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Fig. 1: FreeCompose harnesses the generative prior of pre-trained diffusion models to
achieve versatile image composition, such as appearance editing (image harmonization)
and semantic editing (semantic image composition). Furthermore, it can be extended
to various downstream applications, including object removal and multi-character cus-
tomization.

Abstract. We offer a novel approach to image composition, which inte-
grates multiple input images into a single, coherent image. Rather than
concentrating on specific use cases such as appearance editing (image har-
monization) or semantic editing (semantic image composition), we show-
case the potential of utilizing the powerful generative prior inherent in
large-scale pre-trained diffusion models to accomplish generic image com-
position applicable to both scenarios. We observe that the pre-trained
diffusion models automatically identify simple copy-paste boundary ar-
eas as low-density regions during denoising. Building on this insight, we
propose to optimize the composed image towards high-density regions
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guided by the diffusion prior. In addition, we introduce a novel mask-
guided loss to further enable flexible semantic image composition. Ex-
tensive experiments validate the superiority of our approach in achieving
generic zero-shot image composition. Additionally, our approach shows
promising potential in various tasks, such as object removal and multi-
concept customization.
Project webpage: https://github.com/aim-uofa/FreeCompose

Keywords: Image composition · Zero-shot · Diffusion prior

1 Introduction

Image Composition is a fundamental task in computer vision [46, 48, 55], which
aims to fuse the foreground object from one image with the background of an-
other image to generate a smooth natural image. It has a wide range of applica-
tions in many fields, such as image restoration, art design, game development,
virtual reality, and so on.

For this reason, a large amount of research has been conducted on image
composition [8,46,48,55]. Considering only how the object is composed with the
background, image composition can be broadly categorized as image harmoniza-
tion [48,55] and semantic image composition [4,51], depending on whether there
is a change in the semantic structure of the composite image. The former modi-
fies only the statistical information of the local area after pasting the foreground
pixels into the background image, to obtain an image with a smooth transition
between the front and background. In contrast, the latter fine-tunes the struc-
ture of the image according to the global image context and semantically blends
the foreground and background.

As deep learning [24] gains its popularity, mainstream solutions for image
composition adopt the learning-based pipeline [8,48]. They require model train-
ing on data triplet of foreground, background, and composite images to achieve
image combination. However, due to the difficulty in obtaining the triplets, these
models can only be trained on a limited amount of training data with a specific
data distribution, making it difficult to generalize to various scenarios in real-
world applications.

In contrast, recent text-to-image diffusion models [35, 37, 39] have achieved
large-scale pre-training using simple graphical data pairs, demonstrating strong
generalization over open-world data distributions. Inspired by this, we attempt
to utilize the image prior of the pre-trained diffusion model to realize generic
image composition, in zero shot. Our key assumption is that the pre-trained
diffusion model can accurately predict the noise component in natural images,
while inaccurately for unnatural image regions that deviate from the pre-training
data distribution. Based on this, we can localize the unnatural regions in a
composite image after simply copying and pasting.

To validate this hypothesis, we conduct preliminary explorations on compos-
ite images, as shown in Figure 2. Based on the above observations, we propose

https://github.com/aim-uofa/FreeCompose
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Fig. 2: Observations on the diffusion prior. The images on the left, denoted
as copy-paste images, are obtained by simply pasting the foreground object to the
background image. The frozen diffusion model takes the noisy copy-paste images from
varying diffusion forward steps as input, and predicts the gradient to update the im-
ages (visualized on the right). Low-density regions with larger gradient updates are
highlighted by red boxes. The low-density regions are highly consistent with the inhar-
monious regions caused by naive copy-paste.

FreeCompose, which optimizes the pixels in the image such that it can be con-
sistent with the image prior of the pre-trained diffusion model.

In our method, we aim to use the prior of the diffusion model to combine
the object with the background without having to train the diffusion model it-
self (referred to as Training-free in this field). We propose a generic pipeline for
composition that consists of three phases: object removal, image harmonization,
and semantic image composition. Unlike current works [45,51] that rely on task-
specific training for image harmonization or semantic image composition, our
FreeCompose can directly utilize a pre-trained diffusion model and achieve com-
position in zero-shot. During the object removal phase, our pipeline eliminates
the foreground in the original image by manipulating the K, V values of the
diffusion UNet’s self-attention layer. In the image harmonization phase, the new
object is combined with the background to create a harmonious scene. If addi-
tional conditions for semantic image composition are provided, the composition
is guided by the difference between the conditions, while preserving the object’s
identity through an additional replacement of the K, V in the self-attention.

Based on these phases and techniques, FreeCompose can be effectively used
for various tasks with promising results. These tasks include basic object removal,
image harmonization, and semantic image composition. Moreover, FreeCompose
demonstrates the ability to stylize objects by utilizing prompts during the image
harmonization phase. Additionally, when combined with existing works, it can
be applied to a wide range of tasks, such as multi-character customization.

To summarize, our contributions are listed as follows.

– Our findings indicate that the diffusion prior can automatically identify and
focus on regions in the composite image that appear unnatural.

– Developing from the vanilla DDS loss, we explore and prove the possibil-
ity of additional designs for specific tasks including mask-guided loss and
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operations on K, V embeddings. These enhancements expand the range of
applications for this loss format.

– FreeCompose achieves competitive results on both image harmonization and
semantic image composition. Moreover, it facilitates broad applications in-
cluding object removal and multi-character customization.

– In contrast to existing methods that train separate models for individual im-
age composition problems, the diffusion prior that we use offers a generalized
natural image prior that can effectively perform both image harmonization
and semantic image composition in a zero-shot manner.

2 Related Work

Image Harmonization Image harmonization aims to generate a realistic com-
bination of foreground and background contents from different images. It focuses
on adjusting low-level appearances, like the global and local color distribution
change caused by light and shadows, while maintaining the content structure
unchanged. Early works on image harmonization [6, 32, 36, 43, 46] rely on hand-
crafted priors on color [32], gradient [46], or both [43]. With the advance of
deep learning [24], recent methods [5, 7, 8, 10, 19, 25, 41, 48, 55] explore learning-
based methods for image harmonization. For example, Zhu et al . [55] train a
discriminative model to judge the realism of a composited image, and lever-
age the model to guide the appearance adjustment of a composed image. Tsai
et al . [48] propose the first end-to-end network for image composition. Subse-
quently, DoveNet [8] leverages a domain verification discriminator to migrate
the domain gap between the foreground and background images. Recently, Tan
et al . [45] proposed a new end-to-end net named DocuNet by leveraging the
channels of images and achieved excellent success. While effective, these image
harmonization models are trained on domain-specific datasets, and struggle to
generalize to open-world images. By contrast, we leverage the natural image prior
preserved in large-scale pre-trained diffusion models for zero-shot image harmo-
nization in the wild. Chen et al . [16] also attempted to use diffusion model as a
base model for harmonization by a method called Diff-harmonization composed
of inversion and re-denoising, but limited to harmonization.

Image Editing Text editing is a broad area that encompasses many re-
search topics, including image-to-image translation [18, 22, 29, 54, 56], inpaint-
ing [9, 17, 23, 26, 27, 31, 52], text-driven editing [2, 12, 30, 47, 50], etc. We refer
readers to [16, 53] for more comprehensive review. Here we focus on the image
inpainting task. Traditional image inpainting takes the masked image as input,
and predicts the masked pixels from the image context. For example, LaMa [44]
enlarges the receptive fields from the perspective of both modeling and losses,
thus achieving inpainting in large masks and complex scenarios. Recently, ben-
efiting from large-scale pre-trained text-to-image generative models [35, 37], re-
searchers explore additional text input to guide the inpainting process [1, 3].
For example, Blended Latent Diffusion [1] proposes to smoothly blend the la-
tent of the foreground region and the background areas to achieve text-guided
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inpainting. Another line of work [4, 51] inpaints the masked image with an ex-
ample image, which is also known as semantic image composition [51]. Different
from image harmonization which only alters low-level statistics, semantic image
composition semantically transfers the foreground object (often with structural
changes) during composition. A representative work Paint-by-Example [51] fine-
tunes the pre-trained Stable Diffusion model to take additional exemplar images
as input for inpainting. AnyDoor [4] improves the semantic image composition
pipeline to preserve the texture details in exemplar images and leverage the
multi-view information in video datasets for effective training.

Diffusion Models Diffusion models [13, 42] have emerged as powerful gen-
erative models for images. Large-scale pre-trained diffusion models, like DALLE-
2 [35], Imagen [39], Stable Diffusion [37], and SDXL [33], demonstrate unprece-
dented text-to-image generation capacities in terms of both realism and diver-
sity. Motivated by the success of diffusion models, attempts have been made
to leverage pre-trained image diffusion models as the prior for other generative
tasks [21, 34, 49]. Considering the data scarcity of 3D assets, DreamFusion [34]
uses Imagen [39] as a generative prior, and proposes a novel Score Distillation
Sampling (SDS) loss for optimizing the implicit representation of a 3D object.
Subsequently, ProlificDreamer [49] models the parameters of 3D assets as a ran-
dom variable and proposes the variational score distillation to alleviate the over-
saturation and over-smoothness in DreamFusion. Different from these works that
focus on text-to-3D generation, DDS [11] tackles the task of text-guided image
editing, and identifies the editing region by referencing the original image and its
corresponding prompt. In this work, we also leverage diffusion models as the gen-
erative prior (diffusion prior). Our key observation is that diffusion prior helps
locate unnatural areas in simple copy-paste image composition. Based on this,
a masked guided loss is proposed to enable generic smooth image composition.

3 Preliminaries

3.1 DDS Loss

The Delta Denoising Score (DDS) [11] is developed froma modification of the
diffusion loss and Score Distillation Sampling [38] for image editing. Given an
input image I, the diffusion model encodes it into a latent variable z. Using a
prompt P for the to generation of a text embedding y, a timestep t is randomly
chosen from a uniform distribution U(0, 1), and noise ϵ is sampled from a normal
distribution N(0, I). A noised latent variable zt can then be represented as zt =√
αtz+

√
1− αtϵ, where αt is determined by a noise scheduler based on t.

Given a pre-trained diffusion model ϵϕ with parameter set ϕ, a modified
predicted noise according to classifier-free guidance [14] can be expressed as

ϵwϕ (zt, y, t) = (1 + w)ϵϕ(zt, y, t)− wϵϕ(zt, t),

where ϵϕ(zt, y, t) is the raw noise predicted by the diffusion model conditioned
on y, ϵϕ(zt, t) is unconditioned noise, and w is a weight for balance.
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Using two image-text pairs Ii, Po and It, Pt, the DDS loss with respect to
parameter θ can be expressed in gradient form as:

∇θLDDS = (ϵwϕ (zt, y, t)− ϵwϕ (ẑt, ŷ, t))
∂zt
∂θ

, (1)

where ϵwϕ (zt, y, t) is predicted from Ii, Po and ϵwϕ (ẑt, ŷ, t) is predicted from It, Pt

with the same t and ϵ. For simplicity, this loss is denoted as LDDS(Ii, It, Po, Pt).

3.2 Perceptual Loss

The perceptual loss [20] is proposed to measure the perceptual similarity of
images based on the features of VGG-16 [40]. Although originally designed for
the super-resolution task by maintaining the features of the original image, it
also allows for the preservation of selected regions. We denote the perceptual
loss between Ii and It as Lper(Ii, It).

4 Method

Given a target image It with the object’s mask Mt and a background image Is
with a designated region Ms for placing the object, our goal is to compose a
new coherent image that retains the background from Is while incorporating the
target image’s object as the foreground.

To achieve generic image composition, our method comprises three phases:
object removal, image harmonization, and semantic image composi-
tion. This design allows for the composition of various foreground object and
background images. In Figure 3, we illustrate the pipeline with special segments
of different phases. The overview of the pipeline is presented in § 4.1, followed
by details of object removal in §4.2, image harmonization in §4.3, and semantic
image composition in §4.4.

4.1 Overall pipeline

The removal stage takes Is and Ms as inputs to generate a background image Ib
with the object in Ms removed. Subsequently, the composition stage produces a
coherent image Ic given Ib,Ms, It,Mt. Furthermore, if conditions are provided
to transfer the object from the original condition Co to the target condition
Ct, the editing stage can integrate these conditions onto Ic to synthesize image
Ires. The conditions can take the form of text or other formats accepted by T2I-
Adapter [28]. Each stage is optimized with different loss functions: Lrmv,Lham,
and Lcom.

The method follows a general pipeline across all three phases, as depicted
in Figure 3. With inputs including an image Ii, an original prompt Po, and a
target prompt Pt, the pipeline initializes with an optimized image It and guides
its progression to the output image IT using a phase-specific loss function.
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Fig. 3: Pipeline overview. Our FreeCompose pipeline consists of three phases: object
removal, image harmonization, and semantic image composition. In each phase, the
pipeline takes an input image and two text prompts to calculate the loss. In the object
removal phase, an additional mask is required to select K, V values. In the semantic
image composition phase, text prompts can be replaced by other formats, and an
additional K, V replacement is implemented for identity consistency.

Po and Pt are set as general prompts for object removal and image harmo-
nization as elaborated in §4.2 and §4.3, whereas for semantic image composition,
they are taken as input conditions.

In general, the DDS loss can modify images but may also distort them dur-
ing optimization. Meanwhile, the perceptual loss helps maintain object identity.
When used together, these losses can create a balanced loss function that forms
the backbone of the pipeline. At the same time, minimum adjustment to the loss
function enables other specific tasks, as detailed in the following sections.

4.2 Object Removal

In this phase, we take Is as the input image Ii, and the object region mask Ms

is required. Po and Pt are set as placeholder prompts, such as “Something in
some place” and “Some place,” when no prompt is provided. These prompts are
partially effective, but they do not have the capability to directly eliminate the
object, as shown in the ablation study (see Figure 7).

We add an extra segment during the calculation of the DDS loss to enhance
the ability of removal, as shown in Figure 3(b). The diffusion model is based
on a UNet architecture, composed of residual, self-attention and cross-attention
blocks. In the self-attention blocks, features are projected into quires Q, keys K
and values V , and the output can be represented as:

Attention(Q,K, V ) = Softmax
(QKT

√
d

)
V, (2)
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where d is the dimension of the hidden states.
Based on previous work such as [15], the K, V values of the self-attention

layer during the denoising step are observed to have an effect on the semantic
result. Guided by this discovery, we use Ms to discard some K, V values partially.
Specifically, for a K or V value of shape B × l × d, where B, l, d represent the
batch size, sequence length, and input dimension, respectively, we resize the mask
to shape h×w = l and flatten it to a sequence with length l. By selecting indices
from vi > threshold, where vi represents the value of index i in the sequence, the
semantic information of the masked region is guided by its surroundings’ feature
values, thereby achieving the objective of removal. This mask guided loss can be
represented as Lrmv

DDS(Ii, It, Po, Pt,M) with the gradient form:

∇θL
rmv
DDS = (ϵwϕ (zt, y, t)− ϵwϕ (ẑt, ŷ, t,M))

∂zt
∂θ

,

The only difference with Eq. 1 is the ϵwϕ (ẑt, ŷ, t,M), which means that the
K, V values of the self-attention layers masked by M are excluded during noise
prediction.

The overall loss function, thus, comprises two terms:

Lrmv = Lrmv
DDS(Is, It, Po, Pt,Ms) + λperLper(Is ⊗M ′

s, It ⊗M ′
s). (3)

Here, M ′
s is the reversed mask of Ms, ⊗ denotes the Hadamard production of

two images, and λper is a hyperparameter used to balance the two losses.

4.3 Image Harmonization

Applying the bounding box of Ms, a copy-paste image Ip and its corresponding
object mask Mp can be obtained from Ib, It,Mt. This image is used as input
image Ii (Ii = Ip) in this phase. Without designated prompts, an empty prompt
and “A harmonious scene” are initialized as Po, Pt for the DDS loss. The percep-
tual loss is used separately for the background and the foreground to preserve
background appearance and object identity. The overall loss consists of three
terms:

Lhar = LDDS(Ip, It, Po, Pt)
+λbakLper(Ip ⊗M ′

p, It ⊗M ′
p) + λforLper(Ip ⊗Mp, It ⊗Mp),

(4)

where M ′
p is the revered mask of Mp, λbak is a hyperparameter used to balance

the perceptual loss related to the background and λfor is a hyperparameter used
to balance the perceptual loss related to the target object.

4.4 Semantic Image Composition

This phase accepts either the copy-paste image Ip or the composition result Ic
and requires two additional conditions: Co and Ct. If the conditions are in text
form, they will be directly used as Po and Pt for the DDS loss. Conditions in
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Table 1: Results of User Study on Object Removal. The participants are re-
quested to evaluate the results based on two aspects: (1) the level of image harmony
after the object has been removed, and (2) the extent to which the object has been
completely removed. Each criterion is rated from 1 (worst) to 5 (best) without addi-
tional explanation.

Image Harmony ↑ Object Removal ↑

Repaint [27] 3.24± 1.23 3.82± 1.35
SD Inpainting [23] 2.99± 1.37 3.55± 1.34
Lama [44] 3.47± 1.16 4.14± 0.94
FreeCompose (ours) 3.85± 1.01 4.47± 0.73

other forms will be translated by T2I-Adapter [28] and added to the diffusion
UNet as shown in Figure 3(c).

An additional design is employed to maintain the identity of the object during
the editing procedure. As displayed in Figure 3(c), FreeCompose replaces the
optimized image It’s K, V values with Ii’s K, V values during the calculation of
DDS loss. Specifically, for a DDS loss with Ki, Vi,Kt, Vt, where Ki, Vi represent
the K, V values of Ii, and Kt, Vt represent the K, V values of It, we modify the
calculation of self-attention in the diffusion UNet concerning It as follows:{

Attention(Q,Ki, Vi), if t > T and l > L
Attention(Q,Kt, Vt), otherwise,

where t is the count of optimization, l is the layer index of the self-attention
layer, T and L are hyperparameters indicating the count number and layer in-
dex of self-attention to start such replacement. Because the background is also
preserved along with the replacement, no perceptual loss is required. Therefore,
the complete loss has the same format as the DDS loss:

Lcom = Lcom
DDS(Ic, It, Co, Ct),

where Lcom
DDS(Ic, It, Co, Ct) represents the DDS loss using Co, Ct as substitutes for

conditions in forms besides text, with an additional design of K, V replacement
during calculation.

5 Experiments

5.1 Implementation Details

Global Hyperparameters. We use Stable Diffusion V2.11 as the pre-trained
model for real images, and AnyLoRA2 as the pre-trained model for anime and
cartoon images. We align the resolution of input images with the diffusion model
to 512× 512. The Adam optimizer is adopted with a fixed learning rate of 5e−2.
1 https://huggingface.co/stabilityai/stable-diffusion-2-1
2 https://huggingface.co/Lykon/AnyLoRA
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Hyperparameters. In the object removal phase, the DDS loss outside the mask
resized from Ms to the latent size is multiplied by 0.2 to limit the transformation
of the background. Additionally, λper = 0.3. In the image harmonization phase,
λbak = 0.3 and λfor = 0.1. The semantic image composition only uses the DDS
loss with T = 400 and L = 10 for the replacement design.

Prompt Usage. Two prompts, Po and Pt, are required for every calculation of
the DDS loss. Providing specific prompts will improve the optimization proce-
dure. Our FreeCompose does not rely on user-provided text prompts for image
composition. Instead, we predefined the prompts for different phases. Specifi-
cally, in the object removal phase, we set Po as “Something in some place.” and
Pt as “Some place.”, respectively. Similarly, we adopt empty prompts for Po and
“A harmonious scene.” for Pt in the image harmonization phase. These prompts
have proven to be effective.

5.2 Main Results

Object removal In Figure 4, we present the results of object removal, compar-
ing them with previous work on removal and inpainting. When using the default
prompts in §5.1, Lama [44], Stable Diffusion Inpainting [23], and Repaint [27] re-
quire the same input as our method. This includes one original image along with
a corresponding mask for the region that needs to be removed. As shown, SD
Inpainting and Repaint struggle to completely remove the object, leaving some
parts unchanged or replaced by something that doesn’t fit well, like the outline of
the dog in the second case and the unknowns in the fourth case. Although Lama
performs better in removing the object and reconstructing the background, it
fails to remove certain attachments of the object, such as the shadow in the third
case. In general, our method demonstrates a stronger capability in removing the
object and seamlessly filling the resulting areas, as can be observed in the third
case where other methods perform poorly.

Image harmonization As shown in Figure 5, Diff Harmonization successfully
generates primary shadow as surface variation in the first candle case. However,
it struggles to retain identity features such as the color of the second emoji case

Table 2: Results of User Study on Image Harmonization. Participants are
asked to rate the results based on (1) image harmony after the composition of the
object, and (2) how well the identity of the object is preserved.

Image Harmony↑ Object Identity Preserving↑

Diff Harmonization [16] 3.11± 1.04 3.83± 1.10
DucoNet [45] 3.14± 1.17 4.16± 1.04
FreeCompose (ours) 3.69± 1.07 4.11± 0.92
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Lama SD Inpainting Repaint OursOriginal Image Mask

Fig. 4: Qualitative comparison on object removal. We compare with Lama [44],
Stable Diffusion Inpainting [23], and Repaint [27].

Original Image Copy-paste Object Diff Harmonization DucoNet Ours

Fig. 5: Qualitative comparison on image harmonization. We compare our
method with zero-shot Diff Harmonization [16] and training-based DucoNet [45].

and the shape of the third dog case’s eye. On the other hand, DucoNet preserves
these features well but lacks realistic shadow and light effect under certain envi-
ronments. For instance, in the first case, DucoNet simply illuminates the entire
object, without accurately transforming the dark and bright sections according
to the original image. In contrast, our method is capable of both preserving the
object’s identity and generating realistic lighting effects. For example, in the
first case, FreeCompose enables the object to be covered by the shadow of the
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A toy-dog lies on 
the ground.

A toy-dog is 
running on the 

ground.

Input Image Conditions Composed Image ConditionsInput Image Composed Image

Fig. 6: Results on semantic image composition. Our method accepts various
conditions as guidance, including text and sketches. The case in the top-left corner
uses different prompts as guidance for editing, while the other cases are guided by
different sketches with identical prompts.

surroundings, resulting in the corresponding dark section while maintaining the
object’s identity.

Semantic image composition Figure 6 illustrates the results of our semantic
image composition. By using an input image (either a copy-paste image or an
image after harmonization), FreeCompose is able to generate a composed image
that maintains semantic consistency, guided by the disparity between two in-
put conditions. As shown, the top-left case makes use of the difference between
two prompts to transfer the dog from a lying posture to a running posture. In
other cases, with the same prompt during calculation, the features extracted
by T2i-Adapter [28] from different sketch images serve as guidance for semantic
composition, proving the feasibility of wider usage.

Quantitative comparison. Since our primary focus is on open domain ques-
tions, we believe that evaluating performance through user studies is more ap-
propriate. We have planned a user study to assess the results of object removal
and image harmonization, comparing them with previous works with five cases
respectively. The study involves more than twenty volunteers. To evaluate the
effectiveness of object removal, participants are asked to assess the outcomes
based on two criteria: (1) the level of image harmony achieved after the object
is removed, and (2) the extent to which the object removal is executed. In terms
of image harmonization, participants are instructed to assess the results based
on two aspects: (1) the level of visual coherence achieved after integrating the
object into the composition, and (2) the degree to which the object’s identity is
preserved. Each metric is rated on a scale ranging from 1 to 5.

The results are shown in Table 1 and Table 2. As demonstrated, our method
excels in both aspects for object removal. Our method in image harmonization
received the highest rating for “Image Harmony”, but it lagged behind DucoNet in
terms of “Object Identity Preservation.” One possible reason is that our method
employs a stronger composition strategy by restricting the weight of the fore-
ground loss, resulting in partial degradation of the object’s identity.
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DDSOriginal Image DDS+mask perceptual+DDS+maskperceptual
Ours

Fig. 7: Qualitative ablation studies on loss sections of the object removal phase.
“perceptual” refers to the perceptual loss section in Eq. (3) alone, “DDS” refers to the
vanilla DDS loss, and “DDS+mask” refers to the mask-guided DDS loss in §4.2.

5.3 Ablation Study

We conducted an ablation study to validate our designs and analyze their func-
tions. by disassembling and visualizing each design to clearly demonstrate their
effects.

Object Removal Phase. In Figure 7, designs of the object removal phase are
disassembled for analysis. The perceptual loss alone maintains the original image
without any changes as the the “perceptual” column displayed. When using a
raw DDS loss with default prompts, the object cannot be completely eliminated,
resulting in some variations in the object in line with the “DDS” column. The
introduced mask design in §4.2, which selectively discards specific KV values
based on the mask of the object, overcomes this limitation and enables the loss
to successfully remove the object. However, such mask guided loss affects the
background which should be preserved, as presented in the “DDS+mask” col-
umn. The last addition of perceptual loss section helps preserve the background
while calculating the mask guided loss and generates the background image in-
dependently from the original foreground as demonstrated in the “Ours” column.

Image Harmonization Phase. In Figure 8, different sections of the loss are
ablated for observation of their respective functions. The perceptual loss, com-
prising the background perceptual loss and the foreground perceptual loss, en-
sures the consistency with the original copy-paste image, as seen in the “percep-
tual” column. When using the raw DDS loss, it allows for seamless blending of
the object with the background, but may unintentionally remove certain features
from both the foreground and the background, compatible with the “DDS” col-
umn. By employing distinct perceptual loss functions for the foreground and the



14 Chen et al .

Copy-paste Image DDS DDS+backgroundbackground+foreground DDS+perceptual
Oursperceptual

Fig. 8: Qualitative ablation studies on loss sections of the image harmonization
phase. “background” refers to the background perceptual loss in Eq. (4), “foreground”
refers to the foreground perceptual loss in Eq. (4), “perceptual” represents the sum of
“background” and “foreground”, and “DDS” represents the DDS loss.

background, the trade-off among the degree of integration, the identity of the
object and the features of the background is achieved, enabling the generation
of a harmonious image as shown in the “Ours” column.

6 Conclusion

We present FreeCompose, a generic zero-shot image composition method that
utilizes diffusion prior. In this work, we noticed that pre-trained diffusion models
are capable of detecting inharmonious portions in copy-paste images. Building
on this observation, we successfully apply this prior to both image harmonization
and semantic image composition. FreeCompose is a zero-shot method, allowing
easy usage without additional training. Moreover, it’s suitable for various appli-
cations, showcasing the potential of the diffusion model prior.

We believe that the prospect of diffusion prior extends beyond what we have
achieved thus far. In the future, we plan to explore additional uses for other
composition tasks and to apply our method to video, capitalizing on its full
capabilities.
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