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Fig. 1: Examples of our virtual try-on results on real-life TikTok videos.

Abstract. Video virtual try-on aims to generate realistic sequences that
maintain garment identity and adapt to a person’s pose and body shape
in source videos. Traditional image-based methods, relying on warping
and blending, struggle with complex human movements and occlusions,
limiting their effectiveness in video try-on applications. Moreover, video-
based models require extensive, high-quality data and substantial com-
putational resources. To tackle these issues, we reconceptualize video
try-on as a process of generating videos conditioned on garment de-
scriptions and human motion. Our solution, WildVidFit, employs image-
based controlled diffusion models for a streamlined, one-stage approach.
This model, conditioned on specific garments and individuals, is trained
on still images rather than videos. It leverages diffusion guidance from
pre-trained models including a video masked autoencoder for segment
smoothness improvement and a self-supervised model for feature align-
ment of adjacent frame in the latent space. This integration markedly
boosts the model’s ability to maintain temporal coherence, enabling
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more effective video try-on within an image-based framework. Our ex-
periments on the VITON-HD and DressCode datasets, along with tests
on the VVT and TikTok datasets, demonstrate WildVidFit’s capability
to generate fluid and coherent videos. The project page website is at
wildvidfit-project.github.io.

Keywords: Video Virtual Try-on · In the wild · Image-Based Video
synthesis

1 Introduction

In video virtual try-on, the objective is to generate seamless videos that preserve
the appearance of a specific garment while accurately adapting to the pose and
body shape of the individual in the source video. This domain has garnered
significant attention due to its potential applications in e-commerce and the
burgeoning short-form video sector.

Recent advancements in video virtual try-on have evolved from initial two-
stage image-based approaches, involving flow-based warping and blending, to
incorporating an additional temporal module for ensuring frame consistency. No-
tably, FW-GAN [8] introduced an optical flow-guided fusion module, utilizing
past frame warping results for current frame prediction. MV-TON [47] employed
garment-to-person flow estimation for each frame, coupled with a memory mod-
ule for refining frames using space-time information. ClothFormer [22] achieved
realistic, spatio-temporally consistent results with its anti-occlusion warping,
appearance-flow tracking, and dual-stream transformer. However, these meth-
ods face challenges in “in-the-wild” video applications due to two primary ob-
stacles. Firstly, the collection of robust video data is costly, and developing a
temporal module requires extensive, high-quality videos and computational re-
sources. These methods, trained on specific datasets [8, 22], have limited gener-
alization ability. Secondly, limb occlusions and significant garment deformation,
more prevalent in videos than still images, lead to misalignment issues in current
methodologies.

Addressing the video virtual try-on challenge hinges on generating images
that adhere to given conditions, such as garment descriptions and human mo-
tion sequences. Particularly for videos captured in uncontrolled environments, a
method must robustly handle intricate motions and limb occlusions. An image-
based approach, leveraging extensive image foundation model knowledge and
abundant image data, is particularly beneficial. This leads to decomposing the
video try-on task into two subtasks: developing a fine-grained image try-on model
for complex movements and occlusions, and extending it to video while main-
taining frame coherence.

In response, we introduce WildVidFit, a novel, video training-free virtual
try-on framework. WildVidFit utilizes image-based controlled diffusion models
for realistic video try-on results. It bypasses explicit warping limitations in occlu-
sion handling with a detail-focused, one-stage image try-on network, synthesizing

wildvidfit-project.github.io


WildVidFit: Video Virtual Try-On in the Wild 3

outputs based on unified representations of garments and individuals. It incorpo-
rates implicit warping inspired by TryOnDiffusion [48] for naturalistic outcomes
and features a diffusion guidance module. This module enhances the tempo-
ral consistency of videos by improving segment smoothness with a pre-trained
video masked autoencoder and aligning features of adjacent frames in the latent
space through a self-supervised model. Crucially, WildVidFit streamlines the
process by using editing and content consistency cues from pre-trained models,
eliminating the need for additional fine-tuning or new temporal modules. Our
contributions can be summarized as follows:

– We present WildVidFit, a video training-free virtual try-on framework ca-
pable of handling complex limb occlusions and actions in wild videos with a
straightforward process.

– We introduce a diffusion guidance module to enhance temporal consistency,
employing pre-trained video models and image self-supervised models to
establish frame feature correspondence in the latent space.

– Our experiments on the TikTok dataset demonstrate WildVidFit’s effec-
tiveness in dynamic, real-world scenarios, highlighting its practicality and
versatility.

2 Related Work

Image Virtual Try On. Given a pair of images (reference person, target gar-
ment), image virtual try-on methods aim to generate the appearance of the
reference person wearing the target garment. Most of these methods [1, 6, 9,
11,14,15,20,25,28,32,38,41–44] decompose the try-on task into two generation
stages, i.e., warping and blending. The pioneering work, VITON [14], introduced
a coarse-to-fine pipeline that was guided by the thin-plate-spline (TPS) warping
of the target garment. ClothFlow [13] advanced the warping process by directly
estimating the flow field using a neural network instead of the TPS. VITON-
HD [6] released a high-resolution virtual try-on dataset and increased the resolu-
tion of generated images from 256× 192 to 1024× 768 with an alignment-aware
generator. GP-VITON [40] developed an innovative Local-Flow-Global-Parsing
warping module to preserve the semantic information of different parts of the
garment. Moreover, [19] integrated geometric priors of 3D human bodies, en-
abling a more nuanced handling of pose and viewpoint variations. Although
these methods have made significant progress, explicit warping still struggles to
cope with complex poses and occlusions due to pixel misalignment.

Recently, diffusion models [17,34,36] have risen to prominence as the leading
family of generative models. As a result, there is a growing interest in leveraging
diffusion models as an alternative to GANs to achieve more realistic outcomes.
LaDI-VTON [29] incorporated the latent diffusion model [33] into the blending
stage of virtual try-on and introduced a textual inversion module to enhance
the texture on garments. DCI-VTON [12] proposed an exemplar-based inpaint-
ing approach that leveraged a warping module to guide the diffusion model’s
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generation. Both methods follow the previous two-stage approach. TryOnDiffu-
sion [48] presented a diffusion-based architecture, enabling the preservation of
garment details and the ability to warp the garment to accommodate significant
pose and body changes within a single network. However, the network design
of two parallel UNets followed by a super-resolution module will bring huge
computation cost when extending TryOnDiffusion to video synthesis.
Video Virtual Try On. Researches extended the two-stage approach used in
image virtual try-on to video applications by integrating a specially designed
temporal module. FW-GAN [8] successfully applied a video generation frame-
work to the task of virtual try-on by incorporating relevant factors like warped
garments and human postures. MVTON [47] introduced a try-on module for gar-
ment warping using pose alignment and regional pixel displace, and a memory
refinement module that embedded prior generated frames into a latent space,
serving as external memory for subsequent frame generation. ClothFormer [22],
on the other hand, refined flow predictions using inter-frame information and
employed a Dual-Stream Transformer to produce the video try-on result from
warping results of multiple frames. Despite great advancements in walking sce-
narios, these methods face challenges when applied to wild videos featuring com-
plex human movements. This is attributed to the high cost of labeled video data
and the inherent limitations of explicit warping.

3 Method

Fig. 2 provides an overview of our proposed WildVidFit for video virtual try-
on. Given a reference person video sequence I := {I1, ..., IN} ∈ R3×H×W and
a target garment image G ∈ R3×H×W , where H and W denote height and
width of the image, and N is the frame length of the sequence, WildVidFit
aims to synthesis a realistic video sequence Ĩ := {Ĩ1, ..., ĨN} ∈ R3×H×W . This
video showcases the person wearing the target garment G, while maintaining
the integrity of all other elements. WildVidFit successfully accomplishes the
video try-on task through an image-based approach with two core modules:
a one-stage virtual try-on network conditioned on both human motions and
garment texture, and a diffusion guidance module for temporal coherence. We
start with the preprocessing procedures, followed by a brief introduction on
diffusion models. Subsequent subsections further elaborate on the designed one-
stage try-on network (Sec. 3.1) and diffusion guidance module (Sec. 3.2).
Preprocessing of Inputs. Drawing inspiration from [5, 25], we propose a
method to construct separate representations for the person and the garment,
aiming to preserve the individual’s identity and accurately reproduce the in-
tricate textures of the garment. Specifically, we obtain the human segmenta-
tion map sequence S := {S1, ..., SN} and pose maps P := {P1, ..., PN} us-
ing off-the-shelf methods [3, 26]. Then we produce cloth-agnostic RGB images
A := {A1, ..., AN} following the progress described in VITON-HD [25]. This pro-
cess utilizes P and S to effectively remove the original clothing but retains the
person identity. Finally the cloth-agnostic RGB images A and the pose maps P
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Fig. 2: Overview of our WildVidFit framework. Our method contains two mod-
ules, i.e., a one-stage image try-on network and a guidance module. In timestep t,
we crop the garment area and decode the latent Zt into sequence It. The similarity
loss LSIM is calculated between adjacent frames Ij+1

t and Ijt using spherical distance.
Additionally, we randomly mask the sequence It into Ît, which is then inputted into
VideoMAE for reconstruction. LMAE represents the distance between the sequences It
and Ît. We assume that a lower reconstruction loss will result in a smoother sequence.
LSIM and LMAE together constitute the temporal loss, which controls the sampling
process from Zt to Zt−1.

together form our person representation. For garment representation, in addition
to the original garment image G, we introduce low-level information represented
by edge map Eg. Eg is detected by Sobel [23]. We utilized DINO-V2 [31] for
feature extraction from both garment image G and edge map Eg and then con-
catenate them into a vector Fg ∈ R257×2048. The dimension of 257 refers to the
concatenation of a global token and 256 patch tokens.
Controlled Diffusion Model. Diffusion models [17,34] are a class of generative
models that learn the target distribution via an iterative denoising procedure.
They consist of a Markovian forward process that progressively corrupts the
data sample x into the Gaussian noise zT , and a learnable reverse process that
converts zT back to x iteratively. Importantly, diffusion models can be condi-
tioned on various signals like texts or images. A conditional diffusion model x̂θ

can be trained with a weighted denoising score matching objective:

Ex,c,ϵ,t[wt∥x̂θ(αtx+ σtϵ, c)− x∥22], (1)

where x is the target data sample, c is the conditional input, ϵ ∼ N (0,E) is
the noise term. Here, E is used to denote the identity matrix. αt, σt, wt are
functions of the timestep t according to the formulation of diffusion models. In
practice, x̂θ is reparameterized as ϵ̂θ to predict the noise that corrupts x into
zt := αtx+σtϵ. During inference, data samples can be generated from Gaussian
noise zT ∼ N (0,E) using DDIM [35] sampler.

To enable our diffusion model training and inference on limited computa-
tional resources without compromising quality and flexibility, we use the pre-
trained autoencoder to compress data sample x into the latent space.
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3.1 One-stage Image Try-On Network

The try-on task requires to make controllable image generation where the person
wears the target garment while maintaining the original motion. We extend
the diffusion model into video try-on task in the form of a conditional image
generation task under the joint restriction of the person representation and the
garment representation.

As shown in Fig. 3, we take the concatenation of the cloth-agnostic image A
and the pose image P as the input in condition branch. A and P are critical for
preserving the identity of the person as well as the background. The garment
representation including the garment image G and its edge map Eg, is not aligned
with the try-on results. Unlike using the warped garment as the input condition
to remove this misalignment [12,29], our network adopts a one-stage paradigm,
applying implicit warping via the cross attention between the reference person
and the extracted garment feature Fg inspired by TryOnDiffusion [48]. The edge
map emphasizes the garment details that need to be maintained. Beneficial in
avoiding reliance on the explicit optical flow estimation, our network learns how
the garment naturally fits on the person, rather than relying on strict pixel-level
transformation, which is essential for generalizing to in-the-wild video images.

We pick Stable Diffusion [33] as our base architecture but add a condition
branch and make cross attention on the garment instead of text. Both the en-
coder and decoder of the main UNet consist of four blocks with different scale.
The architecture of the condition branch is the same as UNet encoder except
the first convolution. We inject the condition signal into the main UNet via
convolution. To preserve the prior knowledge essential for improved generation
quality, feature aggregation is only performed in the UNet decoder. Formally,
the condition branch F extracts multi-scale features Fc = {F1

c,F
2
c,F

3
c,F

4
c} from

the input condition c = {A,P}, Fc is corresponding to the output of four
blocks. We inject the condition features Fc into the decoder feature Fdec =
{F1

dec,F
2
dec,F

3
dec,F

4
dec}:

Fc = F(A,P), (2)

F̂i
dec = Conv(Fi

dec,F
5−i
c ), i ∈ {1, 2, 3, 4}, (3)

The objective function in training is the same as Eq (1).

3.2 Temporal Coherent Editing using Diffusion Guidance

Generating videos on a frame-by-frame basis will lead to inconsistencies, arising
from discrepancies between individual frames. One way to enhance temporal
consistency without training a specific temporal module is to leverage the priors
in foundational video models.
Diffusion Guidance. One of the diffusion models’ notable strengths is their
capacity to tailor outputs according to auxiliary information by guiding the
sampling process, without fine-tuning the network. Inspired by classifier guid-
ance [7,37], we propose updating the intermediate representation of the sampling



WildVidFit: Video Virtual Try-On in the Wild 7

𝑨 𝑷

𝑬𝒈
𝒁

Condition diffusion model

𝑭𝒈

One-stage Image Try-On Network

𝑮

Preprocess
: Condition integration

: Garment cross attention

𝑰

D

෨𝑰

Garment cross attention

Garment representation

Person representation

Fig. 3: Overview of the proposed one-stage image try-on network. First, we
extract the person representation and garment representation during preprocessing.
The person representation includes the cloth-agnostic image A and the human pose
P while the garment representation includes the garment image G and the edge map
Eg. Then two representations condition the diffusion model in the way of hierarchical
fusion in UNet decoder and cross attention respectively.

process by introducing pre-trained models into the gradients through score func-
tions, thereby achieving coherent video generation.

As illustrated in Fig. 2, we introduce the self-supervised video model Video-
MAE [10] to enhance the coherence of video clips and a self-supervised im-
age model DINO-V2 [31] to prevent excessive feature distance between adjacent
frames. The video masked autoencoder (VideoMAE), which takes masked videos
as input and attempts to reconstruct them by leveraging inter-frame relation-
ships, has been proven to learn strong spatio-temporal representations effectively.
This guidance is based on the assumption that smoother videos facilitate easier
restoration of masked areas by the autoencoder using information from adjacent
frames, resulting in lower reconstruction loss. We incorporate the score functions
into the DDIM [35] process, as detailed in the following formulation:

ϵ̂t = ϵθ(zt; t, c)− w1∇ztLMAE(zt)

− w2∇ztLSIM (zt),
(4)

LMAE =
1

Ω

∑
p∈Ω

||It(p)− Ît(p)||2, It = D(zt), (5)

LSIM =
1

L− 1

L−1∑
j=1

dist(f(Ij+1
t )− f(Ijt )), It = D(zt), (6)

where zt ∈ RL×H×W represents video noise at the timestep t, L is length of the
video clip, D is the decoder in autoencoder. LMAE is the reconstruction loss of
the masked decoded image sequence Ît, p denotes the token index and Ω denotes
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the set of masked tokens in image sequence It. LSIM is the similarity loss that
represents the average distance between two adjacent decoded frames Ij+1

t and
Ijt at the timestep t. Here f represents the feature extraction function DINO-V2
and we use spherical distance to measure the feature similarity. w1 and w2 are
the guidance weights. LSIM and LMAE together constitute the temporal loss to
guide the iterative denoising procedure. In implementation, we set the masking
ratio to 0.7, w1 = 2000 and w2 = 1000. Due to the memory limitation, the loss
is computed only on the garment area.
Long Video Generation. The length of video clip is fixed in VideoMAE [10].
The naive approach to generate long videos is sequential generation, but this
approach tends to perform poorly at the junctions of individual clips. In our
framework, we adopt a temporal co-denoising strategy to generate longer videos
and ensure temporal smoothness. Specifically, we divide the complete reference
video into overlapping short video clips, each differing by stride s, where s is
typically L//2 or L//4. The co-denoising process can then be represented as
follows: at the timestep t, the latent zjt according the jth frame is the average of
all M clips zt,k, k = 1, ...,M including the jth frame:

zjt =
1

M

M∑
k=1

zjt,k, (7)

3.3 Other module for Enhanced Performance

Autoencoder with Enhanced Mask-Aware Skip Connections. The au-
toencoder directly impacts the image quality. In order to preserve fine details
better outside the garment region, we fine-tune the autoencoder using the mask-
aware skip connection module (EMASC) proposed in [29]. The EMASC module
is defined as follows, taking the garment mask M from the segmentation map S:

Di = Di−1 + f(Ei) ∗ ¬mi, (8)

where f is a learned non-linear function, Ei is the i-th feature map coming from
the encoder in autoencoder, Di is the corresponding i-th decoder feature map,
and mi is obtained by resizing the mask M to adapt the spatial dimension. Here,
¬mi yields the logical negation of mi, i.e., obtaining the unmasked region.
Fully Cross-frame Attention. We replace self-attention by fully cross-frame
attention in the UNet while making sequential inference to increase the spatial-
temporal coherency as proposed in [46].

Attention(Q,K, V ) = softmax(
QKT

√
d

)V,

where Q = WQzt, K = WKzt, V = WV zt,

(9)

Here zt = {zit}Li=1 denotes all L latent frames of the video clip at the timestep
t, while WQ, WK , and WV project zt into query, key, and value, respectively.
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4 Experiments

Our experiments are divided into four parts. Firstly, we demonstrate the su-
periority of our one-stage virtual try-on network through image-based virtual
try-on experiments in Sec. 4.2. Secondly, we validate the efficacy of our image-
based approach on the public VVT dataset [8] in Sec. 4.3. Thirdly, to showcase
the robustness and generalizability of the proposed WildVidFit framework, we
conduct video virtual try-on on the TikTok dataset [21], which is introduced in
Sec. 4.4. Finally, ablation studies are conducted in Sec. 4.5.

4.1 Experiment Setup

Datasets. Our image virtual try-on experiments are conducted on two existing
high-resolution virtual try-on benchmarks VITON-HD [6] and DressCode [30].
VITON-HD contains 13679 garment-person pairs, 11647 for training while re-
maining 2023 for testing. For DressCode dataset, we use the upper subset of it
and 15365 image pairs are split into 13564/1801 training/testing pairs.

In the video try-on task, we evaluate our WildVidFit framework on the
VVT [8] and TikTok dataset [21]. The VVT dataset [8] includes 791 videos,
each with a resolution of 256× 192. It is divided into a training set with 159,170
frames and a test set with 30,931 frames. However, the VVT dataset [8] primar-
ily features monotonous and simple human poses against predominantly white
backgrounds. In contrast, the TikTok dataset [21] comprises over 300 dance
videos that captures a single person performing complex dance moves with in-
tricate limb occlusions and dynamic postures. We selected 165 videos with clear
upper body views from this collection. Garment-person pairs are created from
TikTok frames using Grounded-SAM [24]. The training set includes 130 videos
and 34,933 frames, while the test set contains 35 videos and 9816 frames.
Training and Testing. The main UNet of our one-stage try-on network inherits
the parameter of Stable Diffusion [33]. When adapting the network for the try-
on task, we train only the UNet decoder and the condition branch F , while
keeping the encoder frozen. This training strategy preserves the priors and avoids
overfitting. We train the network for 100K iterations with a batch size of 16
using AdamW optimizer [27]. The learning rate is set to 5e−5. The resolution is
512 × 384 on the VITON-HD, DressCode and TikTok Dataset, while the VVT
dataset maintains its original resolution of 256× 192.

At inference time, We use DDIM [35] as the sample method, and the total
steps is 30. Classifier-free guidance sample [18] is able to strength the influence
of conditions on the generated images. We use the conditional classifier-free
guidance on the garment feature Fg, the guidance sacle is set to 2.

4.2 Image Try-on Results

Evaluation Metrics. Following previous studies [25], we make quantitative
evaluation on both paired and unpaired setting. In the paired setting, we employ
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SSIM [39] and LPIPS [45] as evaluation metrices. In the unpaired setting, where
ground truth is unavailable, we evaluate realism using the Fréchet Inception
Distance (FID) [16], Kernel Inception Distance (KID) [2] scores and user study.
For user study, 100 samples are randomly selected and 50 volunteers are asked
to select the one of best quality among different methods.

Person Garment CP-VTON HR-VTON DCI-VTONLaDI-VTON Ours

Fig. 4: Qualitative comparison on VITON-HD dataset. Zoom in for best view.

Comparison with State-of-the-Art Models. We compare our method against
CP-VTON [38], HR-VITON [25], LaDI-VTON [25] and DCI-VTON [12] using
their official codes and checkpoints. Since no available checkpoint or code for
DCI-VTON on DressCode dataset, we skip this comparison.

Qualitative comparison on VITON-HD [6] is exhibited in Fig. 4. Our method
consistently preserves essential clothing characteristics, setting it apart from
other methods that often falter with inadequate feature retention and evident
blurring, as illustrated in rows 2 and 3. Notably, for garments with intricate folds,
our model adeptly retains the complex textures, while competing methods tend
to produce overly smoothed results, as observed in rows 1 and 4. Such distinc-
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Table 1: Quantitative comparison with baselines on VITON-HD dataset.

Methods SSIM↑ LPIPS↓ FID↓ KID↓ User↑

CP-VTON [38] 0.785 0.2871 48.86 4.42 3.86%
HR-VTON [25] 0.878 0.0987 11.80 0.37 6.62%
Ladi-VTON [29] 0.871 0.0941 13.01 0.66 16.02%
DCI-VTON [12] 0.882 0.0786 11.91 0.51 12.18%
WildVidFit(Ours) 0.883 0.0773 8.67 0.10 61.32%

Table 2: Quantitative comparison with baselines on DressCode-Upper dataset.

Methods SSIM↑ LPIPS↓ FID↓ KID↓ User↑

CP-VTON [38] 0.820 0.2764 57.70 4.56 0.00%
HR-VTON [25] 0.924 0.0605 13.80 0.28 5.16%
Ladi-VTON [29] 0.915 0.0620 16.71 0.61 26.20%
WildVidFit(Ours) 0.928 0.0432 12.48 0.19 68.64%

tions underscore our model’s capacity to discern the nuanced interplay between
human and garment. Examples on DressCode are presented in the Appendix.

Table 1 and Table 2 show quantitative comparison with previous methods,
confirming the superiority of our method in image visual quality under both
paired and unpaired evaluation. This reveals that our method achieves state-of-
the-art performance in the image-level virtual try-on task.

4.3 Video Try-On Results on VVT Dataset

Evaluation Metrics. We use Video Frechet Inception Distance (VFID) to mea-
sure the generation quality and temporal consistency following [8]. VFID is a
variant of FID, extracting feature vector of video clips for metric computation
by pre-trained video backbone I3D [4]. Each video clip includes 36 frames. Also
we adds a user survey for subjective evaluation, with settings consistent with
image try-on evaluation above.
Comparison with State-of-the-Art Models. We compare our method with
video-based method ClothFormer [13] and imaged-based methods HR-VTON [25]
and LaDI-VTON [29]. The quantitative experiment, as shown in Table 3, demon-
strates that our method outpaces image-based approaches and matches the per-
formance of the video-based ClothFormer. This underscores the robustness of
our one-stage image virtual try-on network and the effectiveness of diffusion
guidance in maintaining temporal consistency. The visual comparison can be
seen in the Appendix.

4.4 In-the-Wild Video Virtual Try-On
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Table 3: Quantitative comparison on the VVT and TikTok dataset.

Methods Dataset VFID↓ User↑

HR-VTON [25] VVT 4.852 9.46%
LaDI-VTON [29] VVT 4.442 4.24%
ClothFormer [22] VVT 4.192 46.44%
WildVidFit(Ours) VVT 4.202 39.86%

HR-VTON [25] TikTok 25.43 0.00%
LaDI-VTON [29] TikTok 14.24 26.90%
WildVidFit(Ours) TikTok 9.87 73.10%

Reference Video Garment
Try-on Results 

Fig. 5: Cross-dataset video try-on results, given a reference video from TikTok
dataset and a garment item from DressCode (1st row) and VITON-HD (2nd row)
dataset. Zoom in for optimal viewing.

Joint Training on Multiple DataSets. Dance videos from TikTok dataset [21]
can effectively evaluate the capability of our method in handling wild videos. To
enhance the model’s generalization ability for processing the TikTok videos, we
conduct joint training using three datasets: VITON-HD [6], DressCode [30], and
TikTok [21]. Benefit from this, we are able to transfer the garments from VITON-
HD and DressCode onto the TikTok videos as shown in Fig. 5. This to some
extent demonstrates the robustness of our method.

Comparison with State-of-the-Art Models. Since there is no public source
or commercial software for video try-on, we are compelled to compare our
method with image-based methods, i.e, HR-VTON [25] and LaDI-VTON [29].
For fair comparison, HR-VTON and LaDI-VTON also adopt the strategy of joint
training on the three datasets mentioned above. Fig. 6 visualizes the comparison
results. It can be observed that the GAN-based method HR-VTON completely
fails, whereas LaDI-VTON, despite leveraging the foundational capabilities from
Stable Diffusion [33], performs poorly in cases of limb occlusion. This is primar-
ily due to the challenges in warping. Our method, on the other hand, accurately
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Reference video HR-VTON LaDI-VTON Ours Reference video HR-VTON LaDI-VTON Ours

Fig. 6: Qualitative comparison on the TikTok dataset. Our approach can re-
produce the details of clothing under dance movements, while other methods perform
poorly in cases of limb occlusion. Zoom in for optimal viewing.

w/o diffusion guidance with diffusion guidance

Fig. 7: Effects of diffusion guidance. The guidance module enhances the smooth-
ness and mitigates artifacts on the garment by incorporating overall information.

reproduces the details of the garments, ensuring that the garment fits well with
the person’s motions. Table 3 also shows the clear superiority of our method.

4.5 Ablation Study

In this section, we analyze the effectiveness the edge map as well as the classifier-
free guidance scale (CFG) and the contribution of each module to the temporal
consistency.

Effectiveness of Edge Maps and Guidance Scale. In the virtual try-on
task, we aim to enhance the preservation of garment textures. We conducted
an ablation experiment on the guidance scale of garment feature Fg and the
effectiveness of the edge map Eg. As shown in Table 4, the introduction of
edge maps using cross-attention has resulted in improvement. And our method
achieved the best results when the guidance scale was set to 2, yielding a KID
score of 8.67 and a FID score of 0.10.

Effectiveness of Temporal Module. We conducted an ablation study to an-
alyze the designed guided diffusion module and other temporal techniques. The
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Table 4: Ablation study for edge maps and CFG on VITON-HD dataset.

Edge maps Guidance scale FID↓ KID↓

✗ 2 8.93 0.12
✓ 1 9.47 0.17
✓ 2 8.67 0.10
✓ 3 8.68 0.10

Table 5: Ablation study for temporal modules on TikTok dataset.

Methods VFID↓

Image-based 13.45
+ Fully cross-frame attention 12.14
+ Guidance with LMAE 10.64
+ Guidance with LMAE and LSIM 10.28
+ Temporal co-denoising strategy 9.87

baseline is the direct prediction of image sequences, and then we sequentially in-
corporate fully cross-frame attention, guidance with LMAE , guidance with LSIM

and co-denoising strategy, in order to analyze the effectiveness of each module.
It can be seen that each module can bring improvement. Fig. 7 shows that the
images generated without diffusion guidance exhibit flaws in the garment. This
supports the idea that the propose diffusion guidance module can not only en-
hance the smoothness of videos, but also use the overall video information to
rectify some inconsistencies in single images.

5 Conclusions

To effectively tackle the complexities of video virtual try-on in the wild , we intro-
duce WildVidFit, an innovative image-based virtual try-on framework. Specifi-
cally designed to manage the challenged poses by frequent movement and signif-
icant occlusions common in wild video footage, WildVidFit employs a one-stage,
detail-oriented image diffusion model conditioned on both garment and person.
The training with a large number of image pairs endows our model with robust
performance. Moreover, WildVidFit achieves inter-frame consistency through
the technique of diffusion guidance, thereby enabling successful video try-on
within a predominantly image-based framework. Our comprehensive experiments
reveal that our method not only achieves state-of-the-art performance in image
try-on task but also marks a significant foray into video try-on in the wild.
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