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Abstract. Existing human mesh recovery (HMR) methods commonly
leverage the global or dense-annotations-based local features to produce
a single prediction from the input image. However, the compressed global
and local features disrupt the spatial geometry of the human body and
make it hard to capture the local dynamics, resulting in visual-mesh
misalignment. Moreover, dense annotations are labor-intensive and ex-
pensive. Toward the above issues, we propose a global-to-local prediction
framework to preserve spatial information and obtain precise visual-mesh
alignments for top-down HMR. Specifically, we present an adaptive 2D
Keypoint-Guided Local Encoding Module to enable per-pixel features
to capture fine-grained body part information with structure and local
context maintained. The acquisition of local features relies exclusively
on sparse 2D keypoint guidance without dense annotations or heuristics
keypoint-based ROI (Region of Interested) pooling. The enhanced pixel
features are used to predict residuals for rectifying the initial estimation
produced by global features. Secondly, we introduce a Dynamic Matching
Strategy that determines positive/negative pixels by only calculating the
classification and 2D keypoint costs to further improve visual-mesh align-
ments. The comprehensive experiments demonstrate the effectiveness of
network design. Our framework outperforms previous local regression
methods by a large margin and achieves state-of-the-art performance on
Human3.6M and 3DPW datasets.

Keywords: visual-mesh alignments · Global-to-local · 2D Keypoint-
Guided Local Encoding · Dynamic Matching Strategy

1 Introduction

Given an RGB image, human mesh recovery aims to reconstruct the 3D surface.
It serves a key role in many downstream vision tasks and applications such as
AR/VR, human-computer interaction, and so on. With the development of the
parametric statistical human models, a realistic and controllable 3D mesh can
be generated from the shape and rotations of articulations.
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Fig. 1: (a) The framework predicts part segmentation maps to generate feature vectors
corresponding to different body parts. (b) The framework leverages the predicted 2d
keypoints to perform joint-centric ROI pooling on image features or IUV maps. (c) Our
framework adopts a global-to-local prediction paradigm, which utilizes 2D keypoint
regression guidance to extract local part features with spatial details maintained.

In general, 3D HMR methods can be classified into two categories, includ-
ing optimization-based and regression-based methods. The former explicitly fits
the output to 2D evidence, which can typically obtain accurate mesh-visual
alignments but tends to be slow and sensitive to initialization. Regression-based
methods directly predict human statistics parameters (i.e., shape parameters
and relative rotations of articulations) in an end-to-end manner via the powerful
modeling capacity of DNNs, which has made significant progress in recent years
and has become the leading paradigm. However, most regression-based methods
tend to compress image features by average pooling and leverage global features
to predict shape and rotation parameters. We consider that the compression
process discards local details and spatial geometry information. It is essential
to maintain local spatial details for fine-grained body part perception. Several
works attempt to leverage auxiliary dense representations such as part segmen-
tation and IUV map to concentrate on body parts separately, as shown in Figure
1 (a) and (b). However, there is no 3D human pose dataset providing additional
part segmentation or IUV maps generally. The preparation of the dense anno-
tations is tedious and thus may involve uncertainty errors. Furthermore, though
these works take regional evidence into consideration, the compression process
based on local evidence loses spatial constraint thus leading to misalignment.

To maintain spatial information while capturing the local dynamics without
additional annotation burdens, we present a novel global-to-local wise mesh re-
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covery network, termed GLNet. As shown in Figure 1 (c), GLNet follows a coarse-
to-fine prediction manner that uses regional grid features with spatial geometry
to refine coarse global prediction. Each local grid feature leads to a proposal of
the entire body for refinement. In detail, we first propose a 2D keypoint-guided
Local Encoding Module to incorporate regional context into pixel-wise features.
In this Module, we represent human parts as adaptive points following Adap-
tivePose [34] and adapt this representation into the top-down paradigm. The
human body is divided into several parts, 2D keypoint position and correspond-
ing rotation in each local part are encoded by the adaptive point’s feature. We
leverage 2D keypoint supervision to enable the network to focus on a set of local
semantic positions corresponding to different body parts. Based on the above
insight, we leverage global feature to predict initial parameters and further gen-
erate residuals by local adaptive points’ features to refine initial results. Second,
due to the pixel-wise framework generating plenty of predictions, we propose
a Dynamic Matching Strategy to determine the positive and negative samples.
The matching process only considers the classification and 2D keypoint match-
ing costs to ensure the visual-mesh alignment. For inference, we select the final
results according to the classification scores. Our proposed network achieves 29.4
mm PA-MPJPE on Human3.6M and 39.5 mm PA-MPJPE on 3DPW dataset.

Our contributions can be summarized as follows:
1. We propose a global-to-local wise human mesh recovery network, named

GLNet, which can capture local details while maintaining spatial information to
improve visual-mesh alignments by sparse and adaptive 2D keypoint guidance
without dense labels and heuristic rules.

2. We introduce a 2D Keypoint-Guided Local Encoding Module to drive
each pixel feature to fuse local semantic-rich body parts’ information for global
prediction refinement. Furthermore, we propose an Adaptive Matching Strategy
by calculating the 2D components’ match costs between per-pixel predictions
and ground-truth for assigning positive/negative samples.

3. Equipped with the proposed 2D Keypoint-Guided Local Encoding Module
and Dynamic Matching Strategy for training, GLNet achieves state-of-the-art
performance and outperforms previous HMR methods significantly.

2 Related Work

In this section, we review two main paradigms for 3D human mesh recovery,
including optimization-based and regression-based paradigms in Subsection 2.1
and 2.2. Then, we review the usage of 2D keypoint proxy in the HMR task and
discuss the difference with our method in Subsection 2.3.

2.1 Optimization-based Methods

Optimization-based approaches primarily aim to estimate a 3D mesh that aligns
with 2D image clues. The objective function generally comprises two parts: data
terms and regularization terms. Data terms are used to measure the consistency
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between the 2D label and its 3D re-projection. Regularization terms are crucial
for achieving a physically plausible body mesh. They introduce pose priors to
guard against unrealistic poses, thereby enhancing the realism and feasibility of
the generated 3D mesh. For example, SMPLify [24] fits SMPL parameters to the
predicted 2D keypoints iteratively. Specifically, it adopts an existing 2D pose
estimator to locate the keypoints and perform gradient-based optimization. The
objective function is composed of a 2D keypoint-based data term and several
regularization terms, including an interpenetration error term, two pose priors,
and a shape prior. Follow-up works attempt to use other 2D representations,
e.g., silhouettes [13], 3D Part Orientation Fields [32], dense correspondences [6]
or contact [23]. Moreover, deep learning techniques can be embedded into the
gradient-based optimization process to enhance robustness and plausibility. Ex-
emplar Fine-Tuning [9] leverages a pre-trained 3D pose estimator and performs
optimization based on the strong pose priors. Song et al. [27] design an itera-
tive algorithm based on gradient descent to generate the parameters that fit the
SMPL parameters to 2D observations.

2.2 Regression-based Methods

Regression-based approaches directly predict the SMPL parameters from monoc-
ular images. We further categorize the existing regression-based works into global
and local regression methods.

Global-based regression approaches compress the image feature to a global
feature vector for regressing the pose and shape parameters. HMR [10] proposes
to use end-to-end adversarial learning and an iterative error feedback (IEF)
technique to reduce the regression errors. SPIN [12] forms a tight collabora-
tion between regression-based and optimization-based paradigms that use the
regressed pose to initialize the iterative optimization routine. CLIFF [16] reveals
that the global rotations cannot be accurately inferred when only using cropped
images and present to feed the model with the cropped-image feature with its
bounding box information. HMR 2.0 [5] uses ViT as the image encoder and
introduces SMPL query token to probe relevant visual features, then employs
a standard transformer decoder with multi-head self/cross-attention to conduct
SMPL parameter predictions. Besides, inverse kinematics has also been explored.
HybrIK [15] designs an adaptive IK algorithm to convert 3D keypoints to the
swing rotations, the shape and twist rotations are regressed by global feature.
NIKI [14] further combines the FK (Forward Kinematics) and IK (Inverse Kine-
matics) processes using an invertible neural network to explicitly decouple errors
from plausible poses.

Although the aforementioned methods attempt to use diverse intermediate
estimations to facilitate the image-to-parameters mapping. The global feature
is highly abstract thus is hard to capture the fine-grained high-frequency in-
formation. To alleviate this issue, several researches leverage local feature to
attend to the corresponding body part with the aid of auxiliary representations.
PARE [11] introduces a soft attention mechanism to enable the network to focus
on local body parts by learning part segmentation masks. The image feature
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maps are embedded as corresponding local feature vectors via predicted part
attention masks. PyMAF [37] performs mesh alignment feedback loop by lever-
aging a feature pyramid to rectify the parameters explicitly from coarse to fine.
FastMETRO [2] follows the model-free paradigm and utilizes joint as well as
vertex tokens for non-parametric predictions via a transformer encoder-decoder
architecture.

The aforementioned local regression methods rely on dense proxy representa-
tions to drive the network to perceive foreground body regions. The local features
are embedded as 1D vectors while losing local spatial structure. In contrast, we
design a global-to-local pipeline that uses sparse 2D keypoint guidance to encode
regional context with spatial geometry maintained.

2.3 2D Keypoint Proxy

Instead of fitting SMPL parameters to 2D keypoints via re-projection loss,
several methods adopt 2D keypoints as intermediate representations. Pavlakos
et al. [25] utilize the 2D keypoint heatmap to predict pose parameters. Tung
et al. [30] concatenates the image with the corresponding 2D heatmap as in-
put. HaloPose [6] and DaNet [36] leverage the predicted joint positions to per-
form joint-centric RoI pooling, extract and fuse the partial feature or IUV
map [7]. Pose2Mesh [3] and MotionBert [39] design a graph convolution and a
transformer-based network that recovers 3D body mesh from the 2D keypoints
respectively.

In contrast, GLNet represents compositional body parts as unconstrained
relevant points with local contexts. The guidance of 2D keypoint regression en-
ables the unconstrained points to perceive body part information respectively.
The features with spatial and local context are sampled and fused to conduct
global-to-local parameter rectification in the feed-forward process.

3 Method

In this section, we first briefly review the commonly-used parametric model
SMPL [20] and its representative variant HybrIK [15] in Subsection 3.1, followed
by elaboration on our global-to-local wise prediction framework in Subsection
3.2. In Subsection 3.3, we introduce a 2D Keypoint-guided Local Encoding Mod-
ule. Finally, we describe the Dynamic Matching Strategy to assign supervisions
that guarantee the visual-mesh alignments in Subsection 3.4.

3.1 Preliminary

SMPL representation. Most existing methods represent the 3D body mesh
using the Skinned Multi-Person Linear (SMPL) model, which forms the human
body via two characteristics including shape and pose. The shape β ∈ R10 is pa-
rameterized by the first 10 coefficients of a PCA space, indicating how individuals
vary in height, weight, body proportions, etc. The pose parameters θ ∈ R24×3
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consist of the global rotation of the root joint (pelvis) and 23 relative rotations
of other joints relative to their parents along the hierarchical kinematic tree in
axis-angle representation. SMPL present to use a differentiable function M that
outputs a triangulated mesh with N = 6980 vertices, where M(θ, β) ∈ RN×3.
The 3D keypoints J3D ∈ Rk×3 can be generated from the linear combinations of
the vertices and pretrained linear regression matrix.

Swing-Twist Decomposition. HybrIk [15] argues that directly regressing
the relative rotations is highly non-linear and proposes an Inverse Kinematics-
based solution via twist-and-swing decomposition. The relative rotation is fac-
torized into twist and swing, i.e. a longitudinal rotation and an in-plane rotation.
HybrIK introduces an analytical-neural inverse kinematics solution to perform
3D body mesh by 3D keypoint positions. It utilizes the predicted 3D keypoints
to calculate the swing rotation analytically by the IK process. The process can
be formulated as Rsw = IK(P, T ), where R is relative rotation, P = {pk}Kk=1

indicates input keypoints and T = {tk}Kk=1 denotes the rest pose. Specifically,
the rotation ought to guarantee Pk − Pparent(k) = Rk(tk − tparent(k)). Then,
HybrIK leverages a neural network to estimate the twist rotation Rtw via visual
information. A accurate rotation R can be synthesized through R = RtwRsw.

Our global-to-local framework is representation-agnostic and can be com-
patible with direct rotation regression or twist-and-swing decomposition. For
twist-and-swing decomposition, we leverage global feature to predict the initial
twist rotations and use pixel features to rectify them. In parallel, we calculate
the swing rotation by the predicted 2D keypoint and depth information. We
report the results of two rotation representations in Table 2

Image 

Encoder 

Global 

Pooling 

Pixel Grids 

h 

Matching  

Pixel-wise 

residuals 

Two-hop 

Regression 

Guidance 

(a) 2D Keypoint-Guided 

Local Encoding Module 

Part relevant Points guided by regression loss 

2d kps  cls 

Pos/Neg index 

…
 Repeat T labels 

cls 3d 2d 

h 

w 

hw 

𝜃𝑟 

supervisions 

global estimation sub-network 

pixel refinement sub-network 

𝜃𝑏, 𝛽𝑏 Refine 

(b) Dynamic Matching Strategy   

𝑓𝑔 

𝑓𝑙 

𝜃𝑏 + 𝜃𝑟 

Fig. 2: Overview of GLNet. GLNet consists of a global estimation sub-network and
pixel refinement sub-network. We leverage the global estimation sub-network to esti-
mate camera parameters, highly abstract shape parameters, and base rotations. After-
wards, we use the pixel-wise feature output from 2D Keypoint-Guided Local Encoding
Module to predict the residual rotations for rectifying base rotations. In the training
stage, we leverage the Dynamic Matching Strategy that only considers the 2D elements
to assign positive and negative samples.
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3.2 Whole Framework

Previous works compress and aggregate spatial features by average pooling or
soft attention masks thus probably leading to spatial misalignment. In contrast,
we propose to use the global-to-local framework to maintain spatial structure
and high-frequency information, pursuing the image-mesh alignments via 2D
keypoint-guided regional feature.

As shown in Figure 2, we leverage widely-used HRNet [28] to encode visual
information and obtain high-resolution feature F ∈ Rh×w (1/4 input resolution).
the output feature is fed into two sub-networks including global estimation
sub-network and pixel refinement sub-network, the former follows previous
works that use average pooling to generate global feature fg, then predicts a
global initial estimation for shape and rotation parameters. We consider that
the global feature mainly contains low-frequency semantics, which impedes to
capture local details. To tackle this issue, we propose to use per-pixel prediction
fashion as CenterNet [38] in pixel refinement sub-network. Each local feature
grid produces a proposal, and generates the corresponding classification score,
keypoint coordinates, and rotation parameters respectively. However, we find
that the pixel feature is hard to fully encode diverse body deformation with
the limited receptive field and context. Thus we propose a 2D Keypoint-Guided
Local Encoding Module to enable each pixel to probe a group of local features
to refine the global initial estimation.

3.3 2D Keypoint-Guided Local Encoding Module

In detail, to capture fine-grained local features without dense annotations, we
leverage 2D keypoint regression guidance to drive each grid feature to search a
group of local features corresponding to different body parts following Adaptive-
Pose [34]. Specifically, we divide the human body into several parts and aim to
find the corresponding relevant local features fl with spatial geometry reserved
to rectify the global initial prediction.

Towards this goal, we adapt the Parts as Adaptive points proposed in Adap-
tivePose [34] from keypoint localization to 3D mesh recovery, and further build
a unified keypoint and mesh estimation framework. For keypoint regression via
Parts as Adaptive Points, as shown in Figure 3 (b), each divided part is encoded
by an unconstrained relevant point. The regression route can be decomposed into
two sub-routes. The former predicted by the reference points’ feature, starts from
a reference position to the part-relevant points. The latter offsets are regressed
by part-relevant points’ features from the current positions to the objective key-
points. For the training process, the supervisions are performed on the addition
of two sub-routes. Due to the regression chains are differentiable, thus the su-
pervisions can drive the unconstrained points to locate on the positions with
local part context. Through the 2D keypoint regression guidance, if the key-
point position can be precisely located via the unconstrained points’ feature,
the encoded local context can predict other joint properties accurately without
spatial information compression. Based on the above description, we represent
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the human pose into several compositional parts and search the corresponding
regional semantic feature with the spatial structure for each part. Instead of
aiding by dense annotations, we only utilize the sparse 2D keypoint regression
to facilitate the network focus on a relevant spatial position for each part.

In the forward process, We first map the global feature to generate the base
estimations, including shape βb, pose θb, and camera parameters. Then we aggre-
gate all part-relevant points’ features to predict the residual pose parameter θr
to rectify the base estimation. By using the 2D keypoint guided features, the 3D
SMPL parameter can implicitly fit the 2D evidence without various re-projection
losses.

3.4 Dynamic Matching Strategy

In our global-to-local manner, due to the plenty of predictions with only one
ground truth for each input image, a naive solution is conducting the heuristic
assignments via position priors (e.g., assigning the center area pixels as posi-
tives). This idea has been verified in object perception tasks such as anchor-free
object detection [29, 38] and pose estimation [4, 33–35]. In the training stage of
these methods, due to the input images containing multiple objects or persons
with various scales, thus roughly selecting the center positions as positives can
achieve promising performance. However, directly employing the above label as-
signments to our GLNet only achieves unsatisfactory results. In the top-down
paradigm, the inputs are cropped according to the bounding box and normal-
ized to the unified scale, the background and the scale variance issues are greatly
eliminated. To advance the training of GLNet, we present to design a Dynamic
Matching Strategy only based on 2D elements matching for effective training
while further ensuring the spatial alignments.

Our framework infers N predictions, where each one is generated from a pixel
grid. Let us denote only one ground truth as y = {c, kpt2D, posesmpl}, where c
is the classification label, kpt2D and posesmpl represent 2D keypoint coordinates
and SMPL parameters respectively. ŷ = {ŷi}N=h×w

i=1 represent the set of N pre-
dictions. N is the number of pixel positions in the output feature. We assume
y also as a group of size N padded with N − 1 ∅ (no object). We can perform
bipartite matching between these two sets to obtain an index permutation σ

with the lowest cost argmin
N∑
i

Lmatch(yi, ŷσ(i)).

Due to the input image being cropped from the raw image, the foreground
human body occupies most area of the input image. We observe that only as-
signing the supervision to one positive sample may cause slow convergence and
training collapse. To facilitate the training and improve the stability, we repeat
the unique ground truth for T times and pad N − T ∅ to build the label sets.
We denote the annotation of element i as yi = {ci, kpt2Di , posesmpl

i } (may be
∅). For the matching process, an intuitive solution is to consider classification
cost, 2D and 3D components costs between each prediction and ground truth
simultaneously. However, we found that involving the 3D components in cost
computation leads to unstable matching. Ultimately, we only use classification
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and 2D keypoint regression loss for calculating the matching costs, which can be
formulated as:

Lmatch(yi, ŷσ(i)) = −α(1− P̂σ(i)(c))
β ∗ logP̂σ(i)(c) + Lkpt( ˆkpt

2D

σ(i), kpt
2D
i ), (1)

where P̂σ(i)(c) indicates the probability of person class.
Then we obtain an optimal matching via the matching cost and calculate the

loss for all matched pairs. The predictions matched with ∅(empty) are regarded
as negatives and only supervised by classification loss. The others are positives
and supervised by classification, 2D keypoint regression, and 3D pose parameter
regression loss as follows:

Lall = λcls ∗ Lcls + λ2D ∗ I{ci ̸=∅}L2D + λ3D ∗ I{ci ̸=∅}L3D, (2)

Where I{c ̸=∅} is indicator. λcls, λ2D and λ3D are set to 2, 70, 0.1 experimentally.
We leverage Focal loss for classification, L1 loss for 2D keypoint regression, and
L2 loss for pose and shape regression. In the test stage, we pick up the final
prediction with the max classification score.

4 Experiments

We first briefly introduce our experimental setups in Subsection 4.1. Then we
conduct comprehensive comparisons with previous methods to verify the supe-
riority of GLNet in Subsection 4.2. Finally, we carry out the ablation studies to
investigate the effectiveness of each component in Subsection 4.3.

4.1 Experimental Setup

Datasets. We train GLNet on a mixture of MS COCO [19], Human3.6M [8],
MPI-INF-3DHP [21] and 3DPW [31] with 2D/3D annotations, evaluate the 2D
keypoint localization capacity on COCO validation set and 3D mesh recovery
on Human3.6M and 3DPW test sets. Specifically, MS COCO [19] is a widely-
used 2D pose estimation benchmark that includes 200k images with 250k human
instances annotated with 17 body keypoints. We incorporate its training data
into 3D data to improve the scene diversity. Human3.6M is an indoor multi-view
benchmark for 3D pose estimation. Following previous methods, we use 5 sub-
jects S1, S5, S6, S7, S8 for training and S9, S11 for evaluation. MPI-INF-3DHP
is a more diverse dataset consisting of both constrained indoor and complex
in-the-wile scenes. 3DPW is a challenging in-the-wild dataset with 3d pose and
shape annotated by 3D IMU devices. We adopt a fixed sampling ratio of 0.35:
0.45: 0.1: 0.1 for the above datasets in the training stage.
Evaluation Metric. The three standard metrics in our experiments are briefly
described below. They all measure the Euclidean distances (in millimeters) of
3D points between the predictions and ground truth. MPJPE (Mean Per Joint
Position Error) first aligns the prediction and ground-truth at the pelvis and
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then calculates their distances. PA-MPJPE (Procrustes-Aligned Mean Per Joint
Position Error) performs Procrustes alignment before computing MPJPE, ignor-
ing the discrepancies in scale and global rotation. PVE (Per Vertex Error) does
the same alignment as MPJPE at first, then calculates the distances of vertices
on the body mesh.
Augmentation. In the training stage, we carry out data augmentation via
random flip with a probability of 0.5, random rotation in [−30, 30] degrees, and
random scaling of [0.7, 1.3] to augment training samples. Each input is cropped
to 256 × 256 pixels. The feature size in pixel refinements is 1/4 of the input
resolution.

Table 1: Comprehensive comparisons with previous methods on 3DPW and Hu-
man3.6M datasets.

Method
3DPW Human3.6M

PA-MPJPE MPJPE PVE PA-MPJPE MPJPE

Model-free Methods

I2l-meshnet [22] 58.6 93.2 - 41.7 55.7
Pose2Mesh [3] 56.3 89.5 105.3 46.3 64.9
METRO [17] 47.9 77.1 88.2 36.7 54.0
Graphormer [18] 45.6 74.7 87.7 34.5 51.2

Model-based Methods

SPIN [12] 59.2 96.9 116.4 41.1 -
HMR [10] 81.3 130.0 - 56.8 -
HMR-EFT [9] 52.2 85.1 98.7 43.8 63.2
HybrIK [15] 48.8 80.0 94.5 34.5 54.4
CLIFF-W48 [16] 43.0 69.0 81.2 - -
NIKI [14] 40.6 71.3 86.6 - -
PLIKS [26] 42.8 66.9 82.6 34.7 49.3

DaNet [36] - - - 42.9 54.6
PARE [11] 46.4 79.1 94.2 - -
BOPR-W32 [1] 41.8 68.8 81.7 - -
BOPR-W48 [1] 42.5 65.4 80.8 - -

GLNet-W32 39.7 66.3 77.7 29.8 47.5
GLNet-W48 39.5 66.9 77.9 29.4 48.8

Implementation Details. We train our proposed GLNet via Adam optimizer
on 4 Tesla V100 GPUs, with a mini-batch size of 128 for 70 epochs. We use
HRNet-W32/48 [28] as image encoder. The initial learning rate is set as 2.5e-4
and dropped to 2.5e-5 and 2.5e-6 at the 40th and 60th epochs respectively.

4.2 Comparisons with State-of-the-arts

As shown in Table 1, we report the quantitative results on 3DPW and Hu-
man3.6M datasets, then make comprehensive comparisons with previous state-
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of-the-art methods. For model-free methods, our GLNet reduces 8.4mm MPJPE
and 10.0mm PVE than Graphormer [18] on 3DPW, which estimates the human
mesh vertices and body joints directly from the image. For model-based methods,
we compare our GLNet with global regression and local regression approaches
respectively. Compared with CLIFF-W48 [16], our method with HRNet-W32 re-
duces 2.7mm MPJPE and 3.5mm PVE without holistic location information. As
for local regression methods, GLNet leverages 2D keypoint regression guidance to
adaptively fuse local part features, and outperform DaNet [36] which performs
joint-centric ROI sampling on proxy IUV map by a large margin. Moreover,
compared with PARE [11] and BOPR [1] using the predicted part segmenta-
tion masks to obtain regional features, our approach reduces 12.8mm MPJPE
and 16.5mm PVE over PARE, 2.5mm MPJPE and 4.0mm PVE than BOPR.
GLNet is able to maintain local spatial geometry and dynamics without heuristic
rules. Table 1 shows that GLNet achieves superior performance, especially on
MPJPE and PVE metrics, which reveal more accurate visual-mesh alignment
than previous local regression methods.

4.3 Ablation Analysis

Table 2: Contributions of each component. LEM is 2D Keypoint-Guided Local En-
coding Module. DMS denotes the Dynamic Matching Strategy. Decomposed indicates
whether to perform the swing-twist decomposition for relative rotation following Hy-
brIK [15].

Baseline LEM DMS Decomposed 3DPW Human3.6M
PA-MPJPE MPJPE PVE PA-MPJPE MPJPE

√
- - × 49.6 76.9 88.0 36.4 54.3

-
√

- × 43.7 74.3 82.3 32.7 52.9
- -

√
× 43.5 73.1 81.2 33.5 53.3

-
√ √

× 40.8 68.7 79.7 30.6 48.4
-

√ √ √
39.7 66.3 77.7 29.8 47.5

Contributions of each component. We analyze the contribution of each
component to the whole framework. The results are shown in Table 2. Baseline
denotes using global features to predict shape and rotation directly. We first in-
sert 2D Keypoint-Guided Local Encoding Module (body central area as positive
samples) that uses part-aware local features to refine the global estimation. We
observe the refinement reduces the PA-MPJPE and MPJPE by 5.9 mm, and
2.6 mm on 3DPW respectively. Dynamic Matching Strategy further decreases
MPJPE and PVE by 5.6 and 2.6 mm on the 3DPW dataset. The results ver-
ify that the 2D Keypoint-Guided Local Encoding Module can capture spatial
geometry and local dynamics. Equipped with the 2D evidence-based matching
strategy, GLNet can effectively improve the visual-mesh alignments. We also re-
place the direct rotation regression with twist-swing decomposition. The swing
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rotations are calculated by the predicted 2D keypoints and corresponding depth.
The twist rotations are estimated by global feature and revised by the fused
part-relevant points’ features. The result demonstrates employing swing-twist
decomposition achieves slightly better performance than direct rotation regres-
sion. In twist-and-swing decomposition, rotation denotes twist rotation. In the
following studies, we adopt twist-and-swing decomposition by default.

Table 3: Ablative studies for local feature encoding by different auxiliary annotations.

annotation type 3DPW Human3.6M
PA-MPJPE MPJPE PVE PA-MPJPE MPJPE

segmentation map dense 41.3 72.2 82.1 31.6 52.1
IUV map dense 40.7 70.9 80.5 30.5 50.8
2D keypoints sparse 39.7 66.3 77.7 29.8 47.5

Table 4: Ablative studies for exploring which type of parameters should combine
global estimation and pixel-wise refinements.

Pred Paradigm Refined Param. 3DPW Human3.6M
PA-MPJPE MPJPE PVE PA-MPJPE MPJPE

Global — 45.5 73.9 84.2 33.2 53.5
G-to-P shape + rot + cam 42.7 71.2 83.4 33.8 52.1
G-to-P shape + rot 40.6 68.2 79.4 30.6 48.3
G-to-P rot 39.7 66.3 77.7 29.8 47.5

Analysis of 2D Keypoint-Guided Local Encoding Module. We go deep
into the design of the Local Encoding Module. Instead of obtaining local features
via dense annotations, our local feature only relies on sparse 2D keypoint guid-
ance with spatial structure kept. As shown in Table 3, we leverage the predicted
part segmentation map and IUV map to produce the local features and refine the
global initial estimation respectively. For the usage of the IUV map, we follow
DaNet [36] that adopt joint-centric ROI pooling to obtain local features. Our
2D keypoint-guided local feature reduces the MPJPE by 5.9, 4.6 mm on 3DPW
and Human3.6M compared with the segmentation map, and decreases MPJPE
and MPVE by 4.6, 2.8 mm than IUV map on 3DPW. Moreover, in contrast to
dense proxy labels, 2D keypoint annotations are easy to obtain and already exist
in most 3D human body datasets.

We further investigate how to combine the global initial estimation and pixel-
wise refinements to achieve superior performance. We utilize the part-relevant
points feature to localize keypoints via the differentiable two-hop regression
route. The supervision imposes on whole offsets and thus drives the part-relevant
points located on body part aware positions, as shown in Figure 3 (b). Conse-
quently, we fuse the part-relevant points’ features to rectify the global prediction
of rotation parameters. As shown in Table 4, we observe that the global feature is
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sufficient for accurate estimation of camera and shape parameters, further refine-
ments disrupt the initial estimation. Using local features to revise the rotation
parameters achieves the best results. 2D keypoint-guided local features involve
more fine-grained spatial and detailed information than global feature and thus
are beneficial to encode diverse articulation deformations. As shown in Figure
3 (a), the visualizations verify the global-to-local refinements can significantly
improve image-mesh alignments.

(b)

(a)

Fig. 3: (a) The images with red circles are the coarse predictions estimated by global
features. The predictions with green circles are refined by local grid feature with 2D
keypoint guidance. (b) The divided parts and corresponding parts relevant points. The
white point is the reference point with the max confidence score.

Analysis of Dynamic Matching Strategy. We design a Dynamic Match-
ing Strategy to assign positive/negative samples instead of position prior and
conduct comprehensive experiments on 2D keypoint localization and 3D mesh
recovery respectively to validate the effectiveness. In our framework, each pixel
produces a set of parameter predictions, we perform one-to-one label assignments
first. However, a large number of predictions matched with only one ground truth
leading to extremely positive/negative sample imbalance and causing training
instability. We repeat the ground truth for T times to increase the positive ratio
in the training process. We explore the selection of T in Table 5 and find that
20 is enough to stabilize the training process and avoid collapse.
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Table 5: Ablative studies for the number of positive pixel positions.

Dataset
Number - 1 10 20 50 100

COCO AP ↑ 73.4 74.4 74.6 74.6 74.3

3DPW MPJPE ↓ 70.5 67.4 66.3 66.5 68.4
MPVE ↓ 81.1 77.5 77.7 77.9 79.5

Moreover, we investigate which components should be considered for the
matching process. Intuitively, the cost ought to involve more factors (e.g., classi-
fication, 2D keypoints, depth, and rotation parameters) as possible. Nevertheless,
we find that 3D elements (e.g., depth, rotation) disturb the matching procedure.
As reported in Table 6, matching costs that encompass class prediction and 2D
keypoint regression can achieve satisfactory results, further incorporating depth
or rotation parameters tends to increase prediction error. We argue that due to
the 3D parameters prediction from monocular image is an inherently ill-posed
problem, which can lead to unstable matching.
Limitation. Using a fixed number of positive samples is sub-optimal. How to
design a mechanism to adjust the number of positive samples based on training
feedback remains to be explored.

Table 6: Ablative studies for Matching Cost.

Matching Cost 3DPW Human3.6M
PA-MPJPE MPJPE PVE PA-MPJPE MPJPE

cls + 2D kpt 39.7 66.3 77.7 29.8 47.5
cls + 2D kpt + depth 42.3 70.4 80.2 31.5 50.3
cls + 2D kpt + depth + rot 41.2 71.3 80.6 30.6 48.0

5 Conclusion

In this paper, we propose a global-to-local prediction framework for HMR, which
leverages local features with spatial and local information to correct global pre-
diction. First, we propose a 2D Keypoint-Guided Local Encoding Module that
leverages sparse 2D keypoint guidance to extract and fuse the body part features
with local spatial context. The fine-grained features are capable of tuning the
rough global results. Second, we introduce a Dynamic Matching Strategy for the
training stage to further improve the visual-mesh alignments. Comprehensive
comparisons verify the effectiveness of the two proposed components. GLNet
achieves significant improvements over previous local regression methods and
obtains state-of-the-art performance on Human3.6M and 3DPW datasets.
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