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Abstract. The evolution of 3D object detection hinges not only on ad-
vanced models but also on effective and efficient annotation strategies.
Despite this progress, the labor-intensive nature of 3D object annotation
remains a bottleneck, hindering further development in the field. This
paper introduces a novel approach, incorporated with “prompt in 2D,
detect in 3D” and “detect in 3D, refine in 3D” strategies, to 3D object
annotation: multi-modal interactive 3D object detection. Firstly, by al-
lowing users to engage with simpler 2D interaction prompts (e.g., clicks
or boxes on a camera image or a bird’s eye view), we bridge the complex-
ity gap between 2D and 3D spaces, reimagining the annotation workflow.
Besides, Our framework also supports flexible iterative refinement to the
initial 3D annotations, further assisting annotators in achieving satisfy-
ing results. Evaluation on the nuScenes dataset demonstrates the effec-
tiveness of our method. And thanks to the prompt-driven and interactive
designs, our approach also exhibits outstanding performance in open-set
scenarios. This work not only offers a potential solution to the 3D object
annotation problem but also paves the way for further innovations in the
3D object detection community.

Keywords: Interactive 3D Object Detection · Prompt Learning

1 Introduction

3D object detection is pivotal for autonomous driving, gaining significant trac-
tion in recent years. Current research often derives 3D object information from
sources such as monocular [24, 39, 51, 54] or multi-view camera images [11, 12,
18,21], point cloud [17,46,53], and multi-modal sensors [1,5,45]. This has led to
remarkable progress in detection performance. A major catalyst behind these
advancements is the availability of high-quality 3D datasets like KITTI [9],
⋆ Equal contribution.
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Fig. 1: We introduce an interactive 3D object detection concept. Rather than the
traditional method where a model produces 3D object detection boxes followed by user
refinement in 3D space, our strategy is “prompt in 2D, detect in 3D, refine in 3D”. This
method streamlines the annotation process, reducing the need for user refinements.

nuScenes [2], and Waymo [36]. These datasets fuel the progression of data-driven
algorithms in 3D object detection. However, the intricate nature of 3D object
annotation often necessitates significant human resources and incurs high la-
bor costs. On average, annotating an hour of driving data takes hundreds of
hours [27]. This annotation challenge potentially restricts the scale and diversity
of datasets, possibly hindering further progression in this field.

Addressing this annotation challenge is the central theme of our paper. While
weakly-supervised [25, 27–29] and semi-supervised [38, 43, 50] object detection
methods exist, they typically suffer from reduced performance, especially in prac-
tical scenarios. This does not substantially address the overarching issue of the
data-hungry nature of the field. With the recent emergence of SAM [13], both in-
dustry and academia are now recognizing the potential of interactive annotation
approaches.

Our work aims to integrate this concept into 3D object detection, thus sim-
plifying the annotation process, as presented in Fig. 1. Specifically, we observe
that within the traditional process of annotating 3D detection data, annotators
tend to concentrate on addressing two challenges stemming from imperfect pre-
trained 3D detectors: 1) supplementing missing closed-set objects and
incorporating additional required open-set ones; 2) rectifying exist-
ing erroneous annotations. Both scenarios necessitate annotators to operate
within the 3D point cloud space, which is extremely time-consuming and labor-
intensive.

To circumvent this, we create an interactive 3D object detection system en-
hanced by two strategies: prompt in 2D, detect in 3D , and detect in 3D,
refine in 3D . The first principle enables users to interact with a 2D camera im-
age or bird’s eye view (BEV) of the point cloud, prompting the model to generate
corresponding 3D bounding boxes, instead of encountering the 3D point cloud
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directly. Furthermore, benefiting from the prompt-driven annotation paradigm,
our method inherently possesses the capability to annotate open-set objects.
The latter ensures annotators refine the initial 3D bounding box at the fastest
pace with minimal effort, which significantly streamlines operations in the 3D
space.

In light of these principles, we present our multi-modal interactive 3D ob-
ject detection task and algorithm. Firstly, it employs prompts in the form of
clicks or boxes on a 2D camera or BEV view, guiding the model to generate the
relevant 3D bounding box. Our framework is reminiscent of the DETR-series
detectors [3, 20, 26, 40] but comes with distinctive features. We integrate user
inputs as prompt tokens and design a learnable component that investigates
multi-modal features of indicated objects, informed by the prompts. Further-
more, we incorporate a global-to-local strategy to supply fine-grained object
features, enhancing detection accuracy. Secondly, we empower our model with
iterative refinement capability by incorporating the predicted 3D bounding box
encoding as a new prompt into the query sequence. For those inaccurate 3D
predictions, our framework allows annotators to adjust a few wrong attributes,
e.g. dragging the center point position or adjusting the orientation angle of the
3D bounding box, and then perform self-correction on other characters.

To rigorously evaluate our approach, we devise two evaluation configurations
for practical annotation scenarios. The first, regarding Annotation from Raw
Data, leverages user 2D prompts and produces corresponding 3D predictions.
Besides, our framework is also compatible with starting from the results of ex-
isting State-of-the-Art (SOTA) 3D detection models, termed as Annotation
from SOTA Model and iteratively refining them. Experimental results on the
nuScenes dataset highlight the effectiveness of our method in various scenarios.

In summary, this paper has the following contributions:

– We introduce a new concept of multi-modal interactive 3D object detection,
proposing a substantial solution to prevailing annotation challenges. Our
work is expected to provide critical insights for the 3D object detection
community across academic and industrial domains.

– We unveil a prompt-driven interactive 3D object detection methodology with
self-correction capability, leveraging it to establish an interactive system tai-
lored for practical annotation scenarios.

– Comprehensive experiments in both annotation scenarios and evaluation set-
tings attest to our method’s efficacy.

2 Related Work

2.1 3D Object Detection

3D object detection techniques have been developed across a range of input
modalities. Our approach emphasizes the advantages of interactive inputs, set-
ting it apart from traditional methods:
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Camera-only. Monocular 3D object detection techniques [24, 39, 51, 54] enjoy
advantages such as low cost and ease of deployment. However, it also faces the
inherent challenge of limited depth information. Multi-view methods utilize data
from multiple camera perspectives [11, 12, 18, 21, 22, 30, 41], which enhances the
model’s ability to perceive the 3D environment, thereby improving detection
accuracy.
LiDAR-only. Benefiting from the robustness and high precision, numerous
studies utilize LiDAR data for 3D object detection. Point-based methods [17,
33,48] like PointNet [31] directly engage with raw LiDAR data, while grid-based
strategies structure the data into 3D voxels [46,53] or feature pillars [14].
Multi-modality. Capitalizing on the strengths of camera images and point
clouds, multi-modal 3D object detection has seen significant advancements [1,
5, 45]. Early methods combine camera images and point clouds at the input or
result stages [5, 34]. While, current models, like TransFusion [1] and CMT [45],
emphasize more intricate feature-level fusion. Uniquely, our method embeds in-
teractive capacities, ensuring richer, user-tailored annotations.

2.2 Interactive Object Detection/Segmentation

Interactive methods have historically aimed to reduce the annotation workload
while maintaining, or even enhancing, model performance:
Interactive Object Detection. Early attempts, like the incremental learning
strategy [49], require user corrections to update detectors. More recent mod-
els like C3Det [15] have substantially eased the annotation process. Tools such
as LATTE [37] and iDet3D [7] further simplify the 3D object annotation pro-
cess. Our framework, however, brings in the versatility of prompt formats and
modalities, offering users a broadened interaction spectrum coupled with robust
detection capabilities.
Interactive Object Segmentation. Interactive segmentation has matured sig-
nificantly over the years [4, 35,44]. Models like SAM [13] have empowered users
with tools like clicks, boxes, and referring expressions to guide the segmenta-
tion process. Diverging from interactive segmentation confined to 2D spaces,
our work addresses the challenge of integrating 2D interactive prompts with 3D
object detection, mitigating the spatial discrepancy between 2D annotations and
3D environments.

2.3 Weakly-supervised Object Detection

The notion of harnessing weak signals, like clicks [29] or extreme-points [25,28],
for supervising detectors has been a topic of intrigue. Some methods [27] have
extended this idea to 3D object detection, using center-click based strategies.
These approaches, while commendable for their balance between performance
and annotation overhead, sometimes fail to harness the full potential of the de-
tectors. Our methodology, on the other hand, incorporates strong 3D bounding
box supervisions in an interactive setting, streamlining the data acquisition pro-
cess without compromising on detection performance.
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Fig. 2: An overview of our proposed interactive 3D object detection system/method.
Taking multi-modal data with user prompts as input, we explicitly add 3D information
Pim, Ppc into features Fim, Fpc by 3D Position Encoding. Object queries consist of
a learnable token Ql and prompt ones Qp, which are generated by Prompt-Guided
Query generation. We also introduce a Global-to-Local enhancement strategy to
dynamically adjust features integrated with queries from global representations to local
RoI details. Besides, our framework allows users to refine any of 3D attributes directly,
and encode the refined 3D bounding box brL

′ and category information crL
′, along with

attribute refinement record pra and prc , into a new prompt token Q3D by 3D Attribute
Encoding. g, w, l, h, θ denotes the gravity center, width, length, height and yaw angle
respectively. This iterative refinement propels our model to automatically rectify other
attributes, ultimately delivering satisfactory results.

3 Methodology

3.1 Problem Definition

We present an interactive multi-modal 3D object detection algorithm. Given a
multi-view set of camera images and associated point cloud data, the objective
is to predict both the class labels and the 3D bounding boxes, driven by user
prompts either in the form of a point or a box. Further, our model also supports
iteratively self-correction with limited human assistance. To supervise the itera-
tion process, the Ground Truth (c, b) is employed. Here, c signifies the category
label, and b represents the 3D attributes. We adopt a deep supervision strategy
for our multi-layer Transformer decoder, which guides the predictions across each
decoder layer of each iteration, denoted as {(cri , bri ), i = 1, 2, ...L, r = 0, 1, ...M},
with L and M being the total number of decoder layers and iterative refinements.

3.2 Overview

The architecture underpinning our interactive 3D object detection method is
visualized in Fig. 2, which could be roughly decomposed into two stages, i.e.
“prompt in 2D, detect in 3D” and “detect in 3D, refine in 3D”. In the first phase,
two separate backbones are utilized to extract multi-view image features Fim =
{Ft

im, t = 1, 2, ..., T} and point cloud features Fpc respectively. To enhance these
features with 3D-awareness, following PETR [21] and CMT [45], we introduce
3D position encoding. Specifically, for the multi-view images, this encoding is
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represented as Pim = {Pt
im, t = 1, 2, ..., T}, and for the point cloud, it is denoted

as Ppc. For object queries, denoted as Q, we utilize a unique blending of a
learnable token, Ql, and prompt-specific tokens, Qp, for every detected object.
The prompt queries, Qp, play a pivotal role in guiding the learnable token, Ql, by
leveraging the insights from the multi-modal features. Furthermore, to enhance
the detection accuracy across various object scales, we incorporate a global-to-
local strategy within the decoder. This strategy ensures that the object queries
are continually enriched by granular local features, enabling finer detections.
Ultimately, the learnable token predicts the object’s class and its 3D bounding
box (c0L, b

0
L).

Subsequently, the model enters an interactive refinement stage. This stage
reuses the multi-modal features but updates the object queries Q by inserting
the encoding of the refined 3D prediction from the current iteration. Specifically,
in the r-th iteration, we enable annotators to fine-tune the current prediction
(crL, brL) and encode the refined result (crL

′, brL
′) and corresponding attribute

refinement record (prc , pra) into a new prompt Q3D. Q3D and Qp collectively
drive Ql to generate more accurate predictions in the next iteration. Note that
we omit the iteration superscript of Q3D and Q for simplicity.

3.3 3D Position Encoding

Multi-view Camera Images. The core idea of embedding 3D position for
multi-view image features includes two steps: 1) modeling each pixel coordinate
as a series of points along a ray in the camera frustum space, and 2) projecting
camera frustum coordinates into 3D space. Specifically, for a given camera image
feature, denoted as Ft

im ∈ RWim×Him×C , each pixel can be visualized as tracing
a ray within the camera frustum space. This perspective allows us to sample
D discrete points along the depth dimension. This process is mathematically
captured by:

Pcf (u, v, j) = (u× dj , v × dj , dj , 1)
T , j = 1, 2, ..., D (1)

Here, Pcf indicates the camera’s frustum coordinates. Pixel coordinates in the
image are denoted by (u, v), and dj represents the j-th depth value.

To relate these coordinates to a 3D context, we employ an inverse 3D pro-
jection method:

Pt
3d(u, v, j) = K3D

t K−1
t Pcf (u, v, j) (2)

where K3D
t ∈ R4×4 represents the transformation matrix that links 3D space

with the t-th camera’s coordinate space. Kt ∈ R4×4 is the intrinsic matrix of
t-th camera. To ensure consistent value scales, we normalize the 3D coordinates
to the range [0, 1]. The final 3D position encoding for the t-th camera image,
represented as Pt

im ∈ RWim×Him×C , is derived via a multi-layer perceptron
(MLP): Pt

im = MLPim(Pt
3d).

Point Cloud. In contrast to the approach for camera image features, where
points are assembled along the depth axis, the LiDAR point set necessitates
sampling along the height axis. Specifically, given a BEV feature map, denoted as
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Fpc ∈ RWpc×Hpc×C , we can compute the corresponding 3D position information,
represented as Ppc ∈ RWpc×Hpc×C , using the following steps: First, we determine
the 3D position based on the feature map’s coordinates:

P3d(u, v, j) = (u× us, v × vs, hj , 1)
T , j = 1, 2, ...,H (3)

Here, (u, v) specifies the coordinate within the point cloud feature map. The
variables (us, vs) represent the dimensions of the feature grid. H is the number
of sampled points along the height axis and hj is the j-th height value. Next,
we utilize a multi-layer perceptron (MLP) to compute the 3D position encoding
from the derived 3D position: Ppc = MLPpc(P3d). Note that as in CMT, only one
point is sampled along the height axis, thus simplifying the process into standard
2D position encoding. Consequently, in our methodology, we have adopted a
sinusoidal embedding to cater to this behavior.

3.4 Prompt-guided Query Generation

Our approach provides an avenue for user interaction, distinct from traditional
DETR-based detectors that often rely on multiple queries to discern image ob-
jects. By merging learnable tokens, Ql, with user-directed prompt tokens, Qp,
we achieve object detection that is not only efficient but also offers a new angle
on object localization.
Learnable Query Ql: Every object is associated with a unique learnable token
that facilitates feature probing, and subsequent prediction of class labels and
3D bounding boxes. In line with prior research [20, 40], we conceptualize the
learnable query as an anchor point, initiating it with the positional prior of the
user prompt. The initialization process unfolds over three phases:

1). 2D Center Position Computation with User Prompt. A user might pro-
vide a bounding box box = (x1, y1, x2, y2) or a singular point point = (x, y).
Depending on the input type, the 2D center position (cx, cy) is determined as:

(cx, cy) =

{
(x1+x2

2 , y1+y2

2 ) if bounding box
(x, y) if point

(4)

2). 2D Center Transformation into 3D Coordinate. Given a user prompt
on the BEV map, the 2D space naturally omits height data. We address this by
designating cz = 0.5, the median value of height, resulting in a 3D center labeled
as center = (cx, cy, cz). Alternatively, for a user prompt within 2D multi-view
images, we transform the center coordinates (cx, cy) into a set of 3D points along
the depth axis, using Eqs. (1) and (2). The median of the ray is then selected
as the 3D center, represented as center = (c′x, c

′
y, c

′
z). The 3D center serves as

a reference point for bounding box prediction and we prioritize the center from
BEV if the user provides prompts in both modalities.

3). 3D Position Encoding Extraction from Both Modalities. The 3D center is
projected onto both the camera image and BEV plane, yielding their 3D position
encodings Qim ∈ R1×C and Qpc ∈ R1×C , respectively. The learnable query is
initialized by combining information from both modalities: Ql = Qim +Qpc.
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Fig. 3: Illustration of Global-to-Local Enhancement. Our queries interact with un-
modified multi-modal features and its object’s local features respectively in the global
and local phases. Self-Attention is confined within queries of identical objects in both
stages.

Prompt Query Qp: It is designed to embed user guidance by merging position
encoding and context embedding: Qp = Qpe+Qce. This synthesis is constructed
for both box and point prompt formats: For the box format, the box position
is delineated using its center point. From our 3D position encoding, the posi-
tion encoding for box center, Qpe ∈ R1×C , is derived. The context embedding,
Qce ∈ R1×C , is secured via average pooling of the feature region bounded by the
prompt box. For the point format, the same technique determines the position
encoding, Qpe ∈ R1×C . The feature at the indicated prompt point gives the
context embedding, Qce ∈ R1×C .

3.5 Global-to-Local Enhancement

Given multi-modal features Fpc and Fim with their respective 3D position em-
beddings Ppc and Pim, along with object queries Q ∈ RN×C , where N represents
the cumulative number of queries from Ql and Qp across all objects, we employ
a Transformer-based decoder to amalgamate these features for prediction.
Self-Attention: The formulation for the decoder’s self-attention mechanism is:

Q′
i = softmax(Msa +QiQ

T
i )Qi (5)

where Qi corresponds to the queries from the i-th layer, and Q0 = Q. The
attention mask Msa ensures interaction is confined within queries of identical
objects:

Msa(q1, q2) =

{
0, if q1, q2 belong to the same object,
−∞, otherwise.

(6)

Cross-Attention: For cross-attention in the decoder, we express it as:

Qi+1 = softmax(Mca +Q′
iK

T )V (7)

where K, V come from multi-modal features, Mca is attention mask for cross-
attention. Influenced by traditional two-stage detectors [32] and recent DETR-
centric techniques [6, 52], we adopt a global-to-local enhancement strategy.
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This approach adjusts K and V dynamically to augment our model’s local per-
ceptiveness, as illustrated in Fig. 3.

For the initial Z layers among a total of L decoder layers, queries access
unmodified multi-modal features:

K = [fk(Fpc +Ppc) : fk(Fim +Pim)], (8)
V = [fv(Fpc) : fv(Fim)], (9)

where K, V ∈ R(HpcWpc+HimWimT )×C are original multi-modal features under
transformation fk(·), fv(·) and concatenation [· : ·]. Mca = 0 during the global
cross-attention phase.

In the succeeding L − Z layers, local region-of-interest (RoI) features are
extracted by RoI Align [10] via either the user-provided prompt box or the
predicted 2D bounding box based on prompt point:

K = [fk(RoI(Fpc +Ppc)) : fk(RoI(Fim +Pim))], (10)
V = [fv(RoI(Fpc)) : fv(RoI(Fim))], (11)

where K, V ∈ R(HoWo+HoWo)×C now signify local multi-modal features. (Ho,Wo)
is the output size of RoI Align. With Mca defined similarly to Msa, it ensures
each query is exclusively attentive to its object’s local features. Following the
decoding process, we derive the object query QL from the last decoding layer,
and subsequently produce the initial prediction via two feed-forward networks
(FFNs):

c0L = ϕc(QL), b0L = ϕb(QL) (12)

Here, c0L and b0L represent the class and 3D bounding box predictions, respec-
tively. While ϕc and ϕb are FFNs designated for classification and regression
tasks. At this point, the first phase of “prompt in 2D, detect in 3D” is com-
pleted.

3.6 3D Attribute Encoding

For those inaccurate results of the initial predictions, we endow our model with
iteratively self-correction capability under limited human interaction. Specifi-
cally, we decompose the 3D bounding box into (gravity center, width, length,
height and yaw angle) five attributes, along with category information, and as-
sume users to adjust a few wrong attributes, e.g. “dragging the center point of
the bounding box”. Given the prediction brL and crL of the r-th iteration, the
adjusted 3D bounding box and category are denoted as brL

′ and crL
′. We also

introduce two binary attribute refinement records pra ∈ R5 and prc ∈ R1 to ex-
plicitly aid the model in distinguishing between corrected attributes and those
yet to be predicted.

Finally, the 3D attribute query Q3D for each object is formed by the combi-
nation of both attribute and record embedding:

Q3D = MLPatt(b
r
L
′) +MLPrec1(p

r
a) +MLPcat(c

r
L
′) +MLPrec2(p

r
c) (13)
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And Q3D is inserted into the corresponding query sequence of the respective
object, collaborating with the original prompt tokens to jointly drive the model
to provide more precise predictions. Note that in the following decoder process,
Msa and Mca are also dynamically adapted according to Eq. (6).

3.7 Label Assignment and Losses

Due to the intrinsic one-to-one correspondence between our learnable queries
and prompt objects, our proposed interactive 3D object detection task does not
require label assignment like Hungarian Algorithm. To this end, following the
methodologies in [21,45], we employ the Focal loss [19] for the classification task
and the L1 loss for regression. To bolster the training of individual decoder layers,
a deep supervision strategy is implemented. The 3D loss function amalgamates
these predictions and is represented as:

L3D =

M∑
r=0

L∑
i=1

λclsLcls(c
r
i , c) + λregLreg(b

r
i , b) (14)

Here, c and b are the ground truths, cri and bri denote the predictions of the
i-th decoder layer and r-th iteration, which are generated by the shared MLP
as Eq. (12). λcls and λreg are weights for balancing loss items. Besides, we
also utilize L1 loss to supervise the 2D bounding box prediction on the image or
BEV modality, which is produced by another MLP and serves as the local region
for point prompts to perform the global-to-local strategy. The overarching loss
function is the combination of both 3D and 2D losses.

4 Experiments

4.1 Experiment Settings

Dataset splits: The nuScenes dataset [2] is adopted in our work for training
and evaluation. This dataset encompasses 1000 driving scenes, capturing data
via six cameras, one LiDAR, and five radars. Following the official partition, we
employ 750 scenes for training and 150 for validation. Contrasting prior work,
our interactive 3D object detection approach leverages user prompts to guide
the model’s predictions. Similar to common interactive algorithms [4, 47], we
reconstruct the evaluation benchmark by simulating user prompts and refine-
ments from Ground Truth. Notably, since the nuScenes test set’s Ground Truth
remains inaccessible, we exclude it from our evaluations.
Training Protocol: Throughout the training process, we leverage Ground
Truth to simulate practical user prompts and iterative refinements. Detailed
training procedures for Prompt in 2D, Detect in 3D and Detect in 3D,
Refine in 3D phases are provided in the supplementary materials.
Evaluation Protocol: We evaluate our method through human annotation
comparisons and simulated experiments, under two distinct annotation scenar-
ios: (1) Annotation from Raw Data and (2) Annotation from SOTA
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Table 1: Comparisons of the average and standard deviation time cost required
for annotating an image extracted from the nuScenes validation set, with four anno-
tation strategies, i.e. manual-only, Ours, SOTA model CMT with manual correction
(CMT+M) and Ours (CMT+Ours) respectively.

Time cost (s) Annotation from Raw Data Annotation from SOTA Model
Manual-only Ours CMT+M CMT + Ours

nuScenes-val 124±28 55±17 40±12 24±7

Model. We describe the simulated experimental settings as follows: in scenario
(1), we employ 2D projections of 3D Ground Truth with perturbations to sim-
ulate user prompts, while in scenario (2), SOTA 3D detection models provide
initial prediction results to initiate our algorithm. The attributes from Ground
Truth are utilized to mimic subsequent user refinements in both scenarios. We
explore various orders of adjustments to bounding box attributes and assess
our model both without and with corrected category priors, denoted as Ours
and Ours*, respectively. * indicates the pre-calibration of category data. Un-
less specified, we prioritize using 2D bounding boxes as prompts and following
the adjustment sequence of [gravity center, yaw angle, height, width, length].
Experimental results for alternative prompt formats (e.g., point prompts) and
refinement orders are detailed in the supplementary materials. Furthermore, in
addition to conventional closed-set evaluation, we also conduct extended ex-
periments on challenging open-set scenarios. The nuScenes official metrics, i.e.
nuScenes Detection Score (NDS), mean Average Precision (mAP) are adopted
to evaluate the approaches.

4.2 Human Annotation Comparisons

To showcase the efficacy of our proposed method, we perform annotation compar-
isons across two scenarios employing four strategies: Manual-only, Ours, CMT+M
(manual correction), and CMT+Ours. Ten experienced annotators are recruited
to annotate the same set of twenty randomly selected nuScenes validation scenes
using each of these strategies. Statistical analysis in Table 1 demonstrates that
benefiting from the interactive design, our method achieves a speedup of approx-
imately 56% and 40% compared to manual-only and CMT+M, respectively.

4.3 Closed-Set 3D Object Detection

Annotation from SOTA Model Evaluation. Results from our experiments
on the nuScenes validation set are tabulated in Table 2. In practical applications,
annotators often streamline their efforts by initiating annotations from the 3D
predictions generated by SOTA models, such as CMT. Our model seamlessly
integrates into this workflow, harnessing its robust capabilities to effectively
aid in annotation tasks. Specifically, given the 3D predictions from CMT, Ta-
ble 2 illustrates the interactive refinement results, without employing category
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Table 2: Comparisons of annotation performance on nuScenes val set. “M” means
manual correction. (Ri) denotes the i-th iteration refinement. “C” and “L” are camera
and LiDAR modalities respectively.

Method Modality NDS↑ mAP↑
Traditional 3D Detectors
UVTR [16] CL 70.2 65.4
BEVFusion [23] CL 71.4 68.5
MetaBEV [8] CL 71.5 68.0
SpaseFusion [42] CL 72.8 70.4
CMT [45] CL 72.9 70.3
Annotation from SOTA Model
CMT+M (R1) CL 81.3 81.6
CMT+M (R2) CL 83.8 81.6
CMT+M (R3) CL 84.3 81.6
CMT+M (R4) CL 85.3 81.6
CMT+M (R5) CL 86.3 81.6
CMT+Ours (R1) CL 83.4 (+2.1) 86.3 (+4.7)
CMT+Ours (R2) CL 86.3 (+2.5) 86.3 (+4.7)
CMT+Ours (R3) CL 87.4 (+3.1) 87.0 (+5.4)
CMT+Ours (R4) CL 89.3 (+4.0) 89.1 (+7.5)
CMT+Ours (R5) CL 90.4 (+4.1) 89.4 (+7.8)
Annotation from Raw Data
Ours CL 75.0 76.2
Ours (R1) CL 84.4 (+9.4) 88.0 (+11.8)
Ours (R2) CL 87.2 (+12.2) 88.0 (+11.8)
Ours (R3) CL 88.2 (+13.2) 88.4 (+12.2)
Ours (R4) CL 89.5 (+14.5) 89.5 (+13.3)
Ours (R5) CL 90.5 (+15.5) 89.6 (+13.4)

correction priors. As a comparative reference, we perform identical manual at-
tribute adjustments on the initial results predicted by CMT. It is evident that,
in five consecutive iterations, our approach consistently outperforms CMT+M
by margins of 2.1%, 2.5%, 3.1%, 4.0%, and 4.1%, respectively, in terms of NDS.
Additionally, CMT maintains a constant mAP after the initial refinement of the
center position, lacking self-correction for object categories. In contrast, our ap-
proach iteratively refines predictions with minimal human intervention, resulting
in sustained performance improvements. In addition, we also provide compar-
isons with corrected category priors, denoted as CMT+M* and CMT+Ours*
in Fig. 4. Through the rectification of object categories, our model exhibits a
significantly enhanced self-correction capability, outperforming CMT+M* by a
considerable margin.

Annotation from Raw Data Evaluation. In cases involving missed detec-
tions by existing 3D detectors, our method is expected to have the capability
of annotating from raw data. As shown in Table 2, by leveraging a box as the
prompt format, our model registers an NDS of 75.0% and an mAP of 76.2%.
Subsequent iterations of refinements contribute to continued performance gains,
and the final model attains an NDS score of 90.5% and mAP of 89.6%. Some
visualization results are presented in Fig. 5.
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Fig. 4: Performance comparisons of annotation from SOTA model. R1-R5 follows a
fixed refinement order. * indicates the utilization of category correction.

Table 3: Categories and quantities
of open-set objects extracted from
nuScenes validation set.

Category Num Category Num
personal_mobility 15 stroller 103
animal 32 bicycle_rac 246
pushable pullable 2925 debris 514
ambulance 30 police 64

Table 4: Open-set evaluation.

Method Modality NDS↑ mAP↑
Annotation from Raw Data
Ours* CL 89.3 91.9
Ours* (R1) CL 94.1 99.5
Ours* (R2) CL 96.6 99.5
Ours* (R3) CL 97.3 99.5
Ours* (R4) CL 98.1 99.5
Ours* (R5) CL 99.2 99.5

Table 5: Ablation study of prompt
queries. “PE”, “CE” are position encod-
ing and context encoding. “It.” denotes
the iteration.

It. Ql
Qp Q3D NDS↑ mAP↑PE CE brL

′ pra

0 ✓ 73.5 75.5
0 ✓ ✓ 74.5 75.7
0 ✓ ✓ ✓ 75.0 76.2
1 ✓ ✓ ✓ ✓ 83.2 85.9
1 ✓ ✓ ✓ ✓ ✓ 84.4 88.0

Table 6: Ablation study of Global-
to-Local strategy (G2L). “L”, “G” de-
notes utilizing local RoI or global
multi-modal features to perform Cross-
Attention.

It. Attention NDS↑ mAP↑

0 G 73.7 75.1
0 L 74.3 75.2
0 G2L 75.0 76.2

4.4 Open-Set 3D Object Detection

To delve deeper into the 3D object annotation capabilities guided by 2D prompts,
we extract eight novel categories from the nuScenes dataset, which are not em-
ployed in the training process. Table 3 outlines their distribution on the valida-
tion set. Since our primary goal is to validate the model’s generalization ability
based on user-provided prompts, as opposed to venturing into open-vocabulary
recognition, we ignore the class prediction and assume that the class information
is provided manually together with 2D prompts, denoted as Ours*. The exper-
imental results in Table 4 demonstrate that our model possesses the capability
to detect 3D objects based on 2D priors. Furthermore, with manual interaction
for refinement, the detection performance improves progressively.
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Ours Ours (R1) Ours (R5)

Fig. 5: Visualizations of the 3D detection results from our method are presented.
Ground Truth and our predictions are exhibited in green and blue, respectively. The
outcomes highlighted by red circles illustrate that, with a single round of manual ad-
justment focusing solely on the gravity center, our model automatically rectified other
attributes such as yaw angles, thus yielding more accurate 3D results.

4.5 Ablation Study

Ablation Study of Object Queries. The pivotal role of prompt tokens is
evident from the results in Table 5. When solely introducing prompt queries
with position encoding, the model attains a nuanced understanding of the ob-
ject’s spatial location, registering an NDS of 74.5%—a significant boost of 1.0%.
Moreover, integrating context embedding, which encapsulates appearance at-
tributes of objects, further escalates performance, culminating in a gain of 0.5%.
Besides, we also delve into an analysis of the effectiveness of Q3D during the first
iteration refinement stage. Clear performance improvements are evident with the
explicit inclusion of the current attribute refinement record pra.
Ablation Study of Global-to-Local Strategy. The proposed global-to-local
strategy’s efficacy is substantiated by the results displayed in Table 6. Contrasted
with models relying exclusively on either global or local feature extraction, our
hybrid approach ensures a comprehensive global perspective while meticulously
capturing local nuances, leading to superior performance outcomes.

5 Conclusions

This paper introduces a new method for 3D object detection that tackles the
daunting task of 3D object annotation. In consideration of the necessity for
either creating annotations from raw data or refining existing imperfect annota-
tions within practice annotation scenarios, two dedicated strategies are proposed.
“Prompt in 2D, detect in 3D” principle leverages straightforward 2D interactions,
like clicks or boxes, to streamline the transition between 2D images and 3D ob-
ject annotations. “Detect in 3D, refine in 3D” strategy further endows our model
with self-correction capability. Evaluations on the nuScenes dataset validate our
approach’s superiority. Beyond a mere advancement, our work can serve as a
cornerstone for future 3D object detection endeavors.
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