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Abstract. Spike camera with high temporal resolution can fire continu-
ous binary spike streams to record per-pixel light intensity. By using recon-
struction methods, the scene details in high-speed scenes can be restored
from spike streams. However, existing methods struggle to perform well
in low-light environments due to insufficient information in spike streams.
To this end, we propose a bidirectional recurrent-based reconstruction
framework to better handle such extreme conditions. In more detail, a
light-robust representation (LR-Rep) is designed to aggregate temporal
information in spike streams. Moreover, a fusion module is used to extract
temporal features. Besides, we synthesize a reconstruction dataset for high-
speed low-light scenes where light sources are carefully designed to be con-
sistent with reality. The experiment shows the superiority of our method.
Importantly, our method also generalizes well to real spike streams.
Our project is: https://github.com/Acnext/Learning-to-Robustly-
Reconstruct-Dynamic-Scenes-from-Low-light-Spike-Streams/.
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1 Introduction

As a neuromorphic sensor with high temporal resolution (40,000 Hz), spike
camera [14,41] has shown enormous potential for high-speed visual tasks, such
as reconstruction [3, 5–7,36, 37, 40, 42, 43], optical flow estimation [13, 33, 39], and
depth estimation [19, 21, 35]. Different from event cameras [1, 4, 20], it can record
per-pixel light intensity by accumulating photons and firing continuous binary
spike streams. Correspondingly, high-speed dynamic scenes can be reconstructed
from spike streams. Recently, many deep learning methods have advanced this
field and shown great success in reconstructing more detailed scenes. However,
existing methods struggle to perform well in low-light high-speed scenes due to
insufficient information in spike streams.

⋆ Corresponding author.
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Fig. 1: Overview of reconstruction for high-speed spike streams. Left: with decreasing
light intensity, more sparse spike streams are difficult to extract features. A black circle
is a spike. Middle: (a) The state-of-the-art method, WGSE [34]. The arrow with a
gradient color is the timeline. (b) Our reconstruction method. Green (red) lines denote
the forward (backward) data flow. ① (②) is the release time of spikes (temporal features).
① (②) in forward and backward data flow is independent. Right: reconstructed results
from WGSE and our method.

A dilemma arises for visual sensors, that is, the quality of sampled data can
greatly decrease in a low-light environment [10,11,17,18,39]. Low-quality data
creates many difficulties for all kinds of vision tasks. Similarly, the reconstruction
for the spike camera also suffers from this problem. To improve the performance
of reconstruction in low-light high-speed scenes, two non-trivial matters should be
carefully considered. First, constructing a low-light high-speed scene dataset for
spike camera is crucial to evaluating different methods. However, due to the frame
rate limitations of traditional cameras, it is difficult to capture images clearly in
real high-speed scenes as supervised signals. Instead of it, a reasonable way is to
synthesize datasets for spike camera [13,35,37,43]. To ensure the reliability of
the reconstruction dataset, synthetic low-light high-speed scenes should be as
consistent as possible with the real world, e.g . light source. Second, as shown in
Fig. 1, with the decrease of illuminance in the environment, the total number
of spikes in spike streams decreases greatly which means the valid information
in spike streams can greatly decrease. Fig. 1(a) shows that the state-of-the-art
method often fail under low-light conditions since they have no choice but to rely
on inadequate information.

In this work, we aim to address all two issues above-mentioned. In more
detail, a reconstruction dataset for high-speed low-light scenes is proposed. We
carefully design the scene by controlling the type and power of the light source
and generating noisy spike streams based on [38]. Besides, we propose a light-
robust reconstruction method as shown in Fig. 1(b). Specifically, to compensate
for information deficiencies in low-light spike streams, we propose a light-robust
representation (LR-Rep). In LR-Rep, the release time of forward and backward
spikes is used to update a global inter-spike interval (GISI). Then, to further



Reconstruct from Low-light Spike Streams 3

excavate temporal information in spike streams, LR-Rep is fused with forward
(backward) temporal features. During the feature fusion process, we add alignment
information to avoid the misalignment of motion from different timestamps.
Finally, the scene is clearly reconstructed from fused features.

Empirically, we show the superiority of our reconstruction method. Impor-
tantly, our method also generalizes well to real spike streams. In addition, exten-
sive ablation studies demonstrate the effectiveness of each component. The main
contributions of this paper can be summarized as follows:

• A reconstruction dataset for high-speed low-light scenes is proposed. We
carefully construct varied low-light scenes that are close to reality.

• We propose a bidirectional recurrent-based reconstruction framework where
a light-robust representation, LR-Rep, and fusion module can effectively compen-
sate for information deficiencies in low-light spike streams.

• Experimental results on real and synthetic datasets have shown our method
can more effectively handle spike streams in high-speed low-light scenes than
previous methods.

2 Related Work

2.1 Low-light Vision

Low-light environment has always been a challenge not only for human perception
but also for computer vision methods. For traditional cameras, some works
[2, 9, 11, 15, 25, 27, 29, 31] mainly concern the enhancement of low-light images.
Wei et al. [27] propose the LOL dataset containing low/normal-light image pairs
and propose a deep Retinex-Net including a Decom-Net for decomposition and
an Enhance-Net for illumination adjustment. Guo et al. [11] proposes Zero-DCE
which formulates light enhancement as a task of image-specific curve estimation
with a deep network. Retinexformer [2] formulates a simple yet principled One-
stage Retinex-based Framework to light up low-light images. Besides, some
work focuses on the robustness of vision tasks to low-light, e.g . object detection.
Wang et al. [24] combines with the image enhancement algorithm to improve the
accuracy of object detection. For spike camera, it is also affected by low-light
environments. Dong et al. [8] propose a real low-light high-speed dataset for
reconstruction. However, it lacks corresponding image sequences as ground truth.
Besides, the concurrent work [44] synthesizes a low-light spike stream dataset.
However, it only contains static scenes and cannot evaluate the performance of
reconstruction methods during motion.

2.2 Reconstruction for Spike Camera

The reconstruction of high-speed dynamic scenes has been a popular topic
for spike camera. Based on the statistical characteristics of spike stream, Zhu
et al. [41] first reconstruct high-speed scenes. Zhao et al. [36] improved the
smoothness of reconstructed scenes by introducing motion aligned filter. Zhu et
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al. [42] construct a dynamic neuron extraction model to distinguish the dynamic
and static scenes. With the rise of spiking neural networks [22, 23, 30, 45], for
enhancing reconstruction results, Zheng et al. [40] uses short-term plasticity
mechanism to exact motion area. Zhao et al. [37] first proposes a deep learning-
based reconstruction framework, Spk2ImgNet (S2I), to handle the challenges
brought by both noise and high-speed motion. Chen et al. [3] build a self-
supervised reconstruction framework by introducing blind-spot networks. It
achieves desirable results compared with S2I. The reconstruction method [34]
presents a novel Wavelet Guided Spike Enhancing (WGSE) paradigm. By using
multi-level wavelet transform, the noise in the reconstructed results can be
effectively suppressed. Besides, we would like to mention the concurrent work,
RSIR [44]. In RSIR, the AST representation is used to adaptively extract the
number of spike in a spike stream under different illuminations. Then, a multi-scale
wavelet recurrent network can reconstruct images from the AST representation.
However, AST compresses a spike stream into a spike number map which ignores
dynamic information, resulting in more motion blur for high-speed low-light scenes.
This greatly limits the contribution of RSIR to spike camera reconstruction, as
the original intention of spike camera is to handle high-speed dynamic scenes.
Unlike AST, our proposed representation, LR-Rep, first calculates global inter-
spike interval map (GISI). It can better preserve dynamic information while
aggregating temporal information.

2.3 Spike Camera Simulation

Spike camera simulation is a popular way to generate spike streams and accurate
labels. Zhao et al. [37] first convert interpolated image sequences with high frame
rate into spike stream. Based on [37], the simulators [16,38,43] add some random
noise to generate spike streams more accurately. To avoid motion artifacts caused
by interpolation, Hu et al. [13] presents the spike camera simulator (SPCS)
combining simulation function and rendering engine tightly. Then, based on
SPCS, optical flow datasets for spike camera are first proposed. Zhang et al. [35]
generate the first spike-based depth dataset by the spike camera simulation.
Zhang et al. [34] generate the first semantic segmentation spike streams dataset
by the spike camera simulation.

3 Reconstruction Datasets

In order to train and evaluate the performance of reconstruction methods in
low-light high-speed scenes, we propose two low-light spike stream datasets, Rand
Low-Light Reconstruction (RLLR) and Low-Light Reconstruction (LLR) based
on spike camera model. RLLR is used as our train dataset and LLR is carefully
designed to evaluate the performance of different reconstruction methods as
test dataset. We first introduce the spike camera model, and then introduce our
datasets where noisy spike streams are generated by the spike camera model.
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Fig. 2: Proposed datasets, RLLR and LLR. RLLR includes random scenes and LLR
includes carefully designed scenes. A Spike Frame is a slice of generated spike streams
on a temporal axis.

Spike camera model Each pixel on the spike camera model converts light
signal into the current signal and accumulates the input current. For pixel
x = (x, y), if the accumulation of input current reaches a fixed threshold ϕ, a
spike is fired and then the accumulation can be reset as,

A(x, t) = Ax(t) mod ϕ =

∫ t

0

Itot(x, τ)dτ mod ϕ, (1)

Itot(x, τ) = Iin(x, τ) + Idark(x, τ), (2)

where A(x, t) is the accumulation at time t, Ax(t) is the accumulation without
reset before time t, Iin(x, τ) is the input current at time τ (proportional to light
intensity) and Idark(x, τ) is the main fixed pattern noise in spike camera, i.e.
dark current [12, 38, 43]. Further, due to limitations of circuits, each spike is read
out at discrete time nT, n ∈ N (T is a micro-second level). Thus, the output of
the spike camera is a spatial-temporal binary stream S with H ×W ×N size.
The H and W are the height and width of the sensor, respectively, and N is the
temporal window size of the spike stream. According to the spike camera model,
it is natural that the spikes (or information) in low-light spike streams are sparse
because reaching the threshold is lengthy.
RLLR As shown in Fig. 2, RLLR includes 100 random low-light high-speed
scenes where high-speed scenes are first generated by SPCS [13] and then the
light intensity of all pixels in each scene is darkened by multiplying a random
constant (0-1). Each scene in RLLR continuously records a spike stream with
400× 250× 1000 size and corresponding image sequence. Then, for each image,
we clip a spike stream with 400× 250× 41 size from the spike stream as input.
LLR As shown in Fig. 2, LLR includes 5×2 carefully designed high-speed
scenes where we use the scenes with five kinds of motion (named Ball, Car, Cook,
Fan, and Rotate) and each scene corresponds to two light sources (normal and
low). To ensure the reliability of our scenes, different light sources are used, and
the power of the light source is consistent with the real world. Besides, the motion
in Ball, Cook, Fan, and Rotate is from [13] while the motion in Car is created
based on vehicle speed in the real world. Hence, the motion of objects is close to
the real world. Each scene in LLR continuously records 21 spike streams with
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400× 250× 41 size and 21 corresponding images. In the proposed datasets, we
consider the noise of spike camera based on [38].

4 Method
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Fig. 3: Illustration of the proposed bidirectional recurrent-based reconstruction frame-
work. It includes a light-robust representation, feature extractor (ResNet), fusion, and
reconstruction. The green and red lines represent the forward and backward data flow.
The two kinds of data flow are independent.

4.1 Problem Statement

For simplicity, we write St ∈ {0, 1}H×W×(2∆t+1) to denote a spike stream from
time t−∆t to t+∆t (2∆t+1 is the fixed temporal window) and write Yt ∈ RH×W

to denote the instantaneous light intensity received in spike camera at time t.
Reconstruction is to use continuous spike streams, {Sti , ti = i ∗ (2∆t + 1)|i =
1, 2, 3...K} to restore the light intensity information at different time, {Yti , ti =
i ∗ (2∆t+ 1)|i = 1, 2, 3...K}. Generally, the temporal window 2∆t+ 1 is set as 41
which is the same with [3, 34,37].

4.2 Overview

To overcome the challenge of low-light spike streams, i.e. the recorded information
is sparse (see Fig.1), we propose a light-robust reconstruction method that can
fully utilize temporal information of spike streams. It is beneficial from two
modules: 1. A light-robust representation, LR-Rep. 2. A fusion module. As shown
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Fig. 4: Illustration of the proposed light-robust representation. We use convolution
blocks to extract shallow features from input spike stream and GISI, respectively. Then
they are fused by an attention block.

in Fig. 3, to recover the light intensity information at time ti, Yti , we first
calculate the light-robust representation at time ti, written as Repti . Then, we
use a ResNet module to extract deep features, Fti , from Repti . Fti is fused with
forward (backward) temporal features as Ff

ti (Fb
ti). Finally, we reconstruct the

image at time ti, Ŷti with Ff
ti and Fb

ti .

Forward spike stream Backward spike streamInput spike stream

(a) 

 

(c) Maintain:
: x 18

(b) Update: 

 

Fig. 5: Illustration of GISI transform for backward in a pixel. (a). Calculate the local
inter-spike interval, LISIti from the input spike stream [3, 39]. (b). Update global
inter-spike interval, GISIti based on the release time of backward spike, Spikeb

ti+1
and

LISIti . (c). Maintain and transmit the release time of backward spike, Spikeb
ti

. Black
(white) circle is a (no) spike and the red line is backward data flow.

4.3 Light-robust Representation

As shown in Fig. 4, a light-robust representation, LR-Rep, is proposed to aggregate
the information in low-light spike streams. LR-Rep mainly consists of two parts,
GISI transform and feature extraction.
GISI transform Calculating the local inter-spike interval from the input spike
stream is a common operation [3, 39] and we call it as LISI transform. Different
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Fig. 6: (a) and (b) show the visualizations of GISIti and LISIti in a real spike stream.
(c) shows the distribution of pixel-wise values in GISIti and LISIti .

from LISI transform, we propose a GISI transform that can utilize the release time
of forward and backward spikes to obtain the global inter-spike interval GISIti .
It needs to be performed twice, i.e. once forward and once backward respectively.
Taking GISI transform backward as an example, it can be summarized as three
steps as shown in Fig. 5. GISI transform can extract more temporal information
from spike streams than LISI transform as shown in Fig. 6.
Feature extraction After GISI transform, we separately extract shallow
features of GISIti and input spike stream, FG and FS through convolution
block. Finally, Repti is obtained by an attention module where FG and FS are
integrated, i.e.

[βti ,αti ] = Att([FG,FS ]), (3)
Repti = βtiFG + αtiFS , (4)

where Att(·) denotes an attention block including 3-layer convolution with 3-layer
activation function and Repti is our LR-Rep at time ti.

4.4 Fusion and Reconstruction
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Fig. 7: Illustration of fusion module and reconstruction module. (a) denotes forward
(green line) and backward (red line) fusion modules. (b) denotes the reconstruction
module.

We first extract the deep feature Fti of Repti through a ResNet with 16
layers. Then, as shown in Fig. 7(a), for forward, temporal features Ff

ti−1
and

Fti are fused as temporal features of the input spike stream Ff
ti . For backward,
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temporal features Fb
ti+1

and Fti are fused as temporal features of the input spike
stream Fb

ti . To avoid the misalignment of motion from different timestamps,
we use a Pyramid Cascading and Deformable convolution (PCD) [26] to add
alignment information to Fti . The above process can be written as,

Fti = f(Repti), (5)

Ff
ti = f([Fti + a(Ff

ti−1
,Fti),F

f
ti−1

]), (6)

Fb
ti = f([Fti + a(Fb

ti+1
,Fti),F

b
ti+1

]), (7)

where f(·) denotes the feature extraction and a(·, ·) denotes the PCD module.
Finally, as shown in Fig. 7(b), we use forward and backward temporal features
(Fb

ti and Ff
ti) to reconstruct the current scene at time ti, i.e.

Ŷti = c([Fb
ti ,F

f
ti ]), (8)

L =

K∑
i=1

∥Ŷti −Yti∥1 (9)

where c(·) denotes 3-layer convolution with 2-layer ReLU, L is the loss function,
∥ · ∥1 denotes 1-norm and K is the number of continuous spike streams.

5 Experiment

5.1 Implementation Details

We train our method in the proposed dataset, RLLR. Consistent with previous
work [3,34,37], the temporal window of each input spike stream is 41. The spatial
resolution of input spike streams is randomly cropped the spike stream to 64× 64
during the training procedure and the batch size is set as 8. Besides, forward
(backward) temporal features and the release time of spikes in our method are
maintained from 21 continuous spike streams. We use Adam optimizer with
β1 = 0.9 and β2 = 0.99. The learning rate is initially set as 1e-4 and scaled
by 0.1 after 70 epochs. The model is trained for 100 epochs on 1 NVIDIA
A100-SXM4-80GB GPU.

5.2 Results

We compare our method with traditional reconstruction methods, i.e. TFI
[41], STP [40], SNM [42] and deep learning-based reconstruction methods, i.e.
SSML [3], Spk2ImgNet (S2I) [37], WGSE [34], concurrent work RSIR [44]. The
supervised learning methods, S2I, WGSE and RSIR, are trained on RLLR. We
evaluate methods on two kinds of data:
(1) The carefully designed synthetic dataset, LLR.
(2) The real spike streams dataset, PKU-Spike-High-Speed [37] and low-light
high-speed spike streams dataset [8].
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Table 1: PSNR and SSIM of reconstruction results on synthetic dataset, LLR. The
best performance is bolded. Note that high PSNR (S2I, WGSE, and Ours are above
40) is a normal occurrence due to low-light scenes (see appendix).

Metric TFI RSIR SSML S2I STP SNM WGSE Ours
ICME,19 MM,23 IJCAI,22 CVPR,21 CVPR,21 PAMI,22 AAAI,23 This paper

PSNR 31.409 34.121 38.432 40.883 24.882 25.741 42.959 45.075
SSIM 0.72312 0.88337 0.89942 0.95915 0.55537 0.80281 0.97066 0.98681

SSML S2ISpike Frame TFI RSIR

WGSE Ours Ground TruthSTP SNM

Fig. 8: An example of different methods on the LLR. Spike Frame is a slice of input
spike streams on temporal axis. Please enlarge for details. More results are in appendix.

The reproduction of these methods is from their official source codes.
Results on our synthetic dataset As shown in Table. 1, we use the two
reference image quality assessment (IQA) metrics, i.e. PSNR and SSIM to evaluate
the performance of different methods on LLR. We can find that our method
achieves the best reconstruction performance and has a PSNR gain over 2dB
than the state-of-the-art reconstruction method, WGSE, which demonstrates its
effectiveness. Fig. 8 shows the visualization results from different reconstruction
methods. We can find that our method can better restore motion details in
low-light motion regions than other methods. Besides, RSIR is designed to handle
spike streams in static scenes and we find that it can suffer from large motion
blur in low-light high-speed scenes.
Results on real datasets For real data, we test different methods on two spike
stream datasets, PKU-Spike-High-Speed [37] and low-light spike streams [8]. PKU-
Spike-High-Speed includes 4 high-speed scenes under normal-light conditions
and [8] includes 5 high-speed scenes under low-light conditions. Fig. 9 shows
the reconstruction results. Note that we apply the traditional enhancement
method [32] to reconstruction results on [8] because scenes are too dark. We can
find that, for high-speed scenes under normal-light conditions, deep learning-
based methods (SSML, RSIR, S2I, WGSE, and Ours) can reconstruct scene
details well. However, for high-speed scenes under low-light conditions, SSML
and RSIR introduce a large amount of motion blur while S2I and WGSE may
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introduce some artifacts in dark backgrounds. Our method can more effectively
restore the information in scenes, i.e., clear texture.

TFI SSML S2I

OursSTP SNM WGSE

RSIR SSML S2I

OursSTP SNM WGSE

TFI

RSIR

Fig. 9: Results from different reconstruction methods on the real datasets, PKU-Spike-
High-Speed [37] (Top) and low-light high-speed spike streams dataset [8] (Bottom).
For low-light high-speed spike streams dataset, we apply the traditional enhancement
method [32] to reconstruction results because the scene is too dark. More results are in
our appendix.

As shown in Fig. 10, we perform a user study written as US [15,28] to quantify
the visual quality of different methods. For each scene in datasets, we randomly
select reconstructed images at the same time from different methods and display
them on the screen (the image order is randomly shuffled). 20 human subjects
(university degree or above) are invited to independently score the visual quality
of the reconstructed image. The scores of visual quality range from 1 to 8 (worst
to best quality). The average subjective scores for each spike stream dataset are
shown in Fig. 10 and our method reaches the highest US score in all methods.
Temporal consistency of reconstructed results Our reconstruction method
is stable to spike stream at different moments. Fig. 11 shows the continuous
reconstructed results in a real high-speed low-light scene. We find that our method
can recover scene details at different moments, while the state-of-the-art WGSE
introduces temporal-varying artifacts. Besides, we also provide a reconstruction
video in our supplementary material.

5.3 Ablation

Proposed modules To investigate the effect of the proposed light-robust
representation LR-Rep, the adjacent (forward and backward) deep temporal
features (ADF), i.e. Fb

ti and Ff
ti in our fusion module, the alignment information

in our fusion module (AIF) and GISI transform in LR-Rep, we compare 5
baseline methods with our final method. (A) is the basic baseline without LR-
Rep, ADF, and AIF. Table. 2 shows ablation results on the proposed dataset,
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Fig. 10: User study scores (↑) of reconstructed images from different methods. The
max (min) score is 8 (1). Red or blue color is the highest score on the dataset [37] or [8].

1

1 2 3
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Fig. 11: A water polo bursting at high speed in a low-light indoor. We selected the
reconstruction results under 6 sampling moments, and the interval between two adjacent
sampling moments is 41/40000 s. The top is our method and the bottom is the
state-of-the-art reconstruction method [34]. We apply the traditional enhancement
method [32] to reconstruction results because the scene is too dark. Reconstructed
videos are provided in supplementary materials.

LLR. The comparison between (A) and (C) ((B) and (D)) proves the effectiveness
of LR-Rep. The comparison between (A) and (B) ((C) and (D)) proves the
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effectiveness of ADF. Further, by adding the alignment information in the fusion
module i.e. AIF, our final method (E) appropriately reduces the misalignment of
motion from different timestamps and can reconstruct high-speed scenes more
accurately than (D). Besides, the comparison between (E) and (F) shows GISI has
better performance than LISI. This is because GISI can extract more temporal
information than LISI (see Fig. 6). More importantly, the cost of using GISI
instead of LISI is negligible (we only need to use two 400×250 matrices to store
the time of the forward spike and the backward spike, respectively), which does
not affect the parameter and efficiency of the network.

Table 2: Abltion results on the synthetic dataset, LLR. The best performance is bolded.

Index Effect of different network structures PSNR SSIM

(A) Basic baseline 42.743 0.97403
(B) Adding ADF to (A) 44.151 0.98514
(C) Adding LR-Rep to (A) 44.739 0.98636
(D) Adding ADF & LR-Rep to (A) 44.956 0.98678
(E) Adding ADF & LR-Rep & AIF 45.075 0.98681
(F) Replacing GISI with LISI in (E) 44.997 0.98676

Comparison with other representation We compare the performance of
different representations in our framework, i.e. (1) General representation of spike
stream: TFI and TFP [41] (2) Tailored representation for reconstruction networks:
AST in RSIR [44], AMIM [3] in SSML, SALI [37] in S2I and WGSE-1d [34] in
WGSE. We replace LR-Rep in our method as the above representation. They are
trained on the dataset, RLLR, and implementation details are the same as our
method. As shown in Table. 3, our LR-Rep achieves the best performance which
means LR-Rep can better adapt to our framework.

Table 3: Performance of different representation methods in our framework. All methods
are trained on RLLR and are tested on LLR. The best performance is bolded.

Rep. TFP TFI AST AMIM SALI WGSE-1d LR-Rep
ICME,19 ICME,19 MM,23 IJCAI,22 CVPR,21 AAAI,23 Ours

PSNR 38.615 37.617 37.997 41.950 43.314 42.302 45.075
SSIM 0.96641 0.93632 0.95463 0.97493 0.98304 0.97438 0.98681

Train dataset size. The size of train datasets has an impact on the perfor-
mance of our network. A larger train dataset typically provides more samples and
a wider range of variations. In fact, proposed RLLR is enough for the reconstruc-
tion task of low-light spike streams. As shown in Table. 4, we find that as the
dataset size increase, the performance of the model also improves. However, it is
observed that the performance improvement becomes less significant after the
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Table 4: Evaluation results on LLR. We train our network where 20%, 40%, 60%,
and 80% of RLLR data are used as training set respectively. The best performance is
bolded.

Metric 20% 40% 60% 80% 100%

PSNR 35.001 38.618 44.415 44.753 45.075
SSIM 0.93411 0.97113 0.98459 0.98581 0.98681

45.0

44.5

44.0

43.5

43.0

1 5 9 13 17 21

0.985

0.980

0.975

0.970

0.965

0.960
PSNR
SSIM

SSIM: 0.9578

PSNR: 43.005

SSIM: 0.9868

PSNR: 45.075

Number = 21 Number = 1

P
S

N
R

S
S

IM

Fig. 12: Effect of the number of continuous spike streams on the performance. We test
on the dataset, LLR. Left: PSNR and SSIM of the method under the different number
of continuous spike streams. Right: Comparison of reconstruction images.

dataset size reaches 60% of RLLR. It shows that the proposed RLLR is sufficient
for training our network.
The number of continuous spike streams For solving the reconstruction
difficulty caused by inadequate information in low-light scenes, the release time of
spike in LR-Rep and temporal features in fusion module are maintained forward
and backward in a recurrent manner. The number of continuous spike streams has
an impact on our method performance. Fig. 12 shows its effect on the performance.
We can find that, as the number increases, the performance of our method can
greatly increase until convergence. This is because, as the number increases, our
method can utilize more temporal information until sufficient. The reconstrued
image from 21 continuous spike streams has more details in a shaded area.

6 Conclusion

We propose a bidirectional recurrent-based reconstruction framework for spike
camera to better handle different light conditions. In our framework, a light-
robust representation (LR-Rep) is designed to aggregate temporal information in
spike streams. Moreover, a fusion module is used to extract temporal features.
To evaluate the performance of different methods in low-light high-speed scenes,
we synthesize a reconstruction dataset where light sources are carefully designed
to be consistent with reality. The experiment on both synthetic data and real
data shows the superiority of our method.
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