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In this supplemental materials, we present more ablation studies in Section A,
more comparison and compatibility analysis with existing OVD works in Sec-
ton B, implementation details in Section C, and limitations in Section D.

A Further Ablation Studies

A.1 Different indicators for adaptive reweighting

We examine several other measurements to estimate the reliability score ri for
adaptive reweighting, including:

– Confidence of pseudo label (ri = si): For comparsion. By setting ri = si, the
adaptive reweighting degenerates to conventional training design [6] with
weighted pseudo-labels [16].

– Intersection-over-Union (ri = ioui): Boxes with bigger overlaps from pseudo-
label get larger weights and vice versa.

– Novelty estimation (ri = sdeti ): sdeti defined in Eq.3 in main paper estimates
the probability of containing real novel objects, we repeatedly use it for both
pseudo-label mining and adaptive reweighting in this setting.

As demonstrated in Table 1, background score predicted with weakly augmented
images achieves the best performance, and it significantly outperforms the con-
ventional training design [6] with weighted pseudo-labels [16].

A.2 Ablation on global novel loss weight γ

Conventional methods [3, 4, 16] typically treat noisy pseudo-labels as ground
truth and combine it with the base annotations to train the detector. In con-
trast, our proposed MarvelOVD strives to reduce the noises in both pseudo-
labels and training boxes before utilizing them in training, which achieves more
promising results. We examine different global novel loss weights and report the
performance in Table 2. The results show that setting the global novel weight
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Table 1: Performance of different measurements for reliability score in adaptive pro-
posal reweighting.

ri 1− bi si ioui sdeti

APNovel
50 39.8 37.8 37.6 38.0

Table 2: Effects of different global novel loss weight γ.

Models VL-PLM MarvelOVD
APN

50 APB
50 APN

50 APB
50

γ = 1 32.7 54.0 37.8 57.0
γ = 2 32.5 53.9 38.9 56.5
γ = 4 - - 38.6 56.0

as γ = 2 further improves the performance of our MarvelOVD while slightly
degrading the baseline method. The reason is that the massive noise contained
in the baseline method prevents further improvements. On the contrary, our ap-
proach effectively purifies the pseudo-labels and de-bias the following training
designs by online mining and adaptive reweighting, allowing better performance
with larger novel loss weights. Higher novel weights are also tested but do not
contribute to better results.

A.3 Qualitative Results

In Figure 1, we visualize the effects of our proposed stratified label assignment
and online object mining. A notable observation is that base boxes might be
incorrectly labeled as novel objects due to overlaps between the pseudo-label
and base annotation, potentially impairing the detector’s performance on base
categories. Our stratified matching strategy rectifies these mislabeled base boxes,
enabling the model to assimilate novel concepts without diminishing its base
detection capabilities. Additionally, the bottom two rows of Figure 1 demonstrate
the efficacy of online object mining, where our approach, aided by the detector,
effectively filters noise from CLIP-generated pseudo-labels.

A.4 Effects of the weak-strong augmentation

We apply the weak-strong augmentations that are not adopted by other OVD
works. The motivation comes from recent semi-supervised learning methods (e.g.
fixmatch [10], unbiased-teacher [9]), which demonstrate that enforcing the same
supervision between weak-strong augmented features leads to better performance
for learning on pseudo-labels. We apply weak-strong augmentations on the con-
ventional OVD method [16] and MarvelOVD to evaluate its effect and the results
are shown in Table 3. The weak-strong augmentation barely influences the av-
erage precision on base categories while equally improving the performance on
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Fig. 1: Visualization of stratified label assignment and online object mining.

Table 3: Effects of Weak-Strong Augmentation (referred as WSA).

Models VL-PLM MarvelOVD
APN

50 APB
50 APN

50 APB
50

w/o WSA 32.7 54.0 37.2 56.4

w/ WSA 34.2 53.9 38.9 56.5

novel categories in both VL-PLM and our MarvelOVD. Without the augmenta-
tion, our framework still outperforms the base method by a significant margin.

B Comparisons and compatibility with existing OVD
works

B.1 Performance Comparison

We mainly compare our method with other pseudo-label-based OVD works in
the main paper. Table 4 demonstrates a more complete comparison between our
MarvelOVD and other existing OVD works, including both transfer learning and
knowledge distillation methods. Among them, our method still performs favor-
ably against the state-of-the-art methods. Pseudo-label plays an important role
in recent OVD works, where most advanced methods learn novel concepts from
pseudo-labels generated by pretrained VLMs. With respect to VLM-generated
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Table 4: Comparison with state-of-the-art methods on COCO2017 dataset.

Methods Training Source APNovel
50 APBase

50 APAll
50

OV-RCNN [14]
VLDet [8]
LocOv [2]

box-level labels in CB ,
transfer learning with COCO-captions

22.8
32.0
28.6

46.0
50.6
51.3

39.9
45.8
45.7

Detic [18]
box-level labels in CB ,

internet sourced classification data,
image-level labels for CB ∪ CN

27.8 47.1 45.0

ViLD [5]
BARON [12]

box-level labels in CB ,
knowledge distillation from CLIP

27.6
34.0

59.5
60.4

51.3
53.5

RegionCLIP [17]
box-level labels in CB ,

internet sourced image-text pairs,
pretraining with pseudo box-level labels

31.4 57.1 50.4

Gao et al. [4]
box-level labels in CB ,

internet sourced image-text pairs,
pseudo-box labels in CN generated by ALBEF

30.8 46.1 42.1

PromptDet [3]
box-level labels in CB ,

internet sourced image-text pairs,
pseudo-box labels in CN generated by CLIP

26.6 - 50.6

OADP [11]
box-level labels in CB ,

knowledge distillation from CLIP,
pseudo-box labels in CN generated by CLIP

35.6 55.8 50.5

Rasheed et al. [1]
box-level labels in CB , pseudo-box labels in CN

internet sourced image-text pairs,
image-level labels for CB ∪ CN

36.6 54.0 49.4

SAS-Det [15] box-level labels in CB , pseudo-box labels in CN

generated by roi-align from CNN-based-CLIP 37.4 58.0 53.0

VL-PLM [16]
MarvelOVD(Ours)

box-level labels in CB ,
box-level pseudo-labels in CN generated with CLIP

32.3
38.9

54.0
56.5

48.3
51.9

pseudo labels, our MarvelOVD identifies the root causes of its noises and pro-
poses the dedicated noise-removal strategy by integrating the context-sensing ca-
pability of the detector, which consistently improves the recent advanced method
by significant margins.

In particular, extracting CLIP embedding by roi-align from CNN-based CLIP
backbones has been exploited in recent studies [7, 13], which provides a substi-
tuting context-aware operation for pseudo-label generation. Even though, our
approach still stably outperforms methods that exploit such operation (e.g.
SAS-Det [15] that recently published on arxiv). The result further indicates the
effectiveness of our MarvelOVD in de-noising the pseudo-label-based learning
paradigms.
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Table 5: Detail of data augmentations. Probability in the table indicates the proba-
bility of applying the corresponding image process.

Weak Augmentation

Process Probability Parameters

Horizontal Flip 0.5 None

Strong Augmentation

Process Probability Parameters

Color Jittering 0.8 (brightness, contrast, saturation, hue) = (0.4, 0.4, 0.4, 0.1)

Grayscale 0.2 None

GaussianBlur 0.5 (sigma_x, sigma_y) = (0.1, 2.0)

CutoutPattern1 0.7 scale=(0.05, 0.2), ratio=(0.3, 3.3)

CutoutPattern2 0.5 scale=(0.02, 0.2), ratio=(0.1, 6)

CutoutPattern3 0.3 scale=(0.02, 0.2), ratio=(0.05, 8)

C More Implementation Details

C.1 Weak-Strong augmentations

The detailed weak-strong augmentations adopted in our method are illustrated
in Table 5, which is identical with the semi-supervised object detection work
unbiased teacher [9]. We only apply it to the COCO dataset. The augmentation
on the LVIS dataset follows the common CenterNet2 benchmark [18].

C.2 Candidate pseudo-label assignment

We follow the pseudo-label-generation pipeline in VL-PLM to assign candidate
pseudo-labels to each image before the training. In particular, the class-agnostic
proposal generator is actually a detector trained with the base annotation (re-
garding all the base annotations as one class). Then we infer the train image
with the proposal generator and recursively refine the predicted boxes with the
RoI head by 10 times. The recursive refinement improves the localization quality
of the boxes. After gathering the candidate regions, the prediction probability
distribution pi for each box is encoded by CLIP ViT-B/32 as follows:

ri = ϕ(Eimg(R
1×
i ) + Eimg(R

1.5×
i ))

pi = softmax{ri · Etxt(NovelCategories)T }
(1)

Eimg, Etxt is the image-encoder and text-encoder of CLIP, R1×
i is the box pro-

duced by proposal generator and R1.5×
i is a region cropped by 1.5× the size of

R1×
i . After getting the probability distribution for each box, we filter them with

a threshold 0.5 and post-process the remaining with NMS to obtain the candi-
date pseudo-labels. We record the TOP-1 CLIP score and the predicted category
of the candidates and assign them to the image, and then we dynamically select
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reliable ones for training under the guidance of detector. The threshold 0.5 is
not a special hyperparameter that influences the performance, it’s used to re-
move the redundant boxes that would never be selected as pseudo-labels, which
accelerates the training speeds. Refining the localization with the RoI head and
extracting the region-embedding with a larger area are existing techniques that
adopted by the base method VL-PLM. We also maintain them in our candidate
pseudo-label assignment process.

D Limitations

Our proposed MarvelOVD provides a better measurement to purify pseudo-
labels from the fixed candidate boxes. It can not promote the localization qual-
ity of the pseudo-label. Since the candidate boxes are produced by a proposal
generator trained with only base annotations, the localization quality for novel
objects is limited. As the detector gains more knowledge of the novel object
through pseudo-labels during training, its ability to localize the novel object
should also be enhanced. How to rationally utilize the detector to dynamically
optimize the localization quality of pseudo-labels is worthwhile exploring in the
future.
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