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Abstract. In incremental object detection, knowledge distillation has
been proven to be an effective way to alleviate catastrophic forgetting.
However, previous works focused on preserving the knowledge of old
models, ignoring that images could simultaneously contain categories
from past, present, and future stages. The co-occurrence of objects makes
the optimization objectives inconsistent across different stages since the
definition for foreground objects differs across various stages, which limits
the model’s performance greatly. To overcome this problem, we propose
a method called “Bridge Past and Future” (BPF), which aligns models
across stages, ensuring consistent optimization directions. In addition,
we propose a novel Distillation with Future (DwF) loss, fully leverag-
ing the background probability to mitigate the forgetting of old classes
while ensuring a high level of adaptability in learning new classes. Ex-
tensive experiments are conducted on both Pascal VOC and MS COCO
benchmarks. Without memory, BPF outperforms current state-of-the-
art methods under various settings. The code is available at https:
//github.com/iSEE-Laboratory/BPF.

Keywords: Object Detection · Incremental Learning · Knowledge Dis-
tillation

1 Introduction

Object detection [3,14,36,53,61,68] is a fundamental computer vision task and
has significantly given rise to many sub-directions [2, 15, 16, 19, 27, 44, 47, 63].
General detection models typically assume full access to all interest classes during
training and require exhaustive labeled data from the start. However, in dynamic
real-world applications, where new object categories may appear continually,
object detection models are expected to adapt to these ongoing changing classes,
especially when there is limited storage to save all the data from the beginning
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(a) Distribution of instances in the second stage 
of the 10-5-5 setting on VOC 2007 dataset

(b) Visualization of some typical training samples in IOD

Fig. 1: Challenges faced by the IOD task. Classes from previous, current, and poten-
tial future stages may appear arbitrarily in the current training stage, while only the
annotations of current classes are available to train the detector. Best viewed in color.

to the present or when data privacy concerns are encountered. To this end,
incremental object detection (IOD) [5, 26, 41, 65, 67, 69] has caught progressive
attention, which aims to continually detect new objects without forgetting the
previously learned ones.

Unlike incremental learning in classification, the incremental object detec-
tion task faces a dual challenge caused by the concurrence of different classes:
(1) Foreground objects identified in previous stages are unlabeled in the current
stage, and thus, the model currently trained may regard them as background.
(2) The current stage’s background may also contain objects that will be recog-
nized as the foreground in future stages. Taking the 10-5-5 setting on the VOC
dataset [12] as an example, as shown in Figure 1, a large proportion of instances
belonging to classes of the previous and future stages occur concurrently in the
training images in the current stage. This asymmetry in information between the
past and current stages causes the current model to erroneously classify objects
of old categories as background, aggravating the catastrophic forgetting prob-
lem. Similarly, the asymmetry between the current and future stages leads the
current model to classify objects of potential future categories as background er-
roneously, which requires models trained in future stages to rectify their misper-
ception, thus hindering the learning of new classes. As a result, the optimization
objectives across different learning stages are inconsistent, significantly limiting
the generalization of current incremental detectors. Previous works [5, 65, 67]
concentrate on introducing strong regularization to prevent catastrophic forget-
ting but ignore the impact of concurrence of different classes, resulting in limited
performance on both old and new classes.

This work aims to tackle the critical information asymmetry challenge in
IOD by utilizing the abundant concurrence information within an image. We
introduce a novel approach named Bridge Past and Future (BPF), which is
designed to connect the past and future stages with the current stage, ensuring
the model adheres to consistent optimization objectives throughout the entire
incremental learning process. For the past stages, we utilize the previous model
as a reliable labeler to construct some pseudo labels for old classes and combine
them with current annotations for training the current model symmetrically.



Bridge Past and Future 3

Simultaneously, we re-identify some salient regions that may contain potential
future objects out of the background and exclude them from negative samples in
the current stage to avoid classifying them into the background at this stage and
disturbing future learning, which is expected to achieve symmetry with future
stages. These two novel designs alleviate the impact of inconsistent training
objectives across different stages from the aspects of the past and the future,
thus easing the training difficulty of incremental detectors.

In addition, we propose a distillation technique to augment the detector in the
current stage, where we take a step back by viewing the current stage as a clear
future stage for previous stages and propose a Distillation with Future (DwF)
loss. The distillation is carried out by two teachers, i.e., the detector trained
on the previous stage and an expert detector trained with only current data.
The student detector absorbs the knowledge of old and current classes from the
old and expert models, respectively, in a class-by-class manner, preventing the
detector from catastrophic forgetting and facilitating learning of current classes.

We conduct extensive experiments on the PASCAL VOC [12] and COCO [37]
datasets to evaluate the effectiveness of our BPF, which outperforms other state-
of-the-art (SOTA) methods under multiple settings in a memory-free way. More-
over, we also conduct comprehensive ablation studies and visualizations to help
better understand how each component of the BPF works.

2 Related Works

Object Detection. Traditional object detectors can be primarily classified into
two streams: one-stage [36,52,58,61] and two-stage detectors [18,22,35,53]. Two-
stage detectors first predict several coarse candidate proposals via region pro-
posal extractors [18,53] and then adopt a region of interest (RoI) head to refine
these proposals and output final predictions. Unlike two-stage detectors, one-
stage counterparts directly generate final outputs without predicting candidate
proposals. Despite performing well under the standard training setup, both of
them fail to generalize to the incremental training setup due to lacking previous
training data. Without losing generality, this paper concentrates on enhancing
two-stage detectors, i.e., Faster R-CNN [53], enabling it to learn new classes
incrementally while retaining previously acquired knowledge.

Incremental Learning. Incremental learning methods can be mainly divided
into three categories: memory-based [4,24,32,33,48,51,56,59,62], regularization-
based [6,8,30,34,66], and structure-based [42,45,46,54,60]. Memory-based meth-
ods store a handful of samples for replaying [24, 40, 41] or suggest generating
samples [29,62] for data compensation in new stages. Some regularization-based
methods try to eliminate the effect of new tasks on previously learned knowl-
edge by identifying the most crucial parameters [30, 43, 62], while some other
regularization-based methods propose to distill knowledge [23] from old to cur-
rent models by transiting knowledge on logits, final features or intermediate
features [8, 10, 11, 24, 34]. Structure-based methods dedicate specific parameters
to each task, freezing them to mitigate forgetting. In this study, we focus on the
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regularization-based knowledge distillation approach for object detection and
introduce a novel distillation with future information.

Incremental Object Detection. Most previous works [9,28,31,40,50,55] focus
on distilling old classes’ knowledge of intermediate features [5,21,39,41,49,65,67],
region proposal network [5, 49, 67], or RoI head [13] to prevent forgetting. A
stream of methods also pays attention to classification loss. PPAS [67] introduces
a pseudo-positive-aware sampling algorithm to identify regions corresponding to
old classes and prevents them from being sampled as background. MMA [5]
proposes unbiased classification loss, consolidating the background and all old
classes into one entity, which aims to minimize the optimization objective conflict
between the current stage’s background and the past stages’ foreground. How-
ever, it diminishes the ability to distinguish old classes from the background.
Other methods [1, 20, 25, 26, 41, 64] focus on rehearsal to maintain the previous
stage knowledge, either performing replay of the intermediate features [1], the
images [25, 26, 40], or the instances [41]. Incdet [38] presents a parameter isola-
tion strategy that builds upon EWC [30]. In this study, in addition to preserving
knowledge for old classes, we also take future classes into account, aligning op-
timization objectives consistently across all stages.

3 Method

3.1 Preliminaries

Problem Formulation. In incremental object detection, the training is per-
formed over multiple learning stages, each one introducing a new set of classes
to be detected. Let C denote the set of classes that are incrementally introduced
to the object detector M. In the t-th training stage, a grouping of classes Ct
are introduced to the detector: Ct ⊂ C, such that Ci ∩ Cj = ∅, for any i ̸= j
and i, j ≤ t. Let Dt denote the images containing annotated objects of classes
in Ct. Each image can contain multiple objects of different classes, but annota-
tions Yt are available only for those object instances that belong to classes in
Ct. The challenge in class incremental object detection is to continually update
Mt to Mt+1 by learning Ct+1, without access to {D0, · · · ,Dt} while maintaining
original performance on {C0, · · · , Ct}.
General Detector Training Pipeline. This work starts with the represen-
tative Faster RCNN-like detectors [53] f = {fb, frpn, froi}, which generally in-
cludes a backbone network fb, Region Proposal Network (RPN) frpn and Region
of Interest Head (RoI Head) froi. During training, all training proposals are cate-
gorized into positive, negative, and ignored samples for supervised training based
on their IoUs with the ground truth. Positive samples are assigned to predict the
class of their matched ground truth, whereas negative samples are designated as
background. Thus, the objects without annotations in the current stage will be
classified as background, hindering the learning of incremental models.

Common Distillation Methods for Incremental Object Detection. To
prevent forgetting in IOD, a widely adopted solution involves knowledge distil-
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lation in RPN and RoI head [5, 49,57,67]:

Ldist = Lrpn
dist + Lroi

dist. (1)

The distillation in the RoI head includes the L2 loss between the box coordinates
and the Kullback-Leibler divergence for class probabilities. MMA [5] notices the
missing old annotations and proposes Unbiased Knowledge Distillation (UKD):

Lroi
dist,cls(i) =

1

|Ct−1|+ 1
(pb,t−1

i log(pb,ti +
∑
c∈Ct

pc,ti ) +
∑

c∈C1:t−1

pc,t−1
i log(pc,ti )), (2)

where pc,t−1
i and pc,ti indicate the classification output for the proposal i and

class c of the teacher (old) model and student (current) model, respectively,
and b is the background class. As a common practice, 64 proposals are used for
distillation, which are randomly selected out of the top 128 proposals with the
highest objectness scores from the RPN network of the old model. However, given
the class-agnostic characteristic of the RPN, the proposals for distillation cover
objects of both old and current classes. In such cases, the old model, without
seeing current classes, cannot provide useful knowledge for the current classes
and even hinders their learning. Further, treating the background probability
and current class probabilities as a unified entity during distillation inevitably
diminishes the ability to differentiate between current classes and background.

3.2 Overall Framework

Unlike classification tasks with a single label per input, incremental object detec-
tion presents a scenario where an image It can encompass objects from the cur-
rent class set Ct, previous class sets C1:t−1 and future class sets Ct+1:∞. Nonethe-
less, the annotations Yt are limited to bounding boxes and class labels for objects
in Ct, while objects of other classes are regarded as background.

To address the challenge of inconsistent optimization objectives, we introduce
a novel strategy termed Bridge Past and Future (BPF). As shown in Figure 2,
the method is divided into two parts. From the perspective of supervised learn-
ing, we use high-confidence predictions of old classes given by the old model as
pseudo labels to bridge the information from the past stage (Section 3.3) and
discard some potential objects from the background to bridge the future stage
(Section 3.4). Regarding the distillation learning, we propose a novel Distillation
with Future (DwF) loss by considering current classes in the distillation. The
distillation probabilities are combined from two teacher models: the old model
Mt−1 for old classes and an expert model for current classes. By utilizing abun-
dant information in background probability, the distillation takes both previous
stages and the current stage into consideration (Section 3.5).

3.3 Bridging the Past

To address the inconsistency in optimization objectives between the previous
and current models, we bridge the past information to the current stage by in-
corporating pseudo supervision signals from past stages into the current model’s
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Fig. 2: The overall framework of our method. The top side illustrates the Bridge Past
and Future (BPF) procedure, which identifies objects of past classes and excludes
several potential objects of future classes to ensure consistent optimization during
the entire training process. The bottom side shows the Distillation with Future (DwF)
process, which employs both the old model Mt−1 adept at detecting old categories and
the interim model Mim

t trained on Dt and specialized in new categories, to conduct a
comprehensive distillation across all categories for the current model Mt.

optimization process. The old model was trained under the supervision of hu-
man annotations, which is a high-quality pseudo labeler for old classes. We take
the high-confidence inference results of the old model Mt−1 on current training
images as pseudo labels and combine them with current annotations to train the
current detector, thereby aligning the supervision of old classes with previous
stages. The left part of Figure 3 shows the pipeline of bridging the past strategy.

Formally, given predictions ŷold ∈ P of the old model Mt−1 on current
images, we first select some high-confidence regions of previous classes C1:t−1 with
a confidence threshold η, followed by the Non-Maximum Suppression (NMS)
operation to reduce duplication:

U = {j ∈ P : max
c∈C1:t−1

p̂oldj (c) > η}, E = NMS(U). (3)

Then, we further narrow down the predictions to a subset W ⊂ E that do not
overlap with the ground-truth labels of the new categories via an IoU threshold
λ1, ensuring a clear distinction between past and present classes:

W = {j ∈ E : ∀i ∈ Yt, IoU(b̂
old

j , bi) ≤ λ1}. (4)

By modeling the previous supervision signals from the old model, we bridge
the past stages to the current one, ensuring the current model’s optimization
direction encompasses the objectives of earlier stages, significantly mitigating
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Fig. 3: Overview of Bridge Past and Future. We adopt the previous model Mt−1 to
predict some pseudo labels for past classes to complement their missing supervision in
the current stage. Additionally, we exclude several proposals that are likely to be an
object but are not included in the current ground truth and pseudo labels from the
background to avoid classifying them into background mistakenly.

the forgetting problem. MMA [5] treats the background probability and old
class probabilities as a unified entity in the classification loss, making old classes
hard to separate from the background. While our method explicitly models the
old classes in the current stage out of the background.

3.4 Bridging the Future

Bridging the future aims to rectify the misalignment between the optimization
goals of the current and upcoming stages, as objects from future class sets Ct+1:∞
in the current dataset Dt are classified as background. The core design is to find
some salient objects in the background and exclude them from the negative
samples during the training. By separating pure background from regions likely
to contain future category objects in the current stage, we align the optimization
objectives for background treatment across both current and future models.

Specifically, we find that the activation in feature maps is a good indicator
for salient objects. As illustrated in Figure 3, in the absence of annotations for
old and future classes, foreground and background features demonstrate notable
differences in spatial attention. We produce the attention map Ai ∈ RH×W from
the backbone feature map Fi = fb(Ii) ∈ RH×W×C :

Ai = Softmax

(
C∑

c=1

|Fi|p
)
, (5)

where H, W , and C denote the feature’s height, width, and channel. We com-
pute the attention score for each region, indicating the likelihood of containing
foreground objects. The attention score aroii,j for region rj is calculated as follows:

aroii,j = Avg(RoIPool(Ai, rj)) ∈ R. (6)
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Fig. 4: The illustration of Distillation with Future strategy. An intermediate teacher
model trained on the current dataset is used to compensate for the lack of current class
information in the old model. For proposals overlapping ground truth of the current
stage, since the intermediate teacher is specialized in detecting current classes, we
directly inherit its probabilities on current classes and use the old model to enrich its
background probability with old class knowledge. On the contrary, for proposals that
do not overlap with GT, the old model is preferred, and the intermediate model is used
as compensation. Combining two teachers makes the distillation class by class.

Regions with high attention scores aroii,j from feature maps and objectness scores
oj from class-agnostic RPN imply a greater chance of being future category
objects. We discard these RoIs when sampling negative samples when training
the RoI head, thus maintaining the model’s consistency with future stage back-
ground definitions. Regions with lower scores or having a considerable IoU with
ground truth are considered reliable backgrounds.

3.5 Combining Current Classes into Distillation

Distillation is an effective way to prevent forgetting in incremental object de-
tection. However, distilling from the teacher model, which is biased toward old
classes, inevitably hinders the learning for current classes. To address this chal-
lenge, we introduce the Distillation with Future (DwF) loss to distill from the
teacher model in a more fine-grained and adaptive way. Different from MMA [5],
which aligns the current classes and the background as a whole with the old
model’s background, we distill each class one by one, preserving the distinction
between current classes and the background. However, the model Mt−1 from the
previous stage has not been trained on current classes, thus the distillation on
current classes can not be performed. We introduce another intermediate teacher
model Mim

t , which is trained using the dataset from the current stage Dt in a
fully supervised way, as a supplement. Taking the intermediate model Mim

t as a
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complementary teacher, we explicitly consider the current stage t as the future
stage of stage t− 1, making the distillation future-aware.

As the old model Mt−1 performs well on C1:t−1 while the intermediate model
Mim

t is the expert in Ct, we distill different regions with different combination
of teacher models, as shown in Figure 4. Specifically, we divide the regions for
distillation R into two subsets R1,R2 ⊂ R that based on their intersection over
union with the ground truth labels for the new categories Ct:

R1 = {j ∈ R : ∀i ∈ Yt, IoU(bj , bi) ≤ λ2.},
R2 = {j ∈ R : ∀i ∈ Yt, IoU(bj , bi) > λ2.}.

(7)

For regions ri ∈ R1, which are likely to be the regions for old classes, we
take Mt−1 as the primary model for distillation and reconstruct its background
representation with the model Mim

t :

p̂c,imi = pc,imi × pb,t−1
i , ri ∈ R1, (8)

where pb,t−1
i and pc,imi are the classification probabilities of background in the

model Mt−1 and the classification probabilities for current classes and back-
ground c ∈ Ct ∪B in the model Mim

t for the region ri respectively. After weight-

ing,
Ct∪B∑
c=1

p̂c,imi = pb,t−1
i . The final distillation probabilities for regions in R1 are

[p
C1:t−1,t−1
i , p̂Ct∪B,im

i ] ∈ R|C1:t|+1.
On the contrary, for regions ri ∈ R2, they are regions for current classes; thus,

the intermediate model Mim
t is taken as the primary model for distillation, and

its background representation is reconstructed by the model Mt−1:

p̂c,t−1
i = pc,t−1

i × pb,imi , ri ∈ R2, (9)

where
C1:t−1∪B∑

c=1
p̂c,t−1
i = pb,imi . The distillation probabilities for regions in R2 are

[p̂
C1:t−1,t−1
i , pCt,im

i , p̂B,t−1
i ] ∈ R|C1:t|+1.

With the expanded probabilities from the complimentary teacher models,
the distillation on the classification head can be performed using a conventional
Kullback-Leibler divergence. Regarding the box distillation, we use the output
boxes from the old model Mt−1 for regions in R1 and the intermediate model
Mim

t for R2. As a result, the complementary knowledge from two teachers, the
expansion of background probability, and the combination of adaptive probabil-
ity for different regions not only prevent the student from catastrophic forgetting
but also facilitate the learning for current classes.

4 Experiments

4.1 Experiment Settings

Datasets and Evaluation Metrics. Following previous works [5,20,25,26,41,
49,57,65,67], we evaluate our method on PASCAL VOC 2007 [12] and MS COCO
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Table 1: mAP@0.5 results on single incremental step on PASCAL VOC 2007. The
best performance in each is presented with bold, and the second best is presented with
underlined. Methods with ∗ use exemplars.

Method 19-1 15-5 10-10 5-15
1-19 20 1-20 Avg 1-15 16-20 1-20 Avg 1-10 11-20 1-20 Avg 1-5 5-15 1-20 Avg

Joint Training 76.0 76.7 76.1 76.4 78.0 70.4 76.1 74.2 75.9 76.3 76.1 76.1 72.4 77.3 76.1 74.9
Fine-tuning 12.0 62.8 14.5 37.4 14.2 59.2 25.4 36.7 9.5 62.5 36.0 36.0 6.9 63.1 49.1 35.0

ORE* [25] 69.4 60.1 68.9 64.7 71.8 58.7 68.5 65.2 60.4 68.8 64.6 64.6 - - - -
OW-DETR* [20] 70.2 62.0 69.8 66.1 72.2 59.8 69.1 66.0 63.5 67.9 65.7 65.7 - - - -
ILOD-Meta* [26] 70.9 57.6 70.2 64.2 71.7 55.9 67.8 63.8 68.4 64.3 66.3 66.3 - - - -
ABR* [41] 71.0 69.7 70.9 70.4 73.0 65.1 71.0 69.1 71.2 72.8 72.0 72.0 64.7 71.0 69.4 67.9

Faster ILOD [53] 68.9 61.1 68.5 65.0 71.6 56.9 67.9 64.3 69.8 54.5 62.1 62.1 62.0 37.1 43.3 49.6
PPAS [67] 70.5 53.0 69.2 61.8 - - - - 63.5 60.0 61.8 61.8 - - - -
MVC [65] 70.2 60.6 69.7 65.4 69.4 57.9 66.5 63.7 66.2 66.0 66.1 66.1 - - - -
PROB [69] 73.9 48.5 72.6 61.5 73.5 60.8 70.1 67.0 66.0 67.2 66.5 66.5 - - - -
PseudoRM [64] 72.9 67.3 72.6 70.1 73.4 60.9 70.3 66.9 69.1 68.6 68.9 68.9 - - - -
MMA [5] 71.1 63.4 70.7 67.2 73.0 60.5 69.9 66.7 69.3 63.9 66.6 66.6 66.8 57.2 59.6 62.0
BPF (Ours) 74.5 65.3 74.1 69.9 75.9 63.0 72.7 69.5 71.7 74.0 72.9 72.9 66.4 75.3 73.0 70.9

2017 [37] datasets. PASCAL VOC 2007 dataset comprises 9,963 images across
20 categories. The COCO 2017 dataset encompasses objects from 80 categories,
with around 118k images for training and 5,000 images for validation. The mean
average precision at the 0.5 IoU threshold (mAP@0.5) is used as the primary
evaluation metric for the VOC dataset, and the mean average precision ranging
from 0.5 to 0.95 is the main evaluation metric for the COCO dataset.

For each incremental setting (A-B), the first number A denotes the number
of classes in the first stage and the second number is the number of classes newly
introduced in each new stage. Note that the columns with gray background in
the table of experimental results represent the average AP among all classes.

Implementation Details. Similar to [5,25,26,41,49], we build our incremental
object detector based on Faster R-CNN [53] with R50. Our method can easily be
adapted to transformer-based detectors [3, 17, 68]. We conduct the experiments
under a strict rehearsal-free setting, where no memory is used. We set η = 0.75,
λ1 = 0.7, λ2 = 0.5. For W in Equation (4), we use an IOU threshold of 0.3 to
divide it into two sets. For the set with IoU < 0.3, the supervision signal weights
are set to 1.0, while the other set is assigned a weight of 0.3.

4.2 Quantitative Evaluation

Following previous work [5,7,41,49,57,65,67], our method is evaluated on settings
with a range of initial classes and incorporating one or more incremental tasks.
We benchmark our method against two baselines: Fine-Tuning, where the model
is incrementally trained on new data without any regularization strategy or data
replay, and Joint Training, which involves training the model on the complete
dataset using all annotations.
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Table 2: mAP@0.5 results on multiple incremental steps on PASCAL VOC 2007. The
best performance in each is presented with bold, and the second best is presented with
underlined. Methods with ∗ use exemplars.

Method 10-5 (3 tasks) 5-5 (4 tasks) 10-2 (6 tasks) 15-1 (6 tasks) 10-1 (10 tasks)
1-10 11-20 1-20 1-5 6-20 1-20 1-10 11-20 1-20 1-15 16-20 1-20 1-10 11-20 1-20

Joint Training 75.9 76.3 76.1 72.4 77.3 76.1 75.9 76.3 76.1 78.0 70.4 76.1 75.9 76.3 76.1
Fine-tuning [41] 5.3 30.6 18.0 0.5 18.3 13.8 3.8 13.6 8.7 0.0 10.5 5.3 0.0 5.1 2.6

ABR* [41] 68.7 67.1 67.9 64.7 56.4 58.4 67.0 58.1 62.6 68.7 56.7 65.7 62.0 55.7 58.9

Faster ILOD [53] 68.3 57.9 63.1 55.7 16.0 25.9 64.2 48.6 56.4 66.9 44.5 61.3 52.9 41.5 47.2
MMA [5] 66.7 61.8 64.2 62.3 31.2 38.9 65.0 53.1 59.1 68.3 54.3 64.1 59.2 48.3 53.8
BPF (Ours) 69.1 68.2 68.7 60.6 63.1 62.5 68.7 56.3 62.5 71.5 53.1 66.9 62.2 48.3 55.2

Table 3: mAP results on COCO2017.
Methods with ∗ use exemplars.

Method 40-40 70-10
AP AP50 AP75 AP AP50 AP75

Joint Training 36.7 57.8 39.8 36.7 57.8 39.8
Fine-tuning [41] 19.0 31.2 20.4 5.6 8.6 6.2

ILOD-Meta* [26] 23.8 40.5 24.4 - - -
ABR* [41] 34.5 57.8 35.2 31.1 52.9 32.7

Faster ILOD [49] 20.6 40.1 - 21.3 39.9 -
PseudoRM [64] 25.3 44.4 - - - -
MMA [5] 33.0 56.6 34.6 30.2 52.1 31.5
BPF (Ours) 34.4 54.3 37.3 36.2 56.8 38.9

Table 4: Ablation study of various
combinations of teacher models.

Distillation VOC(10-10)
Lroi

dist,cls Lroi
dist,bbox 1-10 11-20 1-20

λ2 = 1.0 part boxes 71.5 73.3 72.4
λ2 = 0.5 part boxes 71.7 74.0 72.9
λ2 = 0.5 all boxes 71.3 74.4 72.9

Table 5: Effect of BF.
BF VOC(5-15) VOC(10-10) VOC(15-5)

1-5 6-20 1-20 1-10 11-20 1-20 1-15 16-20 1-20

× 66.3 74.4 72.4 71.2 73.3 72.3 75.6 62.8 72.4
✓ 66.4 75.3 73.0 71.7 74.0 72.9 75.9 63.0 72.7

PASCAL VOC 2007. For PASCAL VOC 2007, we order the classes alphabet-
ically and evaluate our method with one or multiple training steps. We perform
our experiments by adding 1 (19-1), 5 (15-5), 10 (10-10), or 15 (5-15) classes
in a single incremental step. For multi-step incremental settings, we evaluate
10-5, 5-5, 10-2, 15-1, and 10-1 settings, where we add 5, 5, 2, 1, and 1 classes
respectively at every step until all 20 classes are seen.
- Single-step Incremental Settings: Table 1 shows our BPF methods against
the existing methods using rehearsal or not. Rehearsal-based methods are not
compared fairly with our BPF since we do not store old samples and use re-
play memory. As shown in Table 1, BPF consistently outperforms all previous
methods, including those designed to combat forgetting using exemplars, vali-
dating the superiority of our approach. In particular, in the 19-1, 15-5, 10-10,
and 5-15 settings, BPF significantly improved over MMA [5] by 3.4%, 2.8%,
6.3%, and 13.4% on mAP@0.5 across all classes. Similarly, BPF outperforms the
best rehearsal-based method ABR [41] by 3.2%, 1.7%, 0.9%, and 3.6%. The Avg
metric equally averages old and new classes mAP, which straightly reports the
incremental ability without the influence of the number of classes. BPF also out-
performs most methods on the Avg metric, demonstrating BPF’s adaptiveness
in learning new classes and preserving the knowledge of old classes.
- Multi-step Incremental Settings: The issues of inconsistent optimization
objectives across multiple stages and catastrophic forgetting are more crucial
under the longer incremental settings. As shown in Table 2, BPF consistently
outperforms MMA [5] across all the settings. Specifically, BPF improves over
MMA by 1.4%, 2.8%, 3.4%, 4.5%, and even 23.6% at 1-20 mAP@0.5 under
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Table 6: Ablation study on each component.

Model Bridge Bridge Distillation VOC(10-10) VOC(10-5)
the Past the future with Future 1-10 11-20 1-20 1-10 11-15 16-20 1-20

(a) 58.1 72.4 65.3 54.4 69.9 59.3 59.5
(b) ✓ 71.2 72.1 71.7 69.1 73.5 60.0 67.9
(c) ✓ 61.0 73.3 67.1 54.8 70.7 58.7 59.8
(d) ✓ ✓ 71.9 72.7 72.3 70.4 73.7 58.7 68.3
(e) ✓ ✓ ✓ 71.7 74.0 72.9 69.1 75.2 61.2 68.7

the 10-1, 15-1, 10-2, 10-5, and 5-5 settings and enjoy improvement across all
learning stages. Moreover, we find that even without storing memory, BPF still
outperforms ABR [41] by 0.8% and 4.1% on overall mAP@0.5, 1.1% and 6.7%
mAP@0.5 on new classes under 10-5 and 5-5 settings. In the settings of 10-2
and 10-1, limited by the small incremental data, BPF is inferior to ABR, but
considering we do not require memory, these losses are acceptable.

MS COCO 2017. On the COCO2017 dataset, we perform experiments on 40-
40 and 70-10 settings, adding 40 and 10 classes, respectively, following [41]. As
illustrated in Table 3, our method improves over MMA on average AP by 1.4%
on 40-40 settings and by 6.0% on 70-10 settings. These results once again confirm
the effectiveness of our method.

4.3 Analysis and Ablation Study

We examine the contributions of the “Bridge the Past”, “Bridge the Future”, and
“Distillation with Future” in Table 6 within the VOC 10-10 and 10-5 settings. We
take the unbiased knowledge distillation proposed by [5] as the baseline model.
By bridging the past, our model (b) aligns its optimization objectives with earlier
ones, effectively reducing catastrophic forgetting of old classes, greatly enhancing
the performance on detecting old classes. Compared to the baseline (a), it sig-
nificantly improved by 13.1% in the old classes and by 6.4% for all classes on the
10-10 setting. Owing to bridging the future, our model (c) maintains consistent
optimization objectives with future models regarding the background, making
it easier to incrementally learn new classes. Compared to the baseline (a) on
the 10-10 setting, it improves by 2.9% and 0.9% on the old classes and the new
classes, respectively. Combining Past and Future (d), the model outperforms
consistently on each stage. In the Distillation with Future strategy, we leverage
the intermediate model to aid the old model in modeling new classes, conducting
distillation across all categories for the current model. Table 6 (e) shows that a
comprehensive joint teacher model facilitates improved learning of all categories
through knowledge distillation, with a significant improvement (+1.3% AP) in
new classes. Similar results can be found in the 10-5 setting.

We further verify the “Bridge the future” (BF) in Table 5.There is a clear
trend that as the number of considered future classes increases, the BF shows
increasing improvement in future classes (+0.9 % in 5-15) without degrading the
old classes’ performance.
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Fig. 5: Qualitative results for the model trained under the 10+10 setting on the VOC
2007 test set. ‘boat’, ‘cat’, ‘chair’, and ‘car’ are old classes from the first stage, and
‘person’ and ‘dog’ are the classes from the second stage. Compared with MMA (bottom
row), our BPF (top row) can produce reliable predictions on both old and new classes.

We also conducted a quantitative analysis of Bridge Past and Future. Under
the second stage of the VOC 10-5-5 (3 tasks), the original background boxes have
a 92.6% and 83.9% Recall50 rate for old and future classes, while the Recall50
of pseudo labels for old classes and discarded boxes for future classes are 66.1%
and 17.6% respectively, demonstrating the necessity and effectiveness of Bridge
the Past and Bridge the Future.

Table 4 presents experiments on the effect of different combinations of teacher
models. λ2 in Equation (7) determines using which teacher model as the primary.
Using the intermediate expert model as the primary on regions overlapping with
gt (λ2 = 0.5) outperforms using the old model (λ2 = 1.0), showing that distilling
new class objects with the old model hinders their learning. For box distillation,
we find that distilling boxes on primary classes (part boxes, i.e., only boxes for
old classes in R1 and boxes for new classes in R2 participate in distillation while
others are ignored) performs similarly with all classes (all boxes).

4.4 Visualization

Visualization of Detection Results. We visualize the detection results in Fig-
ure 5 to illustrate the significant improvement compared to the previous methods
qualitatively. Our method accurately detects both new and old class objects si-
multaneously. While MMA fails to detect old classes accurately, suffering from
catastrophic forgetting.

Visualization of Bridge Past and Future. We visualized the module of
Bridge the Past and Bridge the Future separately in Figure 6. We effectively
model the missing annotations for old class objects to bridge the past. As demon-
strated in Figure 6(b), the attention maps clearly differentiate the foreground
from the background, regardless of the presence of annotations. The discarded
boxes (the third row) validate the effectiveness of our method.
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(a) Bridge the Past (b) Bridge the Future
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Fig. 6: Visualization of Bridge Past and Future. Boxes in red represent the ground
truth in the current stage. (a) In Bridge the Past, we effectively constructed pseudo
labels of past classes. (b) In Bridge the Future, salient objects (marked in green boxes)
can be easily detected from the attention maps and are excluded from the background
regions. Best viewed in color.

5 Conclusions

Limitations. In our Bridge the Past procedure, we assume several objects of old
classes may appear in the current training data. However, when the number of
incremental classes is limited, e.g., increasing a single class in each stage, objects
of old classes may rarely occur due to limited training images. This is expected
to be alleviated by generating samples of old classes via the copy-paste strategy
as in ABR [41], while it may introduce little stored samples. Detailed discussion
can be found in the Supplement.

Conclusions. In this work, we find that the concurrence of classes from different
learning stages causes a severe information asymmetry, not only causing catas-
trophic forgetting for old classes but also hindering the learning of new classes.
To tackle the problem, we propose the Bridge Past and Future method, which
uses pseudo labels from the old model to fill in the missing annotations and ex-
clude some potential future objects from the background, keeping the learning
consistent across all stages. Further, Distillation with Future loss is proposed to
solve the problem of the old teacher model’s lack of knowledge of new classes. By
combining the knowledge from the past to the future, our method consistently
outperforms others across different learning stages in most incremental settings.
To the best of our knowledge, we are the first to consider future classes during
the learning, shedding light on a new aspect of Incremental Object Detection.
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