
Supplementary Materials for “Visible and Clear:
Finding Tiny Objects in Difference Map”

Bing Cao, Haiyu Yao, Pengfei Zhu⋆, and Qinghua Hu

College of Intelligence and Computing, Tianjin University, Tianjin, China
Tianjin Key Lab of Machine Learning, Tianjin, China

{caobing,yaohaiyu,zhupengfei,huqinghua}@tju.edu.cn

1 More Experiments

1.1 Competing Methods

In this part, we present the competing methods compared in the experiments.
Faster R-CNN. Faster R-CNN [11] is one of the most classic two-stage detec-
tors. It firstly feeds the extracted feature map into the Region Proposal Network
(RPN) to extract proposals, which is used to perform classification and regression
in the second stage.
RetinaNet. RetinaNet [8] is a one-stage detector that proposes Focal Loss
to increase the weight of hard samples, alleviating the foreground-background
samples imbalance problem.
Cascade R-CNN. Cascade R-CNN [1] significantly improves the quality of
proposals through multi-stage regression with different IoU thresholds.
Cascade RPN. Cascade RPN [12] introduces the cascade idea into the RPN
network, alleviating the misalignment issue between anchors and features.
TridentNet. TridentNet [7] uses dilated convolutions for multi-scale perception.
ATSS. ATSS [18] proposes an adaptive training sample selection method that
automatically divides positive and negative training samples based on the statis-
tical characteristics of objects.
DyHead. DyHead [3] applies attention mechanisms to three aspects: scale per-
ception, spatial perception, and task perception.
DetectoRS. DetectoRS [10] introduces Recursive Feature Pyramid (RFP) and
Switchable Atrous Convolution (SAC), significantly improving detection perfor-
mance.
RFLA. RFLA [15] introduces a simple but effective receptive field-based label
assignment strategy, enhancing the detection performance of tiny objects.
CZ Det. CZ Det [9] introduces a cascaded zoom-in detector that performs
cropping and re-detection on regions identified as density.
CFINet. CFINet [16] introduces a coarse-to-fine RPN to ensure sufficient and
high-quality proposals for tiny objects, and equips the conventional detection
head with a feature imitation branch to facilitate the region representations of
size-limited instances.
⋆ Corresponding author
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HANet. HANet [6] proposes a hierarchical activation method to obtain scale-
specific feature subspaces by activating object features at different scales hierar-
chically.
Deformable-DETR. Deformable-DETR [19] speeds up the training convergence
of transformer-based detectors and improves the detection of tiny objects by
introducing a multi-scale deformable attention module.
DINO. DINO [17] improves over previous transformer-based detectors in perfor-
mance and efficiency by using a contrastive way for denoising training, a mixed
query selection method for anchor initialization, and a look forward twice scheme
for box prediction.

1.2 Effectiveness of Reweighting

In the Difference Map Guided Feature Enhancement (DGFE) module, we perform
reweighting along the channel dimension of difference maps for feature enhance-
ment. To validate the effectiveness of reweighting, we conduct experiments with
Cascade R-CNN w/ SR-TOD on the VisDrone2019 [4] dataset. Specifically, we
conduct experiments with channel-wise reweighting solely on the feature maps
and keep the difference maps weighted equally across the channel dimension. The
results are shown in Tab. 1. The performance of solely utilizing the difference map
surpasses that of using only the reweighting method by 0.5 AP. This observation
underscores the substantial impact of the prior information in the difference map
on enhancing the efficacy of detecting tiny objects. Furthermore, by reweighting
the difference maps along the channel dimension, the performance achieves 27.3
AP, with a significant improvement of 0.4 points in AP0.75. This demonstrates
that directly utilizing difference maps with spatial information alone across all
channels with equal weights is not qualified for element-wise feature enhancement.
In contrast, reweighting the difference maps leads to a remarkable improvement
in the regression accuracy of tiny objects.

1.3 More Details of Difference Map

In Tab. 2, we keep all other parameters fixed and empirically show that 40/255 is
the best initial value of the learnable threshold Tinit. However, the overall impact
of the variation in initial values is minimal, demonstrating the robustness of our
method to the selection of initial threshold values. Additionally, for datasets with
more complex backgrounds, the model is more sensitive to Tinit, as shown in
Tab. 3. The setting of the Tinit is associated with different datasets. For complex
ground backgrounds, we set lower Tinit, such as 4/255 for VisDrone2019 and
3/255 for AI-TOD. For scenarios like DroneSwarms where most drone instances
are in the sky, we set the Tinit to 40/255.

1.4 More Results on DOTA.

We have conducted experiments on the DOTA dataset [14]. Tab. 4 shows our
method achieves considerable performance (e.g ., RFLA, APt: 5.6 → 6.0, APs:
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Table 1: Effectiveness of reweighting. RW denotes only using reweighting in DGFE
and DM denotes only using difference map.

RW DM AP AP0.5 AP0.75 APvt APt APs

✓ 26.7 46.3 26.6 2.4 10.9 23.9
✓ 27.2 47.0 27.1 2.8 11.3 24.5

✓ ✓ 27.3 46.9 27.5 2.3 11.5 24.7

Table 2: Performance of different Tinit. Tinit denotes the initial threshold. Results are
on DroneSwarms.

Tinit AP AP0.5 AP0.75 APvt APt APs

20/255 38.0 87.3 25.0 30.7 46.9 59.3
40/255 38.3 87.4 25.4 30.8 47.4 59.4
60/255 38.3 87.6 25.3 31.1 47.4 59.2
80/255 38.1 87.4 25.3 30.9 47.1 59.2
100/255 38.3 87.5 25.6 30.8 47.4 59.2

26.5 → 26.8). This demonstrates our robustness even in remote sensing scenes
with significant variations in object scales and extreme class imbalances.

1.5 More Comparisons on AI-TOD.

Additional computation. We have evaluated the additional computation and
performance of integrating our method into DetectoRS on the AI-TOD dataset in
Tab. 5. Our method increases acceptable computational costs (FPS: 12.5 → 8.9)
while delivering considerable improvements (AP: 14.6 → 24.0, AP0.5: 31.8 → 54.6,
APvt: 0 → 10.1).
Predicted difference map. We have extended our self-reconstructed difference
map to a predictive version by using ground truth (GT). In Tab. 5, although
the predicted difference map (PDM) reduced computation costs, it also affected
detection performance when compared to ours and even the baseline (e.g ., AP:
24.0 → 13.3, FPS: 8.9 → 11.4). This further validates that our reconstructed
difference map is more sensitive to tiny objects, sufficient to construct prior
knowledge for more robust detection.

1.6 More Comparisons with FPN Variants.

We have reported more comparisons with FPN variants in Tab. 6. Please kindly
note that we impose an auxiliary reconstruction head on the FPN module
without altering its structure. Our method exhibits remarkable flexibility, enabling
seamless integration with different FPN variants to enhance their performance
effectively (e.g ., Recursive-FPN, AP: 26.3 → 27.2, APt: 7.5 → 11.7).
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Table 3: Different Tinit on VisDrone2019.

Tinit AP AP0.5 AP0.75 APvt APt APs

2/255 27.3 46.9 27.5 2.6 11.1 24.3
4/255 27.3 46.9 27.5 2.3 11.5 24.7
6/255 27.2 47.0 27.3 2.2 10.9 24.8
8/255 27.0 46.8 27.1 1.9 10.9 24.4
10/255 26.8 46.4 27.0 2.6 10.5 24.1

Table 4: Results on DOTA. The best and second results are highlighted.

Method AP AP0.5 AP0.75 APvt APt APs

CZ Det [9] 34.6 56.9 36.2 - - -
Cascade R-CNN [1] 43.9 68.9 47.9 0.0 4.2 26.2
RFLA [15] 44.0 69.1 47.9 0.3 5.6 26.5

Ours 44.1 69.6 47.7 0.3 6.0 26.8

1.7 More Visualizations of Difference Maps on Other Datasets

We select specific images from the VisDrone2019 [4] and AI-TOD [13] datasets
to visualize difference maps for images with simple and complex backgrounds,
as shown in Fig. 1a and Fig. 1b. For the images with simple backgrounds, the
difference maps prominently depict tiny objects such as ships and vehicles, with
a significant portion of the background remaining inactive. In addition, although
the outlines of structures such as houses may be discernible in images with
complex backgrounds, their activation levels are subdued, while tiny objects like
vehicles and pedestrians are distinctly emphasized. This accentuates the notable
utility of difference maps even amidst complex backgrounds.

1.8 Overall Flow of SR-TOD

The overall flow of SR-TOD is shown in Alg. 1. Ir denotes the reconstructed
image that reconstruction head outputs. Mean denotes computing the mean
value along the channel dimension. Resize denotes resizing Db to the same size
as P2. D denotes the difference map resulting from the subtraction of the original
image Io and the reconstructed image Ir. Db denotes the binary difference map
generated by threshold filtering. M denotes the element-wise attention matrix.
In summary, we construct difference map D and calculate element-wise attention
matrix M by threshold filtering and reweighting to enhance the feature map P2.
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Table 5: More comparisons on AI-TOD. PDM means predicted difference map.

Method AP AP0.5 AP0.75 APvt APt APs FPS

DetectoRS [10] 14.6 31.8 11.5 0.0 11.0 27.4 12.5
DetectoRS w/ PDM 13.3 28.3 10.6 0.1 8.9 25.7 11.4

DetectoRS w/ SR-TOD 24.0 54.6 17.1 10.1 24.8 29.3 8.9

Table 6: Comparison with FPN variants on VisDrone2019.

FPN variants AP AP0.5 AP0.75 APvt APt APs

NAS-FPN [5] 20.4 35.9 20.1 0.8 3.6 14.8
Recursive-FPN [10] 26.3 43.9 26.9 0.1 7.5 23.3

Recursive-FPN w/ SR-TOD 27.2 47.1 27.2 2.4 11.7 24.2
FPN w/ SR-TOD 27.3 46.9 27.5 2.3 11.5 24.7

Algorithm 1 Algorithm of SR-TOD
Input:

The feature map P2;
The original image input Io;
The threshold t;
The Sign function Sign;
The resize function Resize;
The mean function Mean;
The reconstruction head RH;
The reweighting operation Reweighting;

Output:
The enhanced feature map P2′

1: Ir ← RH(Io)
2: D ←Mean(|Ir − Io|)
3: Db ← (Sign(D − t) + 1)× 0.5
4: M ← Reweighting(P2)⊗ (Resize(Db) + 1)
5: P2′ ←M ⊗ P2
6: return P2′

2 More Details of DroneSwarms

2.1 Overview of DroneSwarms

Typically, drones operate far from the surveillance apparatus, situated at consid-
erable distances and altitudes, resulting in drone objects that are very tiny and
lack clarity. Therefore, the anti-UAV scenario is an important application scenario
suitable for tiny object detection. Furthermore, current tiny object detection
datasets commonly include many medium and large objects, with average object
sizes all above 12.8 pixels [2,15]. In order to construct a dataset consisting almost
entirely of a large number of tiny objects, we propose a object detection dataset
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(a) Difference maps of remote sensing images with simple backgrounds in AI-TOD. The images are
zoomed in.
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(b) Difference maps of drone aerial images with complex backgrounds in VisDrone2019.

Fig. 1: Visualizations of difference maps on VisDrone2019 and AI-TOD.

with the smallest average size currently for anti-UAV, named DroneSwarms.
DroneSwarms consists of 9,109 images and 242,218 annotated UAV instances,
with 2,532 used for testing and 6,577 used for training. On average, each im-
age contains 26.59 drone instances. The images are in the size of 1920× 1080,
manually labeled with high precision. DroneSwarms encompasses a variety of
outdoor settings such as urban environments, mountainous terrain, and skies,
among others. The drones are tiny and dispersed across the entirety of the image.
Therefore, DroneSwarms can be used to comprehensively evaluate methods for
tiny object detection.
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(a) Absolute size distribution of drone instances in DroneSwarms.

(b) Spatial distribution of drone instances in DroneSwarms.

Fig. 2: Visualization of the statistical characteristics of drone instances in DroneSwarms.

2.2 Absolute Size Distribution

As shown in Fig. 2a, almost all instances in DroneSwarms are tiny objects. In
DroneSwarms, there are 241,249 tiny objects with a pixel area below 32 × 32,
accounting for approximately 99.60%. The average absolute size of objects in
DroneSwarms is only 7.9 pixels. The information content contained in these tiny
drones is minimal, and imaging blur often occurs, making feature extraction
very challenging. Differentiating from the background is difficult when these tiny
drones appear in front of ground and building backgrounds. Additionally, due to
lighting angles, tiny drones under cloud cover are also hard to distinguish from
the background in terms of color. The relative pixel areas of these tiny drones
compared to the entire image are extremely small, resulting in a severe imbalance
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between foreground and background. Therefore, we propose the DroneSwarms as
a challenging dataset for tiny object detection.

2.3 Spatial Distribution

In the DroneSwarms dataset, the spatial distribution of drone objects is rep-
resented using scatter plots, as illustrated in Fig. 2b. Significantly, the drone
objects do not exhibit concentration around the image center; instead, their
positions are extensively scattered. On average, each image in the DroneSwarms
dataset contains 26.59 drone objects. Detecting densely packed tiny drones in
neighboring regions poses a significant challenge within this context.

2.4 Image Background

DroneSwarms encompasses a variety of outdoor settings such as urban environ-
ments, mountainous terrain, and skies, among others. Furthermore, DroneSwarms
also encompasses different lighting conditions based on various times and weather
conditions, such as clear skies, overcast weather, dusk, and backlighting. Moreover,
the drones showcase a variety of postures like takeoff, hovering, cruising, and
landing, allowing them to appear in different sizes and angles within the same
background.
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