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1 Detailed Experiment Settings

1.1 Training Protocol

Throughout the training process, similar to common interactive algorithms [1,
9], we leverage Ground Truth to simulate practical user prompts and iterative
refinements. Detailed training procedures for Prompt in 2D, Detect in 3D and
Detect in 3D, Refine in 3D phases are provided as follows:
Prompt in 2D, Detect in 3D : Prompts, either as 2D boxes or points, are
simulated by transposing the 3D Ground Truth into 2D BEV or camera per-
spectives, with random perturbations to mimic the actual user inputs. Specif-
ically, we denote the bounding box projected from 3D Ground Truth as Gb =
(Gx1, Gy1, Gx2, Gy2), with center position (Gcx, Gcy) and height Gh, width Gw.
The simulated user prompts are calculated as follows:

Scx = Gcx +Gw ∗U(−θw, θw) (1)

Scy = Gcy +Gh ∗U(−θh, θh) (2)

Sw = Gw +Gw ∗U(−θw, θw) (3)

Sh = Gh +Gh ∗U(−θh, θh) (4)

Sb = (Scx − Sw
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Sp = (Scx, Scy) (6)

⋆ Equal contribution.
⋆⋆ Corresponding author.
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where Sb and Sp denote the constructed box prompt and point prompt re-
spectively. U is uniform sampling. θw, θh determine the range of shift. We set
θw, θh = 0.5 for boxes and 0.3 for points. Additionally, we introduce a filter-
ing strategy for box prompts, eliminating distorted boxes with an IoU(Sb, Gb)
less than 0.5. The simulated box or point is randomly utilized as prompt input
during our training, and some visual examples are presented in Fig. 1.

Fig. 1: Visual representation of 2D Prompts. For each object, the standard 2D bound-
ing box Gb or point (Gcx, Gcy) projected from 3D Ground Truth is exhibited in red.
Additionally, we present three randomly generated box or point prompts in green. Note
that we only use one prompt in our experiments.

Detect in 3D, Refine in 3D : We decompose the 3D bounding box into five
attributes, i.e. (gravity center, width, length, height and yaw angle), along with
category information. To simulate the user interactive refinement, e.g. dragging
the center point position or adjusting the orientation angle of the 3D bounding
box, after obtaining the initial imperfect predictions based on the 2D prompts,
we randomly replace the values of one (or any) attribute(s) with Ground Truth
in our training process. The refined 3D prediction is encoded into the query
sequences and expected to stimulate the model to rectify other characters in the
next iteration.

1.2 Evaluation Protocol

To evaluate the effectiveness of our method, in addition to human annotation
comparisons, we also conduct systematic and comprehensive simulated experi-
ments across a wide range of real-world annotation scenarios and tasks:

– Annotation from Raw Data and Annotation from SOTA Model.
The former focuses on scenarios where annotators perform annotation from
raw data without leveraging pretrained 3D detectors. Due to the absence of
human prompts, we conduct simulated experiments by applying projected
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2D bounding boxes or their centers from 3D ground truth, with random
displacements, to derive prompts. On the other hand, the latter is more
consistent with practical annotations. We utilize the initial predictions from
SOTA 3D detection models to initiate our algorithm and then iteratively
refine them for more accurate annotations.

– Closed-set Annotation and Open-set Annotation. The former adheres
to the traditional 3D object detection protocol of the nuScenes dataset, fea-
turing ten closed-set classes. However, in practice, annotators are frequently
tasked with labeling open-set objects. To assess this challenging yet crucial
requirement, we extract eight novel categories from the nuScenes dataset that
are not included in the training process, enabling us to conduct annotation
experiments.

Furthermore, we conduct comprehensive experiments on various versions of our
method, including different prompt formats and refinement strategies:

– Box Prompts and Point Prompts. Our method supports flexible prompt
formats. Unless otherwise specified, Ours refers to our method using 2D
bounding boxes as prompts, whereas Ours-point leverages 2D points as
cues.

– Refinement Strategies. Our method enables users to easily adjust specific
bounding box attributes by dragging the predicted results and also allows
them to manually correct object category information. In our evaluations,
we explore various orders of adjustments to bounding box attributes and as-
sess our model both without and with corrected category priors, denoted
as Ours and Ours*, respectively. * indicates the pre-calibration of category
data. The attributes from Ground Truth are utilized to mimic user refine-
ments. Unless specified, we prioritize following the adjustment sequence of
[gravity center, yaw angle, height, width, length]. The experimental results
of other refinement orders are presented in the following section 3.

2 Additional Implementation Details

Model Structure: We initialize our encoder’s weight from CMT [8] and keep
it fixed throughout training. Image and point cloud backbones are provided by
VoVNet [4] and VoxelNet [10], respectively. Moreover, we incorporate FPN [5] to
amalgamate multi-scale features across both modalities. Our decoder consists of
six decoder layers, which are trained from scratch. For global-to-local refinement,
we employ RoI Align [2] to isolate local features of 20 × 20 dimensions. The
critical layer Z that determines the transition from global to local is set to 3. We
configure the input image dimensions to 1600×640 and voxelize the point cloud
to 0.075m. The point cloud’s region of interest spans from −54.0m to 54.0m on
the X and Y axes, and from −5.0m to 3.0m on the Z axis.
Training configurations: Our model is trained on 8 A100 GPUs for a cumu-
lative of 15 epochs using CBGS [11]. The AdamW [6] optimization algorithm
drives our model’s learning, initiated at a rate of 1.0× 10−4 and governed by a
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Table 1: Annotation performance on nuScenes val set. (Ri) denotes the i-th iteration
refinement. “C” and “L” are camera and LiDAR modality respectively.

Method Modality NDS↑ mAP↑
Annotation from Raw Data
Ours-point CL 73.0 72.6
Ours-point (R1) CL 83.5 (+10.5) 86.3 (+13.7)
Ours-point (R2) CL 86.4 (+13.4) 86.3 (+13.7)
Ours-point (R3) CL 87.4 (+14.4) 86.9 (+14.3)
Ours-point (R4) CL 89.4 (+16.4) 89.0 (+16.4)
Ours-point (R5) CL 90.5 (+17.5) 89.5 (+16.9)

Table 2: Ablation study of backbone. “It.” denotes the iteration.

It. Backbone NDS↑ mAP↑Image Lidar

0 ResNet-50 VoxelNet 73.8 75.2
0 VOV-99 VoxelNet 75.0 76.2

cyclical learning rate policy [7]. We assign a batch size of 16. λcls and λreg are
set to 2.0 and 0.25, respectively.

3 More Experiments

Results of Point Prompts: Table 1 illustrates the annotation performance on
the nuScenes validation set driven by our 2D point prompts, termed as Ours-
point. In the first “prompt in 2D, detect in 3D” stage, Ours-point reaches an
NDS score of 73.0% and mAP of 72.6%. Moreover, benefiting from the subse-
quent iterative refinement strategy, Ours-point further improves the detection
performance, with gains of 10.5%, 13.4%, 14.4%, 16.4%, 17.5% in NDS, respec-
tively. Note that here we keep the same adjustment order with box prompts, i.e.
[gravity center, yaw angle, height, width, and length], without employing manual
category correction.
Ablation Study: We conduct additional ablation studies to delve into our
method and provide more insights for other researchers. In line with the paper,
we utilize Ours, which starts from box prompts, to perform ablation studies.
1. Ablation Study of Backbone: We assess the impact of the backbone in
the first “prompt in 2D, detect in 3D” stage. As shown in Table 2, substituting
the image backbone with ResNet-50 [3], our method achieves 73.8% in NDS and
75.2% in mAP, a slight decrease compared to the utilization of VoV-99 [4].
2. Ablation Study of Refinement Order: In this section, we explore the
influence of different refinement orders during the “detect in 3D, refine in 3D”
stage. Two additional adjustment orders [width, length, height, gravity center,
yaw angle] and [yaw angle, gravity center, width, length, height] are introduced,
and experimental results are detailed in Table 3. Observing the experimental
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Table 3: Ablation study of refinement orders. w, l, h, g, θ denote width, length, height,
gravity center and yaw angle, respectively.

Method Attribute NDS↑ mAP↑
Annotation from Raw Data
Ours - 75.0 76.2
Ours (R1) w 77.1 (+2.1) 78.3 (+2.1)
Ours (R2) l 78.1 (+3.1) 78.8 (+2.6)
Ours (R3) h 78.9 (+3.9) 79.1 (+2.9)
Ours (R4) g 87.3 (+12.3) 89.5 (+13.3)
Ours (R5) θ 90.4 (+15.4) 89.5 (+13.3)

Ours (R1) θ 78.3 (+3.3) 76.5 (+0.3)
Ours (R2) g 87.3 (+12.3) 87.9 (+11.7)
Ours (R3) w 88.4 (+13.4) 88.5 (+12.3)
Ours (R4) l 89.5 (+14.5) 89.1 (+12.9)
Ours (R5) h 90.4 (+15.4) 89.5 (+13.3)

results with different adjustment orders, we can deduce a common pattern: fine-
tuning the gravity center can maximize the model’s self-correction ability, leading
to significant performance gains.

4 Visualizations

In this section, we provide additional visualization results of our method, cover-
ing both “prompt in 2D, detect in 3D” and “detect in 3D, refine in 3D” stages.
As shown in Fig. 2, Ours represents the initial 3D prediction driven by 2D
prompts. Ours (R1) and Ours (R5) depict the results after the first and
fifth refinements, respectively. We adhere to the adjustment order [gravity cen-
ter, yaw angle, height, width, length]. Ours (R1) simulates user exclusively
refining the gravity center, whereas Ours (R5) adjusts all five attributes. The
outcomes highlighted by red circles illustrate that, with a single round of man-
ual adjustment focusing solely on the gravity center, our model automatically
rectified other attributes such as yaw angles, thus yielding more accurate 3D
results. This evidence showcases that our model possesses self-correction capa-
bilities, effectively diminishing the necessity for user interactions and enhancing
annotation efficiency.
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Ours Ours (R1) Ours (R5)

Fig. 2: Visualizations of the 3D detection results from our method are presented.
Ground Truth and our predictions are exhibited in green and blue, respectively. Ours
represents the initial 3D prediction driven by 2D prompts. Ours (R1) and Ours (R5)
depict the results after the first and fifth refinements, respectively. It’s noteworthy
that we adhere to the adjustment order [gravity center, yaw angle, height, width,
length]. Ours (R1) simulates user exclusively refining the gravity center, whereas
Ours (R5) adjusts all five attributes. The outcomes highlighted by red circles illustrate
that, with a single round of manual adjustment focusing solely on the gravity center, our
model automatically rectified other attributes such as yaw angles, thus yielding more
accurate 3D results. This evidence showcases that our model possesses self-correction
capabilities, effectively diminishing the necessity for user interactions and enhancing
annotation efficiency.
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