric representations like a mixture of volumetric primitives or neu-
ral radiance fields have been combined with 3D meshes to better portray hair
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and beards [12, 20, 52]. However, volume rendering typically demands substan-
tial computational resources. Recently, there has been a shift towards using 3D
Gaussian Splatting (3DGS) as a base representation for avatars [31, 34]. This
approach achieves both photo-realistic appearance and real-time performance.
Despite these advancements, most studies [4, 8, 32, 44, 46, 50] typically use 3D
morphable face models such as FLAME [18] and do not model hair as a separate
layer. Instead, hair was treated as a mere component of the head, without any
special consideration. This restricts the potential applications of head avatars,
particularly in hair motion and stylization.

2.2 Strand-based Hair Modeling

Strands are the standard representation for high fidelity 3D hair modeling in
academia [29, 36, 47] and industry [5, 10]. Strands have several advantages over
volumes or meshes, being particularly effective for physics-based simulations
of hair [7, 11, 13]. Strands also enable intuitive geometric editing by directly
manipulating the length and curvature of strands [37, 39, 45, 51]. However, due
to the geometric complexity of human hair and the large number of strands
required, realistic hair modeling is labor-intensive even for skilled 3D artists.

To overcome this issue, image-based hair modeling methods have been devel-
oped to automate the 3D hair modeling process from captured photographs. A
common approach for image-based hair modeling involves the use of 2D orienta-
tion maps [27]. Strand-based hair models are optimized to align with these 2D
orientation maps when projected onto screen space [2,3,23–28,48,49]. A notable
limitation of image-based hair modeling is the lack of information about the
interior parts of the hair, which are invariably occluded in images. To overcome
this challenge, Neural Haircut [38] employs a pretrained diffusion-based hairstyle
prior to infer the interior geometry. Despite these efforts, previous work repre-
sents hair as 3D polylines, which do not account for thickness in the geometry or
appearance modeling. These approaches typically have a separate stage to learn
the appearance of 3D polylines from images [33, 38]. In contrast, our proposed
dual hair strand representation utilizes a sequence of anisotropic 3D Gaussians
attached to a hair strand polyline, thereby offering enhanced expressiveness for
both geometry and appearance modeling.

In the concurrent work of Luo et al. [22], 3D Gaussians are also used to
reconstruct human hair strands from multi-view images. In contrast to this ap-
proach, which uses studio captures with uniform lighting, our method works
with an unconstrained capture setup. To enable this, we introduce a new cam-
era optimization approach for 3D Gaussians. Moreover, [22] uses 3D constraints
to optimize the hair strands, similar to Neural Haircut [38], while our method
fully relies on our new differentiable rendering scheme.

3 Method

Our method reconstructs 3D strand-based hairstyles from multi-view images.
We pre-process the data by calculating initial estimates for the cameras, seg-
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Fig. 2: (a) In our work, we utilize both structured and unstructured sets of Gaussians.
The former are attached to the strands and thus cover an entire hair volume, while
the latter concentrate only on the visible part of the hair surface. (b) During coarse
strand-based fitting, we decode only a set of guiding strands from the latent hair map
at each training step, as generating a full hairstyle is computationally- and memory-
expensive. We then convert these strands into a dense hair map suitable for rendering
by conducting interpolation in the space of their 3D coordinates. (c) Finally, we conduct
a fine strand-based optimization step. We decode a dense hairstyle from a latent map
and directly optimize their coordinates instead of latent representations.

mentation masks, and image gradients, or the so-called orientation maps. The
reconstruction is then performed in two stages, see Fig. 1.

For the first 3D line lifting stage, we use a combination of 3D Gaussian
Splatting [16] and BARF [19] to optimize the parameters of the training cam-
eras and perform 3D lifting of the scene, including orientation maps. The latter
are directly embedded into the geometry of the resulting Gaussians. Our main
idea is to use a covariance matrix to represent the 3D orientation field of hair
strands. In our approach, the direction of maximum variance of each Gaussian
corresponds to the direction of the hair strand, and the variance of the orthogo-
nal directions gives us the natural measure of its uncertainty, which we account
for during the rendering process. As a result, we obtain a scene representation
that produces highly realistic renders for both color and orientation maps, as the
resulting Gaussians are aligned with the hair strands. However, these primitives
are unstructured, as they only lie on the outer hair surface, see Fig. 2 (a). We
thus use them to generate the multi-view renders and reconstruct the geometry
of the hair strands during the second stage using structured primitives.

In the hair strands fitting stage, we optimize the strand-based hairstyle in a
coarse-to-fine manner. For the coarse optimization step, we parameterize hair as
a latent texture map [33]. We use the Gaussians obtained during the first stage
to create ground truth for photometric and geometric losses. After the coarse
optimization, we decode the strands into an explicit hair map and optimize it
directly in a fine-grained fitting step. During both of these steps, we follow [38]
and regularize the hairstyle using a pre-trained hairstyle diffusion model [15] to
increase the realism of its internal structure. We also utilize the 3D Gaussian
Splatting framework to incorporate differentiable rendering of the hair strands.
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We attach a Gaussian to each line segment on the strand to achieve that. The
scale of these primitives has only one degree of freedom, which is proportional
to the length of the line segment, while the other two are fixed to a small pre-
defined value. This allows us to introduce fine-grained details into the visible
part of the hair reconstruction.

3.1 3D Line Lifting with Unstructured Gaussians

We rely on the 3D Gaussian Splatting approach to perform an initial scene
reconstruction. We modify it to incorporate camera optimization, as off-the-shelf
SfM [35] methods do not achieve high accuracy when localizing the cameras in
the scenes centered around the hair [38]. Therefore, we employ a learnable 6-DoF
camera parameterization from BARF [19] as a residual to the initial estimation
produced by SfM and train it alongside the 3D Gaussians using gradient-based
optimization.

Following [16], each reconstructed primitive is parameterized by a learnable
mean µ, scaling coefficients s, rotation quaternion q, and opacity o. Their co-
variance matrix can then be expressed as Σ = RSSTRT , where R is a matrix
form of the quaternion q, and S = diag(s). Each Gaussian also has a set of
learnable features, which include the spherical harmonic coefficients f for the
view-dependent color, a hair segmentation label l, and confidence value τ for the
3D orientation of the Gaussian. The rendering proceeds by first projecting each
Gaussian into the screen space, resulting in a mean µ′ and a covariance matrix
Σ′. The Gaussians are then sorted according to their depth, and for each pixel
p, their features ci are rendered using α-blending:

Cp =

N∑
i=1

T i
pα

i
pci, T i

p =

i−1∏
j=1

(1− αj
p), T 1

p = 1, (1)

αi
p = oi exp

(
− 1

2
(p− µ′

i)
TΣ′

i(p− µ′
i)
)
. (2)

As a result, we obtain rendered color, which is produced via the original Gaussian
splatting approach, hair segmentation label lp, orientation confidence value τp,
and a rendered silhouette of the Gaussians denoted as sp:

lp =

N∑
i=1

T i
pα

i
pli, τp =

N∑
i=1

T i
pα

i
pτi, sp =

N∑
i=1

T i
pα

i
p. (3)

In our approach, we use the covariance matrices to describe the local geome-
try of the hair strands in the 3D volume. To do that, we align the Gaussians with
the hair strands via 3D lifting of the orientation maps. We represent the primary
3D orientation as the direction of the highest variance and use the variance of
the orthogonal directions as a measure of uncertainty. Specifically, we obtain a
rendered strand direction in pixel p, denoted as βp, as follows:

βp =

N∑
i=1

T i
pα

i
pβi, (4)
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where αi
p and T i

p depend on the full covariance matrix, as per Eq. 1-2, and βi

denotes a direction of the highest variance of the Gaussian.
The Gaussians are trained using a gradient-based optimization procedure

from the original work [16]. Our photometric constraints include Lrgb, which
consists of L1 and SSIM losses, Lseg that consists of an L1 loss that matches
the rendered silhouette sp and hair segmentation lp to ground truth masks, and
Ldir that supervises hair orientations. For the latter, we build upon an original
formulation [27] and introduce a rendered confidence factor τp into the objective:

Ldir =
∑
p

τp min{d(βp, β̂p), d(βp, β̂p)± π} − log τp, (5)

where d denotes the absolute angular difference between the directions, and β̂p

denotes a ground-truth direction in the pixel p. Our resulting training objective
for the Gaussian-based hair reconstruction stage can be written as follows:

Lgaussian = Lrgb + λsegLseg + λdirLdir. (6)

3.2 3D Hair Strands Reconstruction

After the first stage, we obtain Gaussians matching the hairstyle’s visible struc-
ture, including the geometry and strand orientations, and the optimized camera
parameters. This information is used for the 3D hair strands reconstruction.

The strand-based hairstyle is represented as a hair map H corresponding to
a scalp region of the 3D head model [18]. This head model is fitted into the
scene using a multiview optimization approach based on facial keypoints [38].
Each texel of this map stores a 3D hair strand as a polyline: Sk = {pkl }. Since
hair maps have an increasingly high number of degrees of freedom, we regularize
the optimization process [33] and introduce a latent hair map Z, which can be
converted to and from H using pre-trained strand decoder G and encoder E :

H = G(Z), Z = E(H). (7)

During the coarse fitting step, we optimize the hair strands as a latent map Z,
while for the fine step, we optimize an explicit hair map H, see Fig. 2 (c).

Since latent hair map decoding operation is computationally expensive, in
the coarse optimization step, this mapping can only be performed for a set of
guiding strands per training batch, which we will denote as H ′, see Fig. 2 (b).
Note, however, that the latent map Z can be decoded into an arbitrarily large
number of hair strands for the fine-fitting step. The hair strands are optimized
using two constraints: photometric losses, for which we differentiably rasterize
the hair strands and latent diffusion-based regularization that follows [38] and
ensures the realism of the internal part of the hairstyle. Importantly, we use
the ground truth generated using the Gaussian-based reconstruction from the
previous stage, substantially reducing the noise in this objective, especially for
the orientation maps.
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Photometric losses. During differentiable rasterization, we assign Gaussians to
each line segment {pkl , pkl+1} of the strand. The generated primitive has the first
element of its scaling vector skl proportional to the length of the strand, and the
other two fixed to a small value, i.e. skl = {1/2 · ∥pkl+1 − pkl ∥2 , ϵ , ϵ}. Addition-
ally, its rotation quaternion is set to align the x-axis with the segment direction
of the hair strand. We make all these Gaussians opaque, meaning okl = 1, have
unit orientation confidence τkl , and assign each one a trainable set of spherical
harmonic coefficients fk

l responsible for rendering the color. During the coarse
fitting, these coefficients are predicted from the latent hair map using an appear-
ance decoder Ga, which copies the architecture of a strand decoder G. However,
while the strand decoder G is pre-trained using a collection of synthetic hair
strands and is frozen during the reconstruction process, following [33], the ap-
pearance decoder Ga is optimized from scratch for each scene. Thus, the trainable
parameters during the coarse optimization step include Z and Ga, while for the
fine step, we directly optimize H with associated coefficients fk

l .
The rendering loss follows the Gaussians training objective Lgaussian from

the first stage (Eq. 6) and includes a color loss Lrgb, a segmentation loss Lseg,
and an orientations loss Ldir. Instead of using the covariance matrices to extract
the orientations βi, we use the direction vectors vkl = pkl+1 − pkl . We can do
that since, at this stage, we have access to the exact strand growth directions
instead of undirected lines. However, during the coarse fitting stage, we can only
decode a small set of guiding hair strands H ′ per training batch from the latent
map Z because of memory constraints. Thus, the rendered geometry may have
holes, making photometric training losses ineffective. To address this problem,
we interpolate the guiding strands to produce a dense hair map Ĥ, which we
then use for rasterization. The strand interpolation procedure follows [39] but is
carried out in the domain of 3D coordinates instead of latent hair maps. Note
that we do not need such interpolation during the fine optimization stage, as at
each training step we have direct access to the dense hairstyle.

Diffusion-based regularization. We follow [38] and employ a diffusion-based score
distillation sampling [30] loss Lsds to regularize the hair geometry. It is applied
in the domain of the latent hair maps and uses a pre-trained latent diffusion
for guide strand generation [38]. While it can be incorporated seamlessly into
our coarse optimization step by simply applying it to a subsampled version Z ′

of the latent hair map Z, we also want to keep this regularization during the
fine-grained strands optimization. To achieve that, at each step, we encode a
random subset of the hair strands into their latent representations using a pre-
trained encoder E and interpolate them into texels with the same resolution as Z ′.
We then apply a diffusion-based penalty to this low-resolution latent hair map,
similar to the coarse stage. For more details, please refer to the supplementary
materials.

The final objective for the hair strands fitting can be written as follows:

Lstrand = Lrgb + λsegLseg + λdirLdir + λsdsLsds. (8)
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As a result, we obtain a strand-based hair map that can be rendered statically
using optimized spherical harmonics coefficients or dynamically via classical com-
puter graphics engines [6].

4 Experiments

4.1 Implementation Details

We preprocess real-world data using COLMAP [35] to produce the initial point
cloud and camera estimates. We use the default optimization hyperparameters
from the base 3DGS approach [16] to train the Gaussians, which results in 30,000
optimization steps during the 3D lifting stage. The camera parameters are op-
timized for the first 15,000 steps and are frozen afterward. Their learning rate
schedule follows the learning rates of Gaussian rotations and means.

During the strand fitting stage, we use pre-trained strand and hairstyle pri-
ors from [38]. We use 1,000 guiding strands in the hair map H ′ during coarse
optimization, which are interpolated to 10,000 at each training step before ras-
terization. For the fine fitting of the hairstyle, we decode a hair map H containing
30,000 strands. To generate a guiding latent hair map Z ′ that is used for regular-
ization, we randomly select 1,000 strands at each training step. We encode them
into the latent vectors and interpolate them into a latent map before calculating
a score distillation sampling loss. We use 20,000 and 10,000 optimization steps
for the coarse and fine fitting, respectively. The weights of the losses during both
stages are set to λseg = 10−1, λdir = λsds = 10−2. Reconstructing a hairstyle
using our method takes up to six hours on a single RTX 4090. For more details
on implementation and training, please refer to the supplementary materials.

4.2 Real-world Evaluation

We evaluate our approach using monocular video sequences captured under un-
constrained lighting conditions.

Baseline. The main baseline we compare against is Neural Haircut [38]. This
method reconstructs strand-based hair geometry in the same scenario as ours,
i.e. using real-world multi-view image/monocular video data. It consists of two
stages. During the first stage, it reconstructs coarse hair geometry using a layered
neural signed distance function [40], where the layers correspond to the hair and
bust geometries. The hair surface geometry also incorporates a 3D-lifted orienta-
tion field. During the second stage, the strands are parameterized as latent hair
maps and optimized using the Chamfer distance between the strands and the
visible part of the hair surface. The authors also propose a differentiable hair ren-
dering pipeline that relies on mesh-based rasterization to propagate photometric
information into geometry. However, this loss does not propagate high-frequency
details and only slightly improves strand geometry.
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Image NeuralHaircut Ours Image NeuralHaircut Ours

Fig. 3: A qualitative comparison of the reconstructed strand-based geometry against
Neural Haircut [38]. Our method has higher accuracy of the reconstructed hairstyles
while achieving more than ten times improvement in the optimization speed.
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Fig. 4: Our method can achieve photorealistic renders of strand-based geometry using
structured Gaussians. We showcase the rendering results produced by our Gaussian-
based strand rasterization method from test views. Since these images were not included
in the training set and thus were not part of the bundle adjustment, there is a slight
misalignment between the predicted images and the ground truth.

Comparison. In contrast to this method, we primarily rely on differentiable ren-
dering of the hair strands to learn their geometry. Toward this end, we use a
two-stage training approach that first does bundle adjustment and 3D lifting
of orientation maps using unstructured Gaussians and then utilizes structured
Gaussians to learn the hairstyle’s shape via differentiable rasterization. Our ap-
proach achieves considerable quality improvements in the resulting hairstyles,
as seen in the qualitative evaluation, Fig. 3. Another advantage of our method
is the faster reconstruction timings. We achieve more than ten times speed-up
compared to the base approach with improved reconstruction quality.
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Fig. 5: Hairstyles produced by our method can be easily imported into a computer
graphics engine for editing, rendering, and simulation. Here, we show the simulation
results of the reconstructed hairstyle in Unreal Engine [9].

Applications. The learned structured Gaussians can be used out-of-the-box for
fast and photorealistic rendering of the reconstructed hairstyles. We showcase
the rendering results in Fig. 4. These images can be generated in seconds, on
par with the rendering time required to achieve similar visual quality with the
classical rendering approaches, for example, using [9]. They also have the upside
of matching the lighting and the subject’s hair color without requiring manual
adjustment. Also, due to the dual nature of our reconstructions, we can leverage
the explicit geometry of the reconstructed strands to conduct a generalizable
physics simulation driven by the motion of the head. We showcase the simulation
results in Fig. 5 and the supplementary materials. Note that achieving such high
plausibility of simulated dynamics is only possible because our reconstructions
are structured into strands, are connected to the parametric head mesh, and
have realistic internal structures due to the use of hairstyle priors.

4.3 Ablation Study

We ablate the importance of our method’s components on real and synthetic
scenes. Following [38], for synthetic evaluation, we use two hair models of straight
and curly hairstyles [47] that are widely used in the literature as benchmarks.

Orientation maps lifting. First, we evaluate the efficiency of our 3D line lifting
approach in producing the denoised orientation maps. A standard hair orienta-
tion map calculation approach relies on Gabor filter banks [27]. Thus, we can
utilize a rendering engine [6] to produce realistic renders of synthetic hairstyles,
which can be used to run orientation map extraction via these filters. For quan-
titative evaluation, we also generate the ground-truth orientation maps directly
from the underlying geometry using classical line rendering algorithm [43]. So,
we compare the line projections from our 3D lifting method against the primary
baseline – Gabor filters. Our method achieves the lowest average angular error
of re-projections of 7◦, followed by the error of 8◦ achieved by Gabor filters.
These metrics are the average of 70 test views for two synthetic hairstyles. Thus,
our 3D line lifting gives better estimates for hair orientation maps than Gabor
filters. Moreover, we evaluate the effect of these synthesized orientation maps
on the reconstructed hair geometry in real-world examples. The results are in
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Image w/o fine w/o synthetic w/o strands w/o Ldir Ours
optimization renders upsampling

Fig. 6: Ablation of the strands fitting stage. We show reconstructions obtained with
only coarse stage fitting: w/o fine optimization. Then, we ablate the use of the orien-
tation maps renders generated with unstructured Gaussians for geometry supervision:
w/o synthetic renders; using upsampling of guiding strands during coarse strands fit-
ting: w/o strands upsampling; not using orientation loss: w/o Ldir. We observe that all
our proposed components contribute to the final quality of the results.

Fig. 6, third column. Note that with synthesized orientation maps, our method
can model the geometry more accurately in regions with poor illumination and
highly entangled hair strands, such as the one shown in the first row. Please refer
to the supplementary materials for more examples.

Coarse-to-fine strands fitting. Next, we evaluate the effectiveness of our strand-
fitting approach. First, we showcase the results without the fine fitting step,
Fig. 6, second column, and without synthetic renders of orientation maps, third
column. We observe that our method fails to achieve high levels of accuracy in the
resulting hairstyles with only the coarse optimization step or without using our
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proposed 3D orientation maps lifting methods, especially in the areas with a high
density of strands and poor illumination: see the first row. Then, we evaluate our
proposed upsampling technique for hair rasterization, column fourth. We observe
that without using strand upsampling during the coarse stage, the fine fitting
cannot converge to an accurate hairstyle; see the first, third, and fourth rows.
Finally, we evaluate the effectiveness of using orientation loss Ldir, see column
fifth. The extended version of the ablation study with additional experiments is
available in the supplementary materials. There, we also validate the diffusion-
based prior’s efficiency.

5 Conclusion

We have presented a method for accurate strand-based hair reconstruction. To
achieve that, we propose a new hair modeling method that consists of Gaussian-
based 3D line lifting and a strand optimization approach that relies on our
new dual representation called strand-aligned Gaussians. We also introduce a
coarse-to-fine optimization method for hair strands that achieves state-of-the-
art performance in multi-view hair reconstruction using 360◦ head capture with
unconstrained lighting conditions. Our findings are validated via an extensive
evaluation using real-world and synthetic data. The limitations of our method
are in many aspects similar to the base Neural Haircut approach. For example,
the strand-based hair prior struggles to model curly hairstyles, as seen in one of
the examples in Fig. 3. Also, our method is unsuited for reconstructing hairstyles
with complicated internal structures, such as braids. Thus, introducing support
for more sophisticated hair geometries remains future work. Our method also
achieves a substantial speed-up compared to the baseline approaches, outper-
forming the optimization speed of the previous state-of-the-art by more than
ten times. We also showcase how the hairstyles produced by our method can
be directly imported into computer graphics engines, such as Unreal Engine, for
use in physically rendered and simulated environments. We believe that fast and
accurate reconstruction of hairstyles from real-world data can open the way to
exciting applications in telepresence, special effects, and gaming industries.
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