
Efficient Inference of Vision Instruction-Following
Models with Elastic Cache

Zuyan Liu1 , Benlin Liu2, Jiahui Wang1, Yuhao Dong1,5,
Guangyi Chen3,4 , Yongming Rao1,5 , Ranjay Krishna2,6, and Jiwen Lu1†

1 Tsinghua University, 2 University of Washington, 3 Carnegie Mellon University,
4 Mohamed bin Zayed University of Artificial Intelligence,

5 Tencent, and 6 Allen Institute for AI

Abstract. In the field of instruction-following large vision-language mod-
els (LVLMs), the efficient deployment of these models faces challenges,
notably due to the high memory demands of their key-value (KV) caches.
Conventional cache management strategies for LLMs focus on cache
eviction, which often fails to address the specific needs of multimodal
instruction-following models. Recognizing this gap, in this paper, we
introduce Elastic Cache, a novel approach that benefits from applying
distinct acceleration methods for instruction encoding and output gen-
eration stages. We investigate the metrics of importance in different
stages and propose an ‘importance-driven cache merging’ strategy to
prune redundancy caches. Instead of discarding less important caches,
our strategy identifies important key/value vectors as anchor points.
Surrounding less important caches are then merged with these anchors,
enhancing the preservation of contextual information in the KV caches
while yielding an arbitrary acceleration ratio. For instruction encoding,
we utilize the frequency to evaluate the importance of caches. Regarding
output generation, we prioritize tokens based on their ‘distance’ with
an offset, by which both the initial and most recent tokens are retained.
Results on a range of LVLMs demonstrate that Elastic Cache not only
boosts efficiency but also notably outperforms existing pruning meth-
ods in language generation across various tasks. Code is available at
https://github.com/liuzuyan/ElasticCache
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1 Introduction

ChatGPT [3,19] has rapidly gained popularity for its coherent and fluent responses.
Its effectiveness stems from an instruction-following LLM [4,21], which handles
diverse tasks based on input instructions. The model can also integrate visual
inputs, as seen in GPT-4V [20] and LLaVA [14], expanding its applications,
including multimodal chatbots.
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Fig. 1: The main idea of Elastic Cache. Instruction encoding accounts for most
of the theoretical computation cost, while the actual latency is negligible (here we
use generating 512 tokens based on a 1024-token instruction as an example). This
underscores that it’s not just model weights but also the KV cache used in output
generation that can become a significant bottleneck. We propose Elastic Cache through
a Cache Merging based on the importance scores of instruction tokens, complemented
by a fixed-point elimination strategy in the output generation phase. Our designs yield
significant inference acceleration while maintaining generation quality.

However, multimodal instruction-following models’ high computational and
memory demands pose a challenge. These demands are critical in dialogue systems,
where real-time responsiveness is essential for user experience. Therefore, the
need to enhance the efficiency of these models becomes increasingly evident,
particularly when generating lengthy outputs, given that the complexity of
this task is compounded by the quadratic computational demands of attention
modules in transformers [28]. To address this, a KV Cache mechanism is used
in generative inference, storing and reusing key/value vectors for prompt and
output tokens to reduce redundant computations.

While effective, this widely used space-for-time strategy in KV cache manage-
ment often leads to substantial GPU memory usage, sometimes exceeding the
memory required for model weights. This can limit batch sizes and affect inference
throughputs. Besides solutions like offloading KV cache to the CPU [1] or cache
quantization [23] exist, recent studies [15,36] explore pruning key/value vectors
in the KV cache to reduce memory usage while maintaining language modeling
performance. Such methods lower memory demands and improve computational
efficiency, as they involve fewer vectors in attention calculations. Techniques like
H2O [36] and Scissorhands [15] utilize smaller KV caches. When input sequences
surpass the reduced cache size, these methods prune less important tokens based
on attention scores, enhancing both memory and computational efficiency.

These existing methods have two main shortcomings. Firstly, their time/memory
efficiency can be enhanced. They currently only improve computational and stor-
age efficiency when the sequence length surpasses the KV cache’s maximum
capacity, with the acceleration ratio largely tied to this capacity. Our goal is
to boost efficiency for any sequence length, independent of the cache size, thus
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improving efficiency even with a large cache for performance. Secondly, as stated
in Fig. 2 and Tab. 4 these methods don’t specifically address maintaining the
model’s capability to generate long, coherent outputs that follow instructions,
particularly for multimodal instructions.

To boost time and memory efficiency in multimodal instruction-following
models for any sequence length, independent of cache budget, and maintain their
multimodal instruction-following ability, we introduce a new KV cache manage-
ment technique, Elastic Cache. The essence of our method is the use of distinct
sparsification strategies during instruction encoding and output generation phases.
This distinction allows our model to better adhere to multimodal instructions
with a compressed KV cache, surpassing previous methods that uniformly pruned
KV vectors in both phases. Additionally, our approach enhances efficiency for
sequences of all lengths by reducing token storage in the cache earlier during
instruction encoding rather than waiting for the cache to fill.

Specifically, during the instruction encoding phase, we globally apply sparsifi-
cation to prune key/value vectors generated from all concatenated model inputs,
including system prompts, user instructions, and chat history. Unlike previous
cache compression methods that used eviction strategies to reduce the number
of key/value vectors stored in the KV cache, we introduce a novel parameter-free
cache merging approach to more effectively preserve context in a compact KV
cache. In detail, we determine the importance of all key/value vectors from the
instruction encoding phase and utilize the most crucial ones as anchor points.
Subsequently, we merge all key/value vectors in the entire instruction sequence
with their nearest anchor point. A layer-wise merging policy is adopted, with all
attention heads in the same layer sharing anchor point positions, although the val-
ues of anchor points at the same position may vary across different heads. We can
achieve an arbitrary acceleration ratio by controlling the proportion of anchors in
the cache merging process. During the output generation phase, we dynamically
manage the KV cache by adding new and removing older key/value vectors
as tokens are generated. Unlike H2O [36], our method employs a fixed-point
elimination strategy at a tunable truncation point, balancing the cache between
initial guidance and new content. This approach, akin to StreamingLLM [31],
differs by retaining a length of initial vectors nearly equal to the input instruction
length, better-preserving context to follow instructions.

Remarkably, our method is completely training-free, requiring no additional
fine-tuning, and can be applied plug-and-play to any multimodal instruction-
following model. This significantly saves the expenses associated with training
extra-large models. Additionally, our cache update strategy incurs only negligible
computational overhead during inference.

In our experimental analysis, we implemented the Elastic Cache method in
visual instruction-following tasks, employing Perplexity (PPL) and ROUGE as
our primary evaluation metrics to assess instruction-following capabilities. The
results demonstrate Elastic Cache’s ability to significantly accelerate processing
speeds without compromising on the quality of instruction following or generating
lengthy outputs. It consistently outperforms both distance-based and frequency-
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based cache strategies across various models and datasets. Notably, with the
KV Cache Budget set to 0.2, Elastic Cache achieves a 78% increase in actual
speed. This marked improvement in processing efficiency, along with maintained
or even enhanced predictive accuracy, highlights the practicality and effectiveness
of Elastic Cache in real-world scenarios, where time efficiency is as important as
performance.

2 Related Work

Vision Instruction-Following Model After pre-training on trillions of tokens
by predicting the next token, decoder-only large language models [3, 26, 27]
demonstrate an astonishing understanding of language. To better enable language
models to follow instructions and generalize zero-shot to new tasks [16,21,25,29,32,
33], these models are further instruction tuned on human-annotated ’instructional’
data, which includes language instructional commands and desired outcomes.
Recently, how to enable these blind language models to follow instructions
containing visual signals has become a hot research topic. Compared to naively
using image caption models for prompting to integrate visual signals [22, 34],
works like LLaVA [14], MiniGPT-4 [37], Multimodal-GPT [7], InstructBLIP [5]
use linear projection or perceivers [10] to integrate visual representations into the
input of LLMs directly. This allows the model to follow multimodal instructions
better. Our work focuses on improving the inference efficiency of multimodal
instruction-following model [2, 14], especially in generating lengthy responses,
which is particularly important for applications like multimodal chatbots.
Model Compression and KV Cache Management. Improving inference
efficiency through model compression has always been a crucial topic for the prac-
tical application of deep learning models [8]. Like other models, LLM compression
methods typically include quantization [12,30], pruning [17,24], distillation [9],
etc. These methods are usually orthogonal and can be combined. However, past
LLM compression methods have primarily focused on the computational over-
head of model weights. Using a KV cache to speed up inference also results in
a significant additional demand for memory during the inference stage, thereby
affecting the throughput of the inference system. To address this, besides using
quantization [23] or offloading [1], more research is focusing on reducing the
number of KV vectors stored in the cache. Gist tokens [18] learn to compress
input instruction tokens before storing them in the KV cache, but this method
requires additional training, and its cache update strategy, which includes extra
parameter computations, is costly. StreamingLLM [31] focuses on processing long
sequences that exceed the cache’s capacity limit, so it only can accelerate se-
quences with tens of thousands of tokens. H2O [36] and Scissorhands [15] achieve
greater efficiency improvements by lowering the cache capacity limit, but they
also can’t accelerate sequences of arbitrary lengths. Our method is committed to
accelerating sequences of any length while maintaining the capability to follow
multimodal instructions and generate lengthy responses. Moreover, we employ
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a novel cache merging method for cache updates instead of the cache eviction
approach used in previous works.

3 Method

3.1 Preliminaries: Instruction-Following Models

Instruction-following large vision-language models (LVLMs) are a cornerstone in
natural language processing, especially when it comes to aligning with specific
user intents and tasks. These models are invaluable in textual contexts for their
adeptness at interpreting and executing instructions and demonstrate comparable
value in multimodal settings. The core process of their inference involves two
main stages: instruction encoding and output generation.

Instruction Encoding. This is the foundational step in the operation of
instruction-following models. During this phase, the model receives and interprets
the system prompts, user-provided instructions, and chat history, which may
include multimodal information. For autoregressive transformers, this involves
processing the instruction inputs and encoding them into a series of tokens.
Each token is then transformed into key and value vectors, which are vital for
capturing the contextual nuances of the instruction. These vectors are stored in
the KV cache, ensuring that the model has immediate access to the contextual
information needed for generating accurate responses.

Output Generation. After the instruction has been encoded, the instruction-
following model proceeds to the output generation phase. Here, the model in-
crementally builds its response, token by token. At each step of this process,
the model references the KV cache to ensure that each new token generated is
contextually aligned with the preceding ones. This incremental approach allows
the model to maintain a coherent narrative or logical thread in its responses
while staying true to the user’s initial instructions.

The operation of the instruction-following model is challenged by the high
memory demands of their KV caches. These caches store all encoded tokens’
key and value vectors, which are crucial for contextual understanding during
instruction encoding and output generation. As interactions progress, the cache
size grows linearly, significantly straining memory resources in complex or lengthy
tasks. To address this, developing effective cache eviction strategies is crucial
for balancing the efficiency and accuracy in generating responses of instruction-
following models.

3.2 Instruction following with Cache Merging

In this section, we introduce the importance-driven cache merging policy, serving
as our core proposal for cache management. Its intuitive principle is finding the
key/value vectors in the cache as the anchor point to aggregate the surrounding
contextual information. Specifically, we mainly discuss two questions: 1) How
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do we measure the importance, and 2) Why do we employ the proposed cache
merging instead of conventional cache eviction.
Importance Metrics. We propose to measure the importance of the key/value
vectors in the KV cache using their statistical data, motivated by the stationary
nature of the statistical information throughout the inference process. This
stability suggests that historical statistical data can be effectively used to forecast
future cache requirements. By leveraging past usage patterns within the KV
caches, we can develop policies to predict which vectors in the cache will be most
pertinent in upcoming inference tasks, thereby optimizing cache management
and resource allocation.

Building on our initial findings, we conducted a thorough investigation to
identify the most crucial statistic for evaluating the importance of KV-caches.
Our experiments span an array of statistics, encompassing both population
types—identical, head-wise, and layer-wise populations—and statistical variables,
including summation, moving average, maximum value, mean, and others. The
comparative analysis of these different metrics was meticulously detailed in the
ablation studies presented in Sec. 4.4. These investigations revealed that the
layer-wise sum of attention scores yielded the most effective performance.
Cache Eviction v.s. Cache Merging. This policy should be strategically
designed to maintain the integrity and efficiency of the KV cache system, ensuring
that the most valuable cached vectors are retained and readily accessible for
future inference processes while less critical caches are efficiently removed to
optimize resource allocation and system performance.

Conventional cache management strategies, like those in StreamingLLM [31]
and H2O [36], typically employ a cache eviction policy that discards vectors
less important for the generative inference process. However, such an approach,
often rigid in nature, tends to overlook the potentially valuable information that
might be contained within these deemed less important vectors. Our experimental
findings reveal that this conventional approach does not perform optimally for
multimodal instruction-following models.

This insight highlights the need for a more nuanced cache management strategy
to discern and retain valuable data, even if it might appear less important initially.
Thus, we propose Cache Merging, which merges the surrounding less-important
cached vectors into the select anchor vector. We determine the importance of each
token in the instruction sequence and use the key/value vectors of tokens with
high importance as anchor points, dividing the instruction sequence into multiple
buckets. Each bucket corresponds to the neighborhood around an anchor point.
Then, we store the averaged results of all the key/value vectors corresponding to
each bucket in the KV cache. By this merging policy, we reduce the number of
key/value vectors in the KV cache and preserve the contextual information as
much as possible.

3.3 One Sequence, Two Policies

In the context of multimodal instruction-following models, the model operates
differently in the instruction encoding (perception, one-off feed-forward pass) and
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output generation (generation, iterative output process) stages. This divergence
catalyzes implementing varied acceleration policies tailored to each specific stage
of inference. We call this strategy “One Sequence, Two Policies”.
Instruction Encoding. During the instruction encoding stage, we adopt our
importance-driven cache merging policy, which unfolds in two primary steps: 1)
selection of important key/value vectors with the layer-wise sum of attention
scores as the metric and 2) division and merging of vectors based on selected
anchors.

Suppose the model has L layers in total, each with K heads. Let’s consider
the j -th attention head in the i -th layer, denoted as Attni,j . The input to Attni,j

is a sequence of T tokens {xi,j
1 , . . . , xi,j

T }. For each token in the sequence, we first
obtain the query, key, and value vectors using linear projection. For a specific
token xi,j

t , its query, key, and value vectors are denoted as qi,jt , ki,jt , and vi,jt ,
respectively. For the attention head Attni,j , we can derive a causal attention
matrix A of size T × T , which is a lower triangular matrix. For simplicity, we
omit the superscripts on the attention matrix here. This matrix can be written
as:

Am,n =


exp(⟨qi,jm ,ki,j

n ⟩)∑
m′<m exp(⟨qi,jm ,ki,j

m′ ⟩)
if m ≥ n

0 if m < n
(1)

where ⟨qi,jm , ki,jn ⟩ represents the dot product of qi,jm and ki,jn .
Based on this attention matrix, we can calculate the importance score of each

token. For the n-th token, we can define its importance value as obtained from the
Attni,j module, denoted by Ii,jn =

∑
m Ai,j

m,n. Then, by averaging the importance
values obtained from all attention heads in the same layer, the importance value
of the n-th token in the i-th layer can be expressed as Iin = 1

K

∑
j

∑
m Ai,j

m,n.
Consequently, we obtain independent importance scores for each layer, implying
that our pruning strategy is layer-wise.

Given a predefined retention ratio γ, we select the top NI = γ × T tokens in
In, with the indices {tk | k = 1, 2, . . . , NI} in ascending order. Taking them as
anchor points, we can have NI buckets as

Bk =


{0, ...,

⌊
t1+t2

2

⌋
}, k = 1

{
⌊
tk−1+tk

2

⌋
+ 1, . . . ,

⌊
tk+tk+1

2

⌋
}, 1 < k < NI

{
⌊
tNI−1+tNI

2

⌋
, ..., T}, k = NI

, (2)

where ⌊·⌋ denotes the floor function. The bucket division varies across different
layers while remaining consistent for all attention heads within each layer. For
each attention head, we average all its key/value vectors as KVk corresponding
to each bucket Bk and store them in the KV cache:

KVk =
1

|Bk|
∑
t∈Bk

kvt. (3)

Notably, each attention head has its own unique KVk; again, we omit the
superscript for simplicity.
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Output Generation. The output generation stage functions iteratively, updating
the KV cache at each iteration. It necessitates that the cache management policy
be adaptable for continuous increment. The conventional methods, exemplified by
H2O [36], adhere to the policy in the instruction encoding stage that accumulates
attention scores and prioritizes cached vectors with higher scores. However, this
approach appears less effective in the context of new token generation. Compared
to the already cached vectors, the newly generated tokens lack an inherent
advantage under this scoring system. As the generation progresses, the likelihood
of newly generated tokens being retained in the cache diminishes incrementally,
making this method less sensible for dynamically evolving caches.

To address this issue, we introduce a fixed-point elimination strategy, in light
of the assumption that the initialized instruction guidance and closely related
generation carry greater importance, whereas the earlier generated content holds
less significance. Specifically, we employ a queue-based system where, upon
generating a new token and adding its corresponding key/value vectors, we
systematically remove earlier cached vectors from a fixed truncation point in
the queue. Consider a current KV cache denoted as {KVk|k = 1, 2, . . . , NC}
where NC represents the current length of the cache. We define a fixed truncation
location Ntl. Upon adding a new token to the cache, we calculate the current
token retention ratio and compare it with a predefined threshold. If the ratio
is lower than the threshold, the token is retained. Otherwise, the token at the
truncation location Ntl is removed, leading to an updated cache represented as:
{KVk|k = 1, 2, . . . , Ntl − 1, Ntl + 1, . . . , NC + 1}

Experimentally, selecting a fixed position Ntl that is arbitrarily close to NI

has often yielded impressive results. To approach this more systematically, this
position can be regarded as a hyperparameter, which allows for tuning through
model selection techniques.

4 Experiments

In this section, we conduct extensive experiments to illustrate the effectiveness and
efficiency of Elastic Cache. We use two mainstream LVLMs, LLaVA-1.5 [13,14]
and Qwen-VL [2] as our backbone and adopt the Elastic Cache on instruction-
following chat generation datasets. As no benchmark exists on the efficient
inference of the vision instruction tuning field, we design precise and general
evaluation metrics to validate our method. We subsequently conduct experiments
on inference speed, ablations on our method design, and real-world analysis.

4.1 Experimental Settings.

Baselines. To evaluate the effectiveness of our proposed caching mechanism for
input instruction handling, we establish two state-of-the-art baseline methods for
comparison: Heavy-Hitter Oracle [36] and StreamingLLM [31], where we term
as H2O and Local in our experiments, respectively. The techniques proposed
by H2O and StreamingLLM can be summarized as Frequency Cache and Local
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(a) LLaVA-1.5  13B (b) LLaVA-1.5  7B (c) Qwen-VL 7B

Fig. 2: Results on visual instruct-following tasks. We evaluate Elastic Cache
together with baselines on PPL (lower better) and ROUGE (higher better) metrics. We
conduct LLaVA-1.5 of different sizes (a),(b) and Qwen-VL-7B(c) for visual tasks. Our
Elastic Cache outperforms baselines consistently.

Cache methods. Frequency Cache method records how often each key-value pair
is accessed in response to input instructions. When the need arises to free up
cache space to adhere to the pre-defined memory budget, this method selects
the least frequently accessed key-value pairs for eviction. The Frequency Cache
method continuously updates the frequency counts throughout the generation
process. The Local Cache method employs a spatial heuristic for cache eviction.
When the cache reaches capacity, the Local Cache method identifies and removes
the most distant key-value pairs from the current prediction.

Evaluation Metrics. In the evaluation period of our method, we employ two
metrics to assess performance rigorously: perplexity (PPL) and the ROUGE
score [11]. PPL calculates the expositional value of the cross-entropy loss between
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the predicted next token and the ground truth. The ROUGE score measures
the longest common subsequence (LCS) between the generated text and a set of
reference texts. We use the F1-score to evaluate our methods. These metrics are
chosen for their ability to capture distinct aspects of model performance, with
perplexity reflecting the model’s uncertainty in predicting the next token and
the ROUGE score indicating the quality of text generation in terms of overlap
with reference sequences. The detailed algorithms of the evaluation metrics are
stated in Supplementary Materials.

Datasets. Elastic Cache is a training-free approach during the inference phase.
To evaluate the text generation capabilities of the key-value (KV) cache strategy
on long and high-quality text samples, we randomly integrate a subset of 100
detailed description instructions from the training set of LLaVA-1.5 [13] dataset,
where we name as LLaVA-Description. Additionally, we also select the MM-
Vet [35] dataset which covers a diverse range of tasks, enabling us to evaluate the
model’s multimodal understanding and generation performance comprehensively.
Note that to prevent data leakage and ensure the integrity of our assessment,
we redo the instruction tuning period of the LLaVA-1.5 models and exclude the
aforementioned 100 detailed description instructions for the evaluation employing
the KV cache strategy in our experiments.

Implementation Details. We mainly apply our proposed Elastic Cache on
three instruct-tuning VLMs. We choose LLaVA-7B/13B and Qwen-VL-7B as
the visual instruct-tuning model. In our implementation of Elastic Cache, we
protect the first and the most recent token following [31]. Following the analysis
results in Fig. 3, we fixed the recent distance during the generation period at
the length of 25 caches. It is noteworthy that for the reference texts required for
the ROUGE evaluation, we use the fully-cached model to generate the reference
text due to the ROUGE evaluation method. Notably, as the generation results
are different during multiple experiments when the temperature is larger than
zero, when the KV-Cache budget is set to 1.0, we use the ROUGE score of
two-generation results, so the ROUGE score is smaller than 1.0. In other cases,
we set the temperature to 0 to ensure the reproducibility of the results.

4.2 Main Results

Results on Visual Instruct-Following. Our experiments focus on visual
instruction-following, utilizing a subset of the LLaVA dataset specifically curated
for detailed description analysis. This subset comprises 100 instances of image
description tasks, with each instance including an instruction and a corresponding
answer generated by GPT-4 [19]. For our evaluation metrics, we employ Perplexity
(PPL), where a lower score indicates better model performance, and the F1
variant of the ROUGE-L score, where a higher score reflects greater quality. We
leverage the LLaVA-1.5/13B, LLaVA-1.5/7B, and Qwen-VL-7B as our backbone
architectures. Compared to the baseline strategies, namely Local cache and H2O
cache, our proposed Elastic Cache demonstrates superior performance across both
metrics over a spectrum of KV-Cache Budgets ranging from 1.0 to 0.2. Notably, in
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Fig. 2b, at a KV-Cache Budget of 0.5, Elastic Cache surpasses the H2O cache by
a margin of 4.34 in PPL and 0.089 in ROUGE-L F1 score on LLaVA-Description.
Compared to the Local cache, Elastic Cache shows an improvement of 28.72
in PPL and 0.165 in ROUGE-L F1 score. This enhancement in performance is
likely attributable to the fact that the Elastic Cache’s dynamic pruning strategy
is more adept at retaining image-relevant knowledge, in contrast to the fixed
strategy of most recent pruning, which can overlook critical visual information.

Table 1: Win-rate comparison using GPT-4V API.
We primarily compare the win rate at different pruned
ratios with existing work under GPT-4V. Elastic Cache
still obtains 38% win-rate with a pruned ratio of 0.3,
surpassing previous work by a large margin.

Method Budget=0.1 Budget=0.2 Budget=0.3

Elastic Cache 47.54% 46.63% 37.56%
H2O [36] 38.55% 35.26% 30.26%
Local [31] 46.37% 35.29% 10.10%

Comparisons under
GPT-4V Evaluation.
We further conduct ex-
periments incorporating
GPT-4V [20] evaluation
to demonstrate the effec-
tiveness of our Elastic
Cache mechanism from a
different perspective. In
detail, we first collect 200
generations with the KV-
Cache ratio 1.0 (the original generation procedure with full cache) for each
method as our baseline. Then, we perform each method with a different pruned
ratio to ask the same questions and forward the image-question pair and the cor-
responding answers to GPT-4V. For each method, GPT-4V is asked to determine
whether the generated text is better or worse than the corresponding baseline.
We follow the prompt proposed in FastGen [6] and modify it to customize it for
image-question pairs. As shown Tab. 1, our method illustrates superior robustness
as the pruned ratio grows. H2O also demonstrates its robustness, but the lower
win rate evaluated by GPT-4V indicates the unsatisfied capability compared with
our method. On the contrary, Local exhibits competitive results at a low pruned
ratio. However, it encounters a disastrous performance drop when the pruned
ratio grows to 0.3, which further reveals the splendid ability of our method to
accommodate both effectiveness and robustness.

4.3 Inference Speed

We evaluate the inference speed of our novel Elastic Cache mechanism, im-
plemented within the LLaVA-1.5/13B framework, to demonstrate its practical
efficiency. We conduct this evaluation under two distinct experimental configu-
rations: the first with an input comprising 1024 prompt tokens followed by the
generation of 512 tokens, and the second with a reduced input of 624 prompt
tokens, and generate 256 tokens. The latter setup represents the minimal prompt
length, including image patches and system prompts that can be processed. The
inference tests are performed on a single NVIDIA A100 GPU, with batch size
adjusted to maximize the available memory, thereby reflecting a realistic usage
scenario optimized for both efficiency and throughput. Results are shown in
Tab. 2 Our results indicate that when pruning 80% of the KV-Cache, the Elastic
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Table 2: Evaluations on inference latency and throughput. We set the KV-Cache
budget as 0.2 on the LLaVA-1.5/13B backbone. Elastic Cache can lead to a maximum
of 77.9% actual speed up and avoid out-of-memory in limiting cases.

Batch Model Token Latency (s) Throughput (token/s)

Size Size Length Elastic Cache Full Cache Elastic Cache Full Cache

8 13B 1024+512 20.2+(33.8%) 30.5 202.8+(52.6%) 132.9
16 13B 624+256 11.8+(34.1%) 17.9 347.1+(51.7%) 228.8

16 7B 1024+512 17.2+(43.8%) 30.6 476.3+(77.9%) 267.7
48 7B 624+256 13.6+N/A OOM 903.5+N/A OOM

Table 3: Ablation studies on the components of Elastic Cache. We conduct
four ablation studies on the key design of Elastic Cache. The experiments are conducted
on the LLaVA-1.5/13B backbone with the KV-Cache budget set as 0.5. We use PPL
metric for the LLaVA detailed description dataset for evaluation.

Discard Position PPL
Most Recent 3.93
Frequency 3.75
Fixed-point 3.60

(a) Ablation on
discard position.

Merging Strategy PPL
Clustering 3.61

Cache Eviction 3.68
Cache Merging 3.60

(b) Ablation on
merging strategy.

Attn. Procedure PPL
Shared 3.73

Head-wise 3.75
Layer-wise 3.60

(c) Ablation on
attention procedure.

Importance Metric PPL
Moving Average 8.43

Mean 8.70
Sum 3.60

(d) Ablation on
importance metric.

Cache method can achieve an actual speed acceleration of up to 78% compared to
full cache baselines, while also reducing the memory footprint during inference.

4.4 Ablation Experiments

We perform complete and detailed ablation experiments to evaluate the effects
of each component in Elastic Cache in Tab. 3.

Discard Position. The strategy during the output generation period contributes
to maintaining the KV-Cache ratio with more generated caches. We explore how
to discard older caches to improve the efficiency during output generations.
Compared with leaving the most recent caches while discarding the farthest
caches and continually taking the frequency policy during generation, we find
that fixing a specific discard position can achieve better performance.

Merging Strategy. Compared with simply evicting the chosen caches, we
find that merging the unused caches with validated caches can achieve better
performance. We also compare our recent merging method with the clustering
algorithm, which clusters the unused cache to 10 cluster centers based on the key
of caches. Though the clustering method involves extra cache cost, the overall
performance is poorer than the simple recent merging method.

Attention Procedure. As we obtain the attention score across the layer and
head dimensions, we are curious about whether applying the dynamic results
across such dimensions contributes to better performance. We can conclude from
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Table 4: Generations on image recognition question. We fix the KV-Cache
Budget as 0.5. Local and H2O cache pruning methods fail to generate rational results
under such experimental settings while Elastic Cache maintains the generation ability
with a detailed and correct description of the image.

User: What’s happening in the scene?
Local: The image shows a plate of assorted
doughnuts on a table, The doughnuts are
arranged in a plate, with a total of 10 dough-
nuts on a table, showcasing a total of 10
doughnuts on a table ...
H2O: The image shows a park scene with
a doughnut on a table.
Elastic Cache: The image features a large
pile of assorted donuts, including glazed
and chocolate donuts, arranged in a visu-
ally appealing display. ... making it an at-
tractive sight for anyone passing by.

User: What’s happening in the image?
Local: The squirrel, a squirrel, a small gray
squirrel, which appears to be a grey squirrel,
is perched on a tree branch, sitting on a tree
branch.
H2O: The squirrel is holding on to a tree
branch.
Elastic Cache: The squirrel is sitting on a
tree branch, holding onto it while eating.
The tree is surrounded by a forest setting,
and the squirrel is enjoying its meal.

the results that the layerwise strategy performs better than leaving an identical
strategy across layers. However, including the dynamic nature in the multi-head
dimension will lead to an accuracy drop.

Importance Metric. The way of calculating the importance metric of each
cache based on the attention score is a crucial problem to explore. We try the
three most simple strategies to statistic the attention score. By using the moving
average, mean, and sum value of the attention score, we observe that simply sum
up the attention score outperforms another method to a large extent.

4.5 Analysis

Generation. In the empirical analysis of our method’s performance in real-world
text generation scenarios, we rigorously evaluate the robustness of our caching
strategy under constrained conditions in Tab. 4. We set the Key-Value (KV)
Cache Budget to 0.5. Our method demonstrates remarkable resilience in the face
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of significant cache limitations. Notably, when 50% of the KV cache is evicted,
our approach continues attending to image details and producing coherent and
rational outcomes. In contrast, as the cache budget decreases, the Local and H2O
strategies suffer a conspicuous performance degradation. With the KV Cache
budget set to 0.5, the Local strategy begins generating repetitive, looping text
and fails to respond. Similarly, the H2O strategy yields significantly shorter
responses, suggesting an inability to sustain longer, more intricate narratives
when deprived of less frequently accessed cache content.

0.0 0.2 0.4 0.6 0.8 1.0
distance

3.6

3.8

4.0

4.2

PP
L

Elastic Cache

Fig. 3: Effects of the fixed-point elimination. We
observe that fixing the elimination at the middle of the
KV-Cache of the instruction attention score leads to better
performance.

Effects of the fixed-
point elimination. We
explore the efficacy of
a fixed-point elimination
strategy within the caching
mechanism, seeking to de-
termine the optimal po-
sition for fixation to en-
hance performance. In-
trigued by the potential
impact of different fixed
points on the overall sys-
tem effectiveness, we con-
duct a series of tests across various positions in Fig. 3. The empirical evidence
suggests that anchoring the fixed point within the middle section of the cache
sequence yields superior results. Guided by these findings, we strategically fix
the position at the 25 most recent caches based on the experimental results.

5 Conclusion, Limitations and Societal Impact

In this paper, we have proposed Elastic Cache, an innovative framework designed
to significantly enhance the efficiency of inference processes in widely utilized
instruction-following models. Our novel approach leverages the importance-driven
cache merging strategy, which utilizes attention scores as a measure of impor-
tance to optimize cache utilization. We further dissect the instruction-following
paradigm into two distinct components: instruction encoding and output gen-
eration, applying the most effective strategy independently. The experimental
results are compelling. Elastic Cache not only surpasses existing baselines but
also demonstrates robust generation capabilities coupled with remarkable speed
improvements. We hope our work can open a new path for the following work to
explore a better strategy and efficient inference of vision large models.

One limitation of our approach could be that the reliance on attention scores
for cache optimization may not always align with the most computationally
efficient caching strategy. A potential negative social impact is that the increased
efficiency and speed of Elastic Cache might accelerate the deployment of AI
systems in surveillance applications.
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