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A Appendix

A.1 Low-light Spike Streams Analysis

In low-light spike streams, the valid information can greatly decrease. It includes
two reasons: (a) The information carried by each spike from the input signal is
greatly reduced due to the interference of noise. (b) The total number of spikes
in spike streams decrease greatly. Based on (1) in our main paper, we can get
the valid accumulation in a spike. First, for the pixel x, the time to fire a spike,
tx, can be written as,

tx = A−1
x (ϕ). (1)

Note that A−1
x (·) exists because Ax(·) is monotonically increasing. Especially,

when the light intensity is fixed, i.e. Iin(x, τ) = I, (11) can be written as,

tx = ϕ(I + Idark(x))
−1. (2)

Fig. 1: Influence of input current on spikes. In low-light environment, i.e. input current
is low, the time to fire a spike is long and the valid accumulation in each spike is small.

⋆ Corresponding author.
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Further, we can get the valid accumulation from input current I in a spike,
Qx(I), as,

Qx(I) = Itx = Iϕ(I + Idark(x))
−1. (3)

The orange curve in Fig. 1 shows that the valid accumulation Qx(I) increases
with increasing input current I which means each spike in low-light environments
is more difficult to record information. The blue curve in Fig. 1 shows that time
to fire spikes tx decreases with increasing input current I which means the total
information i.e. the amount of spikes, in low-light spike stream is sparse. The
above two characteristics explains the sparsity of information in low-light spike
streams.
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Fig. 2: The CarN (left) and CookL (right) in LLR. N (L) means normal (low) light.

A.2 Datasets Details

Scene LLR serves as the test set and is designed to be as consistent as possible
with the real world in order to effectively evaluate different methods. To achieve
this, as shown in Fig. 2, we have carefully designed the light source type and the
illumination power for each scene to match the real world. Besides, motion of
objects is close to the real world. The motion in Ball, Cook, Fan and Rotate is
from [4] while the motion in Car is created based on vehicle speed in real world.
Light source set We set the lighting parameters in the advanced 3D graphics
software, blender, to make the lighting conditions as consistent as possible with
the real world. The following are the configuration details in Blender. In Blender,
various types of lighting simulation functions, including sunlight, point lights,
and area lights, have been integrated into the graphical interface. We can adjust
lighting parameters to control brightness and darkness. For sunlight in Blender,
the watts per square meter can be modified. Typically, 100 watts per square meter
corresponds to a cloudy lighting environment. For the CarL scene, we have set
sunlight to 10 watts per square meter, which is deemed sufficiently low. For point
lights and area lights, Blender allows modification of radiant Power, measured in
watts. This is not the electrical power of consumer light bulbs. A light tube with
the electrical power of 30W approximately corresponds to a radiant power of 1W.
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In the CookL scene, we have set an area light with the radiant Power to 1W (the
electrical power of 30W) . It already represents a very dim indoor light source.
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Fig. 3: (a) Grayscale histograms of images in low-light scenes, i.e. BallL, CarL, CookL,
FanL and RotateL with low-light light sources. Each bar represents 5 grayscale levels.
(b) Reference images.

Grayscale The brightness is not only determined by the light source, but also
by factors such as camera distance, object occlusion, and so on. These factors
are ultimately reflected in the grayscale of the rendered images. Therefore, we
calculate the grayscale histograms of images in low-light scenes. As shown in
Fig. 3, we can see that the grayscale is diverse and in a lower range.
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Fig. 4: Motion direction histogram of optical flow in LLR.

Motion The motion in LLR is diverse. We generate a optical flow every 40
frames for LLR. The degree distribution of the optical flow is in Fig. 4. We can
find that the motion in LLR covers all kinds of directions.

Impact of Scene Brightness on Performance In fact, the two types of
light sources (normal-light and low-light) are sufficient to demonstrate that our
method can robustly handle spike streams under different lighting conditions.
This is because the distribution of light intensity in scene is diverse (see Fig. 3).
To further validate our point of view, based on the scene Car, we modify 6 the
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Light level 1 Light level 2 Light level 3 Light level 4 Light level 5 Light level 6

Fig. 5: The scene Car with 6 different light source parameters. From light level 1 to
light level 6, brightness is from small to large.

Table 1: PSNR and SSIM of reconstruction results under different light sources. We
set sunlight in the scene Car to 30, 50, 70, 90, 110 and 130 watts per square meter to
render images respectively.

Light level 30W 50W 70W 90W 110W 130W Avg.

WGSE(PSNR) 37.12 35.68 34.45 33.88 33.61 33.36 34.68
Ours(PSNR) 41.52 40.69 39.99 39.51 39.15 38.91 39.96

WGSE(SSIM) 0.9514 0.9418 0.9324 0.9306 0.9305 0.9307 0.9362
Ours(SSIM) 0.9772 0.9748 0.973 0.9711 0.9701 0.9693 0.9725

different light source parameters as shown in Fig. 5. All results are shown in
Table 1.

Table 2: Reconstruction results on synthetic dataset, LLR. Retrainidea: our method is
retrained on the noise-free version of RLLR.

Metric Our Retrainidea

PSNR 45.075 37.679
SSIM 0.98681 0.85374

Impact of Spike Camera Noise on Performance In proposed datasets, we
have considered noise of spike camera refer to [9]. We further discuss the impact
of noisy and noise-free spike streams on the performance of our method as shown
in Table. 2. We use an ideal spike camera model in SPCS [4] to synthesize a
noise-free version of RLLR and retrain our method using the dataset (written
as Retrainidea). We can find that our method has better performance than
Retrainidea. Besides, Fig. 6 shows our method can handle noise in real spike
streams better than Retrainidea.

Explanation of High PSNR When the scene is so dark, both the ground truth
(GT) and the reconstructed images can be at a lower grayscale level. This results
in a significantly lower MSE compared to normal-light scenes. Consequently,
their PSNR is high. Specifically, the Peak Signal-to-Noise Ratio (PSNR) can be



Reconstruct from Low-light Spike Streams 5

Fig. 6: Reconstruction results on a real spike stream. Please enlarge the figure for more
details.

expressed as,

PSNR(R,GT ) = 10 · log10
(

2552

MSE(R,GT )

)
, (4)

where R (GT ) are reconstructed images (ground truth) and MSE(·, ·) repre-
sents the Mean Squared Error. It can be further defined as, MSE(R,GT ) =
1

mn

∑m−1
i=0

∑n−1
j=0 (R(i, j)−GT (i, j))

2
,where m (n) is the height (width) of the

image, respectively and R(i, j)(GT (i, j)) represents the pixel value at (x, y).
Hence, when both the Ground Truth (GT) and the reconstructed images are at
a lower grayscale level, MSE is lower (PSNR is higher).

A.3 LR-Rep Details

GISI Transform In LR-Rep, we first use the GISI transform to get the global
inter-spike interval, GISIti , from the input spike stream and the release time of
forward and backward spikes. The GISI transform can be summarized as three
steps (see Fig. 5 in the main paper): (a). Calculate the local inter-spike interval
from input spike stream as [2,10] and we call it LISI transform for simplicity. (b).
Update the local inter-spike interval as global inter-spike interval based on the
release time of forward and backward spikes. (c). Maintain the release time of
forward (backward) spikes of backward (forward) spike streams. Related details
are shown in Algorithm.1. As shown in Fig. 7, GISI (our final method) not only
outperforms LISI (Baseline (F) in Table 2 of the main paper) in both PSNR and
SSIM on LLR but also have better generalization on real data. More importantly,
the cost of using GISI instead of LISI is negligible (we only need to use two
400×250 matrices to store the time of the forward spike and the backward spike,
respectively), which does not affect the parameter and efficiency of the network.

A.4 Experiment

Model efficiency Table. 3 demonstrates the training time and inference time
of the supervised methods, i.e., Spk2ImgNet, WGSE and our method. Although
our method requires more training time compared to Spk2ImgNet and WGSE
(Recurrent-based networks typically consume more time during training due to
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Baseline (F) Our final method

Fig. 7: Reconstruction results on a real spike stream. The scene is a high-speed train
that exceeds 200 km/h. The glass in the former result (left) shows obvious artifacts,
and our result (right) is very smooth and natural.

Table 3: Comparison between Spk2ImgNet (S2I), WGSE and our method. The input
spike stream size is 21× 41× 250× 400. We test the average of 50 rounds for Inference
time.

Method Para. Train time Inference time

S2I 3.91m 2h 1458.45ms
WGSE 3.63m 1h 1344.06ms
Our 5.32m 17h 818.03ms

TFI SSML S2I OursSTP SNM WGSERSIR

Fig. 8: The reconstructed results on the real dataset [8].
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TFI WGSESSML S2I OursSTP SNMRSIR

Fig. 9: The reconstructed results on the real dataset [3].
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Algorithm 1 GISI Transform.
Require:The spike streams at different time {Sti | i = 1, 2, . . . , K}, K is the number
of Continuous spike streams.
1: Initialize forward state Spikeft1 = 0.
2: Initialize backward state SpikebtK = 2K∆t.
3: for i from 1 to K do
4: Calculate LISIti based on Sti .
5: end for
6: for i from 2 to K do
7: Forward search the recent release time of spike to ti+1, Spikefti based on Sti .
8: if Spikefti is None then
9: Set Spikefti = Spikefti−1

.
10: end if
11: Update GISIti based on Sti and Spikefti−1

.
12: end for
13: for i from K − 1 to 1 do
14: Backward search the recent release time of spike to ti−1, Spikebti based on Sti .
15: if Spikebti is None then
16: Set Spikebti = Spikebti+1

.
17: end if
18: Update GISIti based on Sti and Spikebti+1

.
19: end for
20: Return {GISIti | i = 1, 2, . . . , K}

Backpropagation Through Time (BPTT)), our method outperforms Spk2ImgNet
and WGSE in terms of inference speed. Besides, due to the need to fuse both
forward and backward temporal features, our method is offline, i.e., After spike
camera collects spike stream for a long period of time, the data can be recon-
structed. In future work, we would extend our method so to online reconstruct.

Real data Here, we show more results on two real datasets. Fig. 8 and Fig. 9 show
more reconstructed images. We find that for traditional methods, TFI performs
better on low-light data than TFP, SNM and TFSTP. For deep learning-based
methods, SSML introduces a large amount of motion blur while Spk2ImgNet
and WGSE may introduces some loss in dark backgrounds. Our method restores
texture details in low-light scenes clearly more than other methods.

Synthetic data Here, we show more results on synthetic dataset LLR. Fig. 10
shows more reconstruction results on proposed dataset LLR. We find that for
traditional methods, TFI performs better on low-light data than TFP, SNM and
TFSTP. For deep learning-based methods, SSML introduces a large amount of
motion blur while Spk2ImgNet and WGSE may introduces some loss in dark
backgrounds. Our method restores texture details in low-light scenes clearly more
than other methods.
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TFI WGSESSML S2I Ours GTSTP SNM
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Fig. 10: The reconstructed results on LLR. N (L) means normal (low) light.
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Table 4: Reconstruction results on a synthetic dataset, LLR. We compare the open-
source Single Photon Avalanche Diode method, 3DCNN [1] (ICCP 2019) which is
retrained on RLLR.

Method PSNR SSIM

Our 45.075 0.98681
3DCNN 34.507 0.93506

3DCNN Our Ground Truth

Fig. 11: The reconstructed results of RotateN. Our method has clearer images.

Comparison of Quanta Image Sensor We would like to discuss Quanta Image
Sensors (QIS). Spike camera [11] and QIS [5] (including CIS-QIS and SPAD-QIS)
share some similar characteristics, such as high temporal resolution and 1-bit
(0 or 1) data. Besides, they also have differences in principles and circuits. For
one sampling (one frame), QIS records whether a photon has arrived during
the sampling, with a corresponding pixel output of 1 if photons arrive, and 0
otherwise [6]. Different from QIS, spike camera continuously accumulates photons
[11], and if the accumulated value reaches a fixed threshold, the pixel outputs
1 and the accumulation is reset. Otherwise, it outputs 0, and the accumulation
value. The different principles result in distinct meanings of two data (QIS data
and spike streams). In QIS, 1 reflects the information of a specific sampling. In
contrast, in spike camera, 1 contains the information from previous multiple
sampling, and adjacent spikes are interdependent. This also leads to differences in
the data patterns. This characteristic brings both advantages and disadvantages.
In terms of advantages, in spike cameras, the influence of photon shot noise on
each spike is reduced as multiple samples of photons are dynamically accumulated
together, while QIS is sensitive to poisson shot noise [5]. In terms of disadvantages,
spike cameras face more challenges in low-light conditions due to difficulties in
reaching the accumulation threshold (see limitation in [10]). Furthermore, the
pixel circuits of two cameras are also different. A spike camera continuously
accumulates photons in the form of voltage and the voltage can be kept for
next sampling. QIS cameras (using SPAD-QIS [7] as an example) amplify the
signal through the avalanche multiplication mechanism to detect the presence
or absence of individual photons. Besides, we test 3DCNN [1] (a reconstruction
method for QIS). To ensure fairness, we retrain 3DCNN using RLLR with spike
streams as inputs. Table. 4 demonstrates the reconstruction evaluation on LLR.
As shown in Fig. 11, our method removes motion blur better.
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