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Fig. 1: Comparisons of the proposed BlazeBVD . We present flickering input, GT,
Deflicker [21] and our BlazeBVD processed video frames, and illumination histograms
along with KL divergence about GroundTruth. Our method recovers the illumination
histograms well while avoiding the appearance of color artifacts and color distortions
(such as the man’s arm in the second column). Better see in color with 2× zoom.

Abstract. Developing blind video deflickering (BVD) algorithms to en-
hance video temporal consistency, is gaining importance amid the flour-
ish of image processing and video generation. However, the intricate
nature of video data complicates the training of deep learning meth-
ods, leading to high resource consumption and instability, notably un-
der severe lighting flicker. This underscores the critical need for a com-
pact representation beyond pixel values to advance BVD research and
applications. Inspired by the classic scale-time equalization (STE), our
work introduces the histogram-assisted solution, called BlazeBVD , for
high-fidelity and rapid BVD. Compared with STE, which directly cor-
rects pixel values by temporally smoothing color histograms, BlazeBVD
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leverages smoothed illumination histograms within STE filtering to ease
the challenge of learning temporal data using neural networks. In tech-
nique, BlazeBVD begins by condensing pixel values into illumination his-
tograms that precisely capture flickering and local exposure variations.
These histograms are then smoothed to produce singular frames set, fil-
tered illumination maps, and exposure maps. Resorting to these deflick-
ering priors, BlazeBVD utilizes a 2D network to restore faithful and con-
sistent texture impacted by lighting changes or localized exposure issues.
BlazeBVD also incorporates a lightweight 3D network to amend slight
temporal inconsistencies, avoiding the resource consumption issue. Com-
prehensive experiments on synthetic, real-world and generated videos,
showcase the superior qualitative and quantitative results of BlazeBVD,
achieving inference speeds up to 10× faster than state-of-the-arts.

Keywords: Video de-flicker · Histogram · Temporal consistency

1 Introduction

As social applications and the multimedia industry continue to expand, videos
have become an essential medium for conveying information in daily life [30].
Achieving a high-quality video demands both image clarity and temporal con-
sistency, nevertheless, video flickering frequently compromises the temporal con-
sistency, often resulting from shooting environment and camera hardware lim-
itations [9, 18]. This issue is further exacerbated when image processing tech-
niques are applied to video frames. Moreover, flickering artifacts and color dis-
tortion are also prevalent in recent video generation technologies, including those
based on Generative Adversarial Networks (GANs) [7,35,36] and Diffusion Mod-
els (DMs) [25, 42, 46, 52]. Since even certain types of flicker can significantly
detract from the viewing experience, it is crucial to develop video deflickering
techniques to eliminate flicker and preserve the integrity of video content given
unknown degradation in various video processing scenarios.

Recovering visual content from unknown degradation is a key yet challenging
topic [33,43,49]. Several seminal works [8,20,21] have addressed the blind video
deflickering (BVD) task, in which methods refer to that (1) is agnostic to flicker-
ing patterns or levels (e.g ., old movies, high-speed cameras, processing artifacts
and color distortions), and (2) operates on a single flicker video without requiring
additional guidance (e.g ., flicker types, reference videos). In other words, BVD
methods are blind to flicker types and guidance, making them widely applicable.
Given these, the BVD task is challenging due to the lack of additional prior in-
formation guidance. Previous methods have explored traditional filtering [8,31],
forced temporal consistency [20,22], and atlas adjustment [21], etc.

Despite significant advancements by deep-learning methods in the BVD task,
several critical issues hinder their broader application. First, these approaches
demand substantial resources during both the training and inference stages, no-
tably manifesting in slow processing speeds for individual videos. Second, their
effectiveness is compromised by two main factors: (i) partial color artifacts and
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distortion are present in the resulting video, causing differences in color fidelity
and detail compared to the original video; (ii) Overexposure or underexposure
due to lighting leads to significant loss of texture details and introduces new lo-
cal flicker. These issues are largely attributed to the spatio-temporal complexity
within video data, where the sheer volume of pixels presents a formidable obsta-
cle for neural networks, including the advanced large vision models, to learn and
maintain global visual consistency. Consequently, given that flicker fundamen-
tally involves local or instantaneous shifts in illumination, effectively addressing
the BVD task necessitates a representation more compact and adept at captur-
ing illumination fluctuations than pixel values, whereas this aspect has not yet
been explored by previous deep BVD methods.

In this paper, we draw inspiration from the classic flicker removal method
scale-time equalization (STE) to facilitate deep BVD with histogram represen-
tation. An image histogram is defined as a distribution of pixel values, and it
has been widely applied in image manipulation to adjust image brightness or
contrast. Given an arbitrary video, STE temporally smooths histograms with
Gaussian filtering and corrects pixel values in each frame with histogram equal-
ization, improving the visual stability of the video. Although STE is only effec-
tive for some mild flickers, it validates that 1) histogram, which is much more
compact than pixel values, can well delineate the illumination and flicker infor-
mation, and 2) the video with a smoothed histogram series is visually appealing
without obvious flicker, as shown in Fig. 1. Therefore, it is promising to advance
the quality and speed of deep BVD with the hints from STE and histogram.

We introduce Blaze Blind Video Deflickering, dubbed as BlazeBVD, which
is a histogram-assisted approach to achieve fast and faithful texture restoration
given illumination fluctuation and over-/under-exposure. Compared to previous
deep methods, BlazeBVD is the first to leverage histogram meticulously to ease
the learning complexity of the BVD task. Specifically, BlazeBVD comprises three
stages: At first, we introduce STE to rectify the histogram series of video frames
under the illumination space, and extract deflickering priors including singular
frames set, filtered illumination maps, and exposure maps. Second, due to the
stable temporal performance of filtered illumination maps, they will be used as
prompt conditions of a global flicker removal module (GFRM) containing 2D
spatial networks to guide the color correction of video frames. On the other
hand, a local flicker removal module (LFRM) is based on the optical flow warp
to restore local over-/under-exposure regions labeled by exposure maps. Finally,
we introduce a lightweight spatio-temporal network to process all frames, where
an adaptive mask weighted warping loss is designed to improve video coherence.
Our contributions can be summarized as follows:

(1) We present BlazeBVD, a histogram-assisted blind video deflickering method
that simplifies the complexity and resource consumption of learning video data.
At its core, BlazeBVD utilizes deflickering priors from STE, including filtered il-
lumination maps for guiding the elimination of global flicker, singular frames set
for identify the indexes of flicker frames, and exposure maps to identify regions
affected locally by over-/under-exposure.
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(2) Leveraging deflickering priors, BlazeBVD incorporates a Global Flicker
Removal Module (GFRM) and a Local Flicker Removal Module (LFRM). These
modules work together to efficiently correct global illumination and locally ex-
posed textures in individual adjacent frames, significantly reducing processing
time compared to handling the entire video. For enhanced coherence across
frames, a lightweight spatio-temporal network is also integrated, boosting per-
formance without significant time consumption.

(3) Through comprehensive experiments on synthetic, real-world and gen-
erated videos, we showcase the superior qualitative and quantitative results of
BlazeBVD, achieving model inference speeds up to 10× faster than state-of-the-
arts. To the best of our knowledge, BlazeBVD also represents the first method
to effectively tackle both illumination fluctuations and exposure challenges.

2 Related Work

Video deflickering addresses the degradation in temporal consistency [26,27,
29,38,48] resulting from abnormal camera, lighting, exposure or image process-
ing algorithms. The relevant methods can be divided into three main categories.
The first type of approach focuses on addressing specific flickering types, e.g .,
high-speed cameras [18], old film [9]. Delon [8] performs an axiomatic analysis of
flicker, and proposed a fast method for global removal based on scale space the-
ory to filter in color space directly. The second type of approach, blind temporal
consistency [39, 53], aims to generate temporally stable output videos for arbi-
trary videos regardless of flickering or other artifacts. Bonneel et al . [4] calculate
the gradient of the input frame as a guide to reduce the degree of inconsistency
between frames. Lai et al . [20] input two consecutive frames as guidance. Lei et
al . [22] directly learn the mapping function between input frames and processing
frames to reach the purpose of inter-frame information consistency. Despite the
generalization performance, such methods tend to be less efficient and hard to
handle the complex flicker in practice. The third type of approach is blind video
deflickering. Lei et al . [21] propose to solve universal blind video flicker using
the neural atlas and video consistency. Meanwhile, some commercial software
can remove flicker by integrating various known-flicker methods, such as DE-
Flicker [34] and Flicker Free [2]. However, most of these methods require users
to have flickering type knowledge background or slow repair speed. Our approach
does not require prior cognition of the specific information flashing, and achieves
fast deflickering speeds so that most users can efficiently process more videos.
Exposure correction. The purpose of exposure correction is to enhance an
improperly exposed image to achieve a satisfactory visual effect. Information
is lost due to over-/under-exposure input images. How to solve this problem
intelligently and automatically, there have been many techniques in the image
domain [12,13,15,24,41]. ERL [14] connects the under-/over-exposed optimiza-
tion processes by correlating and constraining the relationships in the mini-batch
correction process. DA [44] proposes to decouple contrast enhancement and de-
tail recovery in each convolution process and design detail perception units to
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be inserted into the existing CNN-based exposure correction network. However,
there is no general approach regarding local exposure in video tasks.
Optical flow finds the corresponding relationship between the previous frame
and the current frame by using the changes of pixels in the time domain and
the correlation between adjacent frames, to calculate the motion information of
objects between consecutive frames [10, 11, 16, 37]. In recent years, it has been
used in video-related visual tasks [50]. The main target of flow-based methods
is to produce accurate estimates of the optical flow through different network
architectures, such as utilizing bidirectional optical flow estimation and refining
inter-frame coherence.

3 Preliminaries

In this section, we introduce basic definitions and notations, and review relevant
techniques involving image histograms for use in BlazeBVD.
Image histogram is a graphical representation illustrating the distribution of
pixels across different intensity levels within an image [3]. For a single-channel
image I with height H and width W , its histogram H can be calculated as

H(λ) =
nλ

HW
, if λ ∈ I otherwise 0, (1)

where nλ represents the count of pixels having the intensity λ.
Histogram matching or equalization [1, 5, 47, 51], is a technique to adjust
the contrast of an image by transforming its histogram towards a predefined
distribution. The cumulative histogram of an image histogram hist is defined by
Hist(λ) = Σλ

r=0H(r). Give a target histogram H′ and its cumulative histogram
Hist′(λ), the histogram matching process can be described as

Q(λ;H,H′) = Hist′−1(Hist(λ)), ∀λ ∈ I, (2)

This procedure yields an image X̃, whose histogram closely aligns with Hist′.
Scale-Time Equalization (STE) is a filtering approach [8] to adjust the inten-
sity distribution across both spatial and temporal dimensions, mitigating flickers
encountered in video sequences. The classic scale-space theory posits that con-
volving an image with a Gaussian kernel results in smoothing and the loss of
image structure. Intuitively, while STE is based on scale-space theory, it applies
Gaussian smoothing to sequences of histograms instead of the images. Given
a flickering video sequence {Xt}Tt=1, leveraging Eq. (1) can get the histogram
sequence {Ht}Tt=1. For arbitrary time index t and intensity value λ, STE can be
formulated as the convolution:

STE(λ, t) = Gs(τ) ∗ Q(λ;Ht,Hτ ) ≈
t+l∑

τ=t−l

Gs(τ − t)Q(λ;Ht,Hτ ), (3)

where l denotes the window radius, Gs(t) =
1√
4πs

e−
t2

4s . After STE, we will get a
sequence of histograms {H̃t}Tt=1 and images {X̃t}Tt=1. Since histogram transfor-
mations do not create or cancel any image content, STE can achieve deflickering
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Fig. 2: The framework of our approach BlazeBVD . We first extract flicker prior
information about the input video and correct the brightness representation with STE-
assisted histogram filtering in illuminance space (Stage1). Then, the prior is leveraged
to remove temporal flicker and over-/under-exposure flicker from the global and local
perspectives (GFRM and LFRM in Stage2). Finally, the temporal consistency of the
processed video is improved (TCM in Stage3).

results without compromising the integrity of the original video. However, this
also indicates that STE cannot compensate for the lost texture in flickering
regions and produces vivid effects, which impedes its practical application.

4 Methodology

Let {Xt}Tt=1 represent a video sequence affected by flickering defects and {Gt}Tt=1

represent the groundtruth clean video. In this section, we propose BlazeBVD as a
universal solution to eliminate these flicker and produce a temporally consistent
video {Ot}Tt=1. It is important to note that the types of flicker addressed in our
work can vary widely, involving long-/short-term flicker in color and brightness.

Distinguished from existing prior BVD approaches, BlazeBVD employs a
histogram-assisted approach, leveraging deflickering priors from Scale-Time Equal-
ization (STE) [8] to streamline the complexity and resource demands of BVD
task. Beyond ensuring stable temporal performance, BlazeBVD stands out as
the first method capable of faithfully restoring the color and texture affected by
illumination fluctuations and exposure challenges, including both over-/under-
exposure.

4.1 Overview of BlazeBVD

As illustrated in Fig. 2, the BlazeBVD pipeline is structured into three main
stages to address video deflickering challenges effectively: (1) Deflickering priors
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Fig. 3: Pipeline of Stage1. The illumination maps are corrected in the temporal
dimension by STE, which alleviates the difficulty of subsequent temporal data learning
using networks. The deflickering priors can be extracted: Ṽt, Mt and Sflicker.

preparation. This initial stage leverages STE to correct the histogram within
an illumination space representation. Key outputs from this stage include the
filtered illumination map {Ṽt}Tt=1, identifying the index set of singular frames
Sflicker, and generating exposure maps {Mt}Tt=1. These elements serve as cru-
cial prior information, guiding the deflickering process in subsequent stages. (2)
Global and local flicker removal. The second stage involves two flicker removal
strategies. A global flicker removal module utilizes the filtered illumination map
{Ṽt}Tt=1 to address temporal flicker issues across the video. A local over-/under-
exposed region flicker removal module instructed by the singular frames set
Sflicker and exposure maps {Mt}Tt=1, restores the texture in the over-/under-
exposure region to compensate for the lost high-frequency details. (3) Adaptive
temporal consistency. The final stage introduces a spatio-temporal network un-
der the guidance of an adaptive warping loss to improve video coherence and
temporal consistency.

These stages delineated in the following Sec. 4.2, Sec. 4.3, and Sec. 4.4, to-
gether provide a comprehensive solution to enhance the visual quality and tem-
poral consistency of video content.

4.2 Stage1: Deflickering priors preparation

Spatio-temporal challenge. An effective BVD model should strategically avoid
the intricacies of spatio-temporal complexity across pixels, nevertheless, current
deep learning approaches to BVD have not adequately addressed this challenge.
For instance, the state-of-the-art BVD method, Deflicker [21], employs a neural
atlas [19] as a unified representation of the entire video. While this can offer con-
sistent guidance for the deflickering process, the effectiveness of neural atlases
significantly depends on the video duration and the network capacity. Process-
ing an 8-second video to create an atlas can take around 10 minutes, and longer
videos exacerbate the demands on time, memory, and computational resources.
Consequently, there is a further need for research into more compact represen-
tations that can facilitate deflickering without these limitations.
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Illumination histogram. We introduce histogram representation [3], which
utilizes statistical distribution to illustrate the global properties of image pixel
values. As illustrated in Fig. 3, we first extract the illumination maps {Vt}Tt=1

according to the conversion between HSV and RGB color space:

Vt = max
R,G,B∈Xt

{R,G,B}, t ∈ {1, 2, ..., T}. (4)

Next, by applying Eq. (1) to each illumination map, we utilize illumination his-
tograms {Ht}Tt=1 to represent the illumination characteristics of video frames.
These illumination histograms reflect important flickering information: As shown
in Fig. 3, frames without distinct illumination changes have similar histograms,
while the histogram of a flicker frame has a distribution distinguished from oth-
ers. Furthermore, spikes in the head or tail area of the distribution indicate
potential over-/under-exposure problems in the image. To this end, reasonable
utilization of histogram information is significant for flicker elimination and al-
leviation of spatio-temporal complexity.
Deflickering priors. We introduce deflickering priors extracted from illumina-
tion histograms to facilitate the deflickering process. Initially, considering that
the illumination histograms of natural videos exhibit continuous changes in the
temporal dimension, we utilize Scale-Time Equalization (STE) as defined in
Eq. (3) to smooth the illumination histograms, as illustrated in Fig. 3. Through
histogram matching, we further obtain filtered illumination maps {Ṽ }Tt=1 that
exhibit no obvious flicker compared to the original ones, thereby enabling the
subsequent independent processing of each frame by the neural network. Sec-
ondly, we identify the singular frames set Sflicker containing the indexes of flicker
frames, based on the divergence of histograms before and after STE:

Sflicker = {t ∈ [1, T ]|KL(H̃t ∥ Ht) > ϵ̄t}, ϵ̄t =
1

2n+ 1

t+n∑
τ=t−n

KL(H̃τ ∥ Hτ ), (5)

where n is the moving average radius. Finally, as shown in Fig. 2, we extract
the exposure maps {Mt ∈ RH×W }Tt=1 of local over-/under-exposure according
to the filtered illumination map:

Mt(i, j) =

{
1 Ṽ (i, j) < ϵ1 or Ṽ (i, j) > ϵ2,

0 otherwise.
(6)

Here, ϵ1 and ϵ2 are darkness and exposure thresholds, respectively, and we con-
sider illumination values belonging to [ϵ1, ϵ2] as not posing an exposure risk.

In summary, we leverage illumination histograms to prepare deflickering pri-
ors including filtered illumination maps {Ṽ }Tt=1, exposure maps {Mt}Tt=1, and
the singular frames set Sflicker, for alleviating the spatio-temporal complexity
and enhancing deflickering in the subsequent learning stages.

4.3 Stage2: Global and local flicker removal

In this stage, simple 2D spatial neural networks are integrated with deflickering
priors to eliminate both global and local flickering flaws. Here, “global” refers
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to obvious temporal inconsistency due to illumination fluctuation, while “local”
refers to lost texture details due to exposure and darkness. This approach allows
for the direct generation of high-quality videos from flicker frames, regardless of
the spatio-temporal complexity.
Global deflickering. BlazeBVD is equipped with a global flicker removal mod-
ule (GFRM), which incorporates a 2D-Unet to correct each frame Xt with the
guidance of the filtered illumination map Ṽt. In other words, the corrected im-
age X̃t = Unetθ(Xt, Ṽt), where θ denotes the parameters of the 2D-Unet. The
network is trained on the BVD dataset D by minimizing the L2 loss function
between the predicted images and the groundtruth images:

Lt = E(Xt,Gt)∈D∥Unetθ(Xt, Ṽt)−Gt∥. (7)

Local deflickering. BlazeBVD is also equipped with a local flicker removal
module (LFRM) to enhance local texture details. As depicted in Fig. 5, over-
exposure can transform intricate texture in local regions into uniform pure, while
local under-exposure can result in black areas. This loss of detailed texture can-
not be compensated for by previous BVD methods, such as Deflicker [21]. We
leverage LFRM to transfer detailed information from neighboring frames to these
ill regions. Given the corrected singular frame X̃t in Sflicker with local exposure,
along with the previous frame X̃t−1 and the next frame X̃t+1, we first compute
the optical flow to extract part of the detailed texture:

oτ→t = Flow(Xτ , Xt), τ ∈ {t+ 1, t− 1} and t ∈ Sflicker. (8)

Here Flow is the optical flow estimation function, in our work we set it as the
popular RAFT model [11, 37]. We migrate the possible detail textures of the
preceding and following frames into the current frame:

X̂t = F(Mt ⊙W(X̃t−1, ot−1→t) + (1−Mt)⊙ X̃t, X̃t,

Mt ⊙W(X̃t−1, ot+1→t) + (1−Mt)⊙ X̃t), t ∈ Sflicker,
(9)

where W is the warping operator and F is the fusion network from [41].

4.4 Stage3: Adaptive temporal consistency

The former stages have well addressed the main illumination fluctuation and
exposure problems in BVD task. Nevertheless, a video may also have content
inconsistencies to largely degrade the visual effect, and the former stage may also
cause this. Therefore, We introduce the Temporal Consistency Model (TCM) to
refine video {X̂t}Tt=1 as the final outputs {Ot}Tt=1. TCM is developed based on
the architecture by RTN [40], but with a temporal consistency loss of adaptive
masks to refine local artifacts:

E′
pair (Ot, Os) = ∥Wt ⊙ (Mt + 1)⊙Mt,s ⊙ (Ot −W (Os))∥1 ,

Lwarp =
1

T − 1

T∑
t=2

{
E′

pair (Ot, O1) + E′
pair (Ot, Ot−1)

}
,

(10)
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where Wt is the loss weight for the over-/under-exposure area and Mt is the
mask obtained from the former stage. W is the warping operator and the frame
after warping is computed by optical flow estimation [11,37]. Mt,s represents the
mask after optical flow estimation. This loss avoids the video blurring problem
introduced in Deflicker [21]. The training loss of TCM consists of reconstruction
loss Lrec, perceptual loss Lper [17], spatio-temporal adversarial loss Ladv [6] and
designed adaptive weighted warping loss Lwarp. Combining all the above losses,
the overall objective to optimize TCM is:

LTCM = α1 ∗ Lrec + α2 ∗ Lper + α3 ∗ Ladv + α4 ∗ Lwarp. (11)

In our work, we set α1 = 1.0, α2 = 1.0, α3 = 0.01 and α4 = 0.1.

5 Experiments

5.1 Datasets

We inherit the training dataset DAVIS-2017-Train, MS-COCO and the testing
dataset Blind Deflickering Dataset from Deflicker [21], including Synthetic videos
from DAVIS-2017-Val, Real-world videos and Generation videos.
Training dataset. MS-COCO [23] contains 118287 images in the train set and
is used for the pre-training of Unet in GFRM. DAVIS-2017-Train [20, 28, 32]
consists of 60 sequences with a total of 4219 labeled frames, with a video frame
rate of 24fps and a resolution of 480p. We create the synthetic process that
provides the underlying facts for quantitative analysis. The training dataset is
degraded by performing flicker on DAVIS-2017-Train, as shown in Eq. (12):

Xt = Gt + Ft, t ∈ {1, 2, ..., T}, (12)

where {Gt}Tt=1 are clean frames and {Ft}Tt=1 are random synthesized flickering
artifacts. The window size W in Ft has been set to denote the number of frames
that share the same flickering artifacts, random sampling between [2, 12]. The
value of W controls the degree of flicker in the short- and long-term of the video.
Testing dataset. We conduct Synthetic videos, Real-world videos and Gener-
ation videos respectively, from the Blind Deflickering Dataset [21] and DAVIS-
2017-Test processed by Eq. (12). Among them, Synthetic videos and DAVIS-
2017-Test have ground truth and the others do not. We can only use no-referenced
metric and qualitative observation. Generation videos refer to the processed
videos generated by generative algorithms, which may lead to flicker artifacts due
to the imperfections of the algorithms. Real-world videos including old movies,
old anime, slow-motion, etc. are directly captured, unprocessed videos in the
real world.
Comparison methods. We compare our BlazeBVD with other 4 methods,
including STE [8], ConvLSTM [20], DVP [22] and Deflicker [21]. We set Deflicker
as the baseline, since it is the first publicly presented method for BVD task and
is currently the most advanced approach for general videos.
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Fig. 4: Qualitative comparisons between previous methods and our Blaze-
BVD. Our method removes flicker and restores details in over-exposed regions (red
boxes in row 6 and row 8) while avoiding color artifacts (row 2 and row 4). Besides,
BlazeBVD also ensures the fidelity of the video content and avoids color distortion
(cyan boxes in row 5 and row 7). Zoom in for the best view and we recommend watch-
ing videos in the supplementary materials.

5.2 Comparisons with State-of-the-art Methods

Metrics. We quantitatively compare the differences between our method and
others with reference and no-reference metrics, including PSNR, SSIM [45], and
Ewarp [22]. Among them, Ewarp is a no-reference metric used in videos. For each
frame Ot, we calculate the warping error with frame Ot−1 and the first frame
O1 for considering both short-term and long-term consistency.
Quantitative results. We compare our BlazeBVD with the state-of-the-art
method Deflicker [21], and other consistency methods. Table 1 and Table 2 pro-
vide the comparative experimental results of various methods on DAVIS-2017-
Test and Synthetic videos, where PSNR and SSIM of the resulting video are
higher than those of the other methods. This shows that BlazeBVD contributes
to the fidelity maintenance of video content, as well as the correctness of the
missing details complement. The warping error of our method is a little higher
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Table 1: Quantitative comparisons of synthetic videos in DAVIS-2017-Test. Our
method performs best in terms of PSNR and SSIM and Ewarp of all the methods.

Method RawVideo ConvLSTM DVP STE Deflicker Ours GT

PSNR↑ - 24.110 24.136 26.138 23.932 28.609 -
SSIM↑ - 0.9256 0.9263 0.9321 0.9243 0.9638 -
Ewarp ↓ 0.1429 0.1369 0.1415 0.1117 0.0840 0.0825 0.1097

Table 2: Quantitative comparisons in Synthetic videos from Blind Deflick-
ering Dataset . W is the window size and represents the number of frames that share
the same flicker artifact. L denotes the local seed window size.

VideoType Ewarp ↓ PSNR↑ SSIM↑
Raw Deflicker Ours GT Deflicker Ours Deflicker Ours

Synthetic
-W = 1 0.1933 0.0848 0.0895 0.1056 25.9312 29.6738 0.9403 0.9539
-W = 3 0.1522 0.0844 0.0890 0.1056 25.4996 28.8272 0.9380 0.9555
-W = 10 0.1307 0.0855 0.0904 0.1056 24.3842 26.9966 0.9344 0.9543
- L = 3 0.1113 0.0875 0.0900 0.1056 25.3874 27.0881 0.9271 0.9517

Average 0.1469 0.0856 0.0897 0.1056 25.3006 28.1464 0.9349 0.9538

than Deflicker, but it is closer to the ground truth. Through analysis, we find that
warping error has inaccuracy in the estimation of optical flow, and this error is
masked by image blurring in Deflicker. Therefore, we believe that Ewarp, which
has the same magnitude as baseline and GT, is the valid experimental compari-
son result. In Tab. 3, we compare BlazeBVD and Deflicker on Real-world videos
and Generation videos. Since the videos in these two datasets with no refer-
ence are inherently discontinuous, where Ewarp cannot directly represent video
continuity, we present the comparative results of user studies. To evaluate the
perceived preference between the baseline Deflicker and the proposed method,
each user needs to select a video with better perceptual quality between these
two choices. In total, there are 50 users and 50 pairs in 7 datasets of comparisons.
Qualitative results. Both ConvLSTM and DVP are temporal consistency mod-
els that require a reference, importing the input video as the reference, and the
processed video cannot remove significant flicker, as shown in Fig. 4. Addition-
ally, the flicker caused by over-/under-exposure is prone to lose the local texture
(column 1 in Fig. 4). The atlas-based representation in Deflicker cannot accu-
rately locate these points with different local features, resulting in the loss of
all details on the processed video. Instead, our method designs local positioning
and adjacent frame details transfer in LFRM to preserve part of the texture on
the road, as shown in the red box of Fig. 4. We also reveal the color artifact in
column 4 of Fig. 4 that appears at baseline, due to the excessive weight of warp-
ing error in the training loss when refining temporal consistency. Therefore, our
designed adaptive mask weighted training loss in TCM improves the temporal
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Table 3: User studies of Real-world videos and Generation videos. Since the
videos in these two datasets are inherently discontinuous, Ewarp cannot properly reflect
temporal consistency. Here we only present the comparative results of the user study.

Type Expert OldAnime OldMovie SlowMotion TimeLapse VideoDM VideoLDM

Raw(Ewarp) 0.0754 0.1045 0.1099 0.0724 0.0732 0.1248 0.1601

Deflicker 38.67% 19.25% 22.83% 37.67% 31.43% 30.50% 26.34%
Ours 61.33% 80.75% 77.17% 62.33% 68.57% 69.50% 73.66%

consistency while avoiding image blurring. More visualization results are in the
supplementary material.

5.3 Ablation Studies

STE filtering. We contrast the difference between introducing STE filtering in
illumination space and directly in color space. As shown in the red box of Fig. 5,
directly performing histogram correction in color channels separately introduces
color artifacts and color distortion. Because the filtering of non-gray images in
the three channels is relatively independent, the recombination after nonlinear
transformation would produce such defects.
GFRM and LFRM. We compare the important roles of two modules, GFRM
and LFRM. As shown in Tab. 5, removing GFRM and LFRM reduces PSNR
and SSIM and increases Ewarp of inference videos. It can be inferred that GFRM
needs to initially remove global flicker between frames, otherwise subsequent
modules cannot maintain the temporal consistency, while LFRM maintains the
texture fidelity of the video content, which is reflected in the cyan box of Fig. 5.
Designed weighted loss. As shown in Tab. 5, the lightweight spatio-temporal
network TCM reduces Ewarp, which refines the temporal consistency of pro-
cessed videos. We also compare the effect of using unweighted training loss and
the adaptive mask weighted loss on this temporal network. Figure 5 provides the
resulting frame with unweighted training, which is generally blurred and suffers
from color distortion, while the weighted training keeps the frame clear and faith-
ful in most areas. Adaptive mask weighting improves the temporal consistency
of the inference video, improving the inter-frame continuity more pertinently.

5.4 Discussion

Advantages and limitations. BlazeBVD is over 10× faster than the inference
speed of baseline using the atlas representation, which is specifically recorded
in Tab. 4. Our method also takes advantage of explicit prior extraction in the
BVD task, which provides directions for improvement in the subsequent work.
And the cause of local flicker has been noted and effectively dealt with from
both global and local perspectives. However, our method still has drawbacks in
LFRM. Due to the inaccurate optical flow motion estimation, the fusion network
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Table 4: Inference time and
model parameters comparison.
Our approach is faster than the
baseline in inference time with less
memory, and comparable in MACs
and Params.

Method Deflicker Ours

Time/80p 614.19s 58.37s
Memory 5204M 1389M
MACs 260.7G 251.4G
Params 12.48M 17.77M

Table 5: Ablation studies in DAVIS-2017-
Test. w/o STE replaces STE with mean fil-
tering in Stage1 and w/o weighted denotes the
warping loss without mask weighting in TCM.

Method PSNR↑ SSIM↑ Ewarp ↓

w/o STE 26.4412 0.9517 0.1011
w/o GFRM 23.8939 0.9244 0.1225
w/o LFRM 27.1366 0.9462 0.1122
w/o TCM 29.9130 0.9583 0.1093
w/o weighted 28.1049 0.9523 0.0849

BlazeBVD 28.6092 0.9638 0.0825

Fig. 5: Qualitative ablation studies of key designs in BlazeBVD . Specifically,
local detail loss is represented in cyan box, color artifact is represented in the red
box, temporal inconsistency is represented in the black box, and color distortion is
represented in the blue box. Zoom in for the best view.

cannot convey the local texture of adjacent frames, and there are still slight edge
artifacts and color distortion that cannot be eliminated. We hope to continue
exploring the transfer and fusion of local region information between frames [40].

6 Conclusion

In this paper, we propose BlazeBVD, a universal approach for the blind video
deflickering task. The core of our method is to prepare flicker priors within the
STE filter in illumination space first, and then utilize these priors to correct the
global flicker and local exposed texture. GFRM and LFRM leverage the priors to
remove global and local flicker in several adjacent frames with less computation.
Finally, TCM is used to improve video coherence and inter-frame consistency.
Extensive experiments validate the effectiveness of the designed modules.
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