
Supplementary Materials for IVTP:
Instruction-guided Visual Token Pruning for

Large Vision-Language Models

Kai Huang⋆, Hao Zou⋆, Ye Xi, BoChen Wang, Zhen Xie, and Liang Yu

Alibaba Group, China
{zhouwan.hk, zh372956, yx150449, bochen.wbc, xiezhen.xz,

liangyu.yl}@alibaba-inc.com

1 Limitation Statement

We identify the following two shortcomings in our method, which will also be
the focal points for future improvements: 1) The second stage of our proposed
two-stage visual token pruning method for VLMs is somewhat reliant on the
aggregation of visually associated semantic information from instructions. The
operation facilitated by the CLIP text encoder as a intermediary is susceptible
to the influence of the types of ViT and LLM, necessitating that the ViT is
CLIP-based and the LLM is LLaMA-based. 2) Although the proposed method
can reduce the training computational complexity of VLMs by over 40%, the
cost of model remains high due to the vast amount of training data and model
parameters. We do not demonstrate the application of the proposed method to
a wider range of image-based VLMs or video VLMs, which would further prove
the adaptability of the method.

2 Implementation Details

Following LLaVA-1.5, the training of VLMs is divided into two steps. The first
step is cross-modal alignment of text and image, which is called pretraining,
aimed at learning the mapping of visual embedding to language embedding.
During this process, the ViT and LLM will be frozen, and only the parame-
ters of the multimodal projection layer are optimized. The training data are all
image-caption pairs, with a learning rate set to 1e-3 and a batch size of 256.
The second step is instruction tuning, which primarily focuses on learning the
ability to follow instructions. During this process, only the ViT is frozen, and
the parameters of the multimodal projection layer and the LLM are optimized.
The training data consist of a widely collected set of VQA examples, with a
learning rate set to 2e-5 and a batch size of 128. Since the computational com-
plexity of the LLM plays a decisive role in the entire VLMs, compared to those
methods that only perform token pruning in the ViT or between the ViT and
LLM, our proposed two-stage approach needs to pay particular attention to the
⋆ Equal contribution.



2 K. Huang et al.

impact brought by the additional visual tokens that need to be pruned in the
LLM. On one hand, we carefully control the number of layers in the LLM that
participate in token pruning, that is, by using only the first 12 layers instead of
all layers, to ensure that the number of visual tokens is reduced to the target
count as quickly as possible. On the other hand, when the target number of
visual tokens is above 128, we still prune the same number of tokens each time.
Whereas when the target number is less than 128 (assume n tokens), we reduce
the number of visual tokens to 2n in the ViT, and subsequently down to n in the
LLM. In this way, we can achieve better model accuracy while ensuring that the
computational complexity remains comparable to that of single-stage methods.
We further demonstrate the implementation details of the following comparative
methods on the LLaVA-1.5 architecture.

Random sampling. In the ViT, the same number of visual tokens is randomly
pruned in each layer.

TopK. The visual CLS token is used to compute the cosine similarity with all
other patch tokens. The tokens are then sorted, and a certain number of those
with the lowest similarity scores are pruned. This process is repeated in each
layer.

Spatial pooling. Before the visual tokens are input into the LLM, the sequence
of tokens is resized to a three-dimensional matrix by means of two-dimensional
spatial interpolation, and then stretched back into a sequence. It is important
to note that since spatial interpolation can only accept integer values, it cannot
precisely control the final length of the sequence.

EViT [6]. We calculate CLS attentiveness in each layer of the ViT to identify
the top-k attentive tokens and fuse the inattentive tokens. Ultimately, the visual
tokens consist of n-1 attentive tokens and one fused inattentive token.

ToMe [2]. We also perform bipartite soft matching in each layer of the ViT,
merging a fixed number of visual tokens to reach the final number of visual
tokens.

Honeybee [3]. It proposes two similar token pruning structures, which are
called the Convolutional Abstractor (C-Abstractor) and the Deformable Attention-
based Abstractor (D-Abstractor). From their experimental results, it can be ob-
served that the performance of the C-Abstractor is slightly superior to that of
the D-Abstractor. Therefore, we only apply the C-Abstractor to LLaVA-1.5. The
final number of visual tokens is determined by controlling the number of layers
in the ResNet block and adaptive average pooling within this structure.

LLaMA-VID [5]. We downsample the visual tokens to the final number of
visual tokens through spatial pooling. However, because the visual information
and instruction information are fused into one context token through context
attention, the final number of visual tokens is n+ 1.

QWen-VL [1]. Since its token pruning structure consists of a single-layer
cross-attention, which is similar to the qformer in BLIP2 [4], we control the
number of learnable queries to match the final number of visual tokens.



IVTP 3

3 Pseudo Code of IVTP

The complete process of IVTP is illustrated in Algorithm 1 and Algorithm 2.

Algorithm 1 Token pruning with attention rollout
1: Initialize attention rollout matrix of l2 layer, Ãl ← I.
2: for l = l1...l2 do
3: Al ← Mean aggregation the multi-head aggention weights
4: Ãl ← Perform attention rollout with Eq. 3
5: Ãl2

cls ← Get CLS row from Ãl2

6: Sl2 ← Obtain the importance scores according to Eq. 4
7: hl2 ← Update the hidden states with pruned tokens
8: Al2

mask ← Update the attention mask with pruned tokens
9: return hl2 ,Al2

mask

Algorithm 2 Two-stage token pruning for LVLMs
1: lg ← number of layers in each group
2: lViT ← number of layers used for token pruning in ViT
3: lLLM ← number of layers used for token pruning in LLM
4: for l = 0...lViT and l%lg == 0 do ▷ Pruning in ViT
5: (hl,Al

mask)← Prune tokens with Algorithm 1
6: (TLLM,XL)← Tokenize instructions with LLM tokenizer
7: (TCLIP, X̄

L)← Tokenize instructions with CLIP text encoder tokenizer
8: c← Calculate visual relevances with Eq. 6
9: C ← Map the relevances to LLM textual tokens with Eq. 7

10: x̂T
cls ← Get textual pseudo CLS token with Eq. 8

11: X← Organize vision-language tokens with Concat(XV , x̂T
cls,X

L)
12: for l = 0...lLLM and l%lp == 0 do ▷ Pruning in LLM
13: (hl,Al

mask)← Prune tokens with Algorithm 1

4 Additional Experimental Results

Additional comparative results in LLaVA-1.5-13B. Table 1 and Figure 1
respectively present the changes in TFLOPs when varying the number of text
tokens under the LLaMA-1.5-13B framework, as well as the trade-off between
average accuracy and TFLOPs during pure inference. It can be observed that the
overall trend is similar to that under the LLAMA-1.5-7B framework. The method
we propose can reduce the overall computational complexity by approximately
34% to 72% as the number of text tokens changes. When the number of tokens



4 K. Huang et al.

Table 1: Comparison results of TFLOPs
across different methods as text token count
varies from 128 to 1024.
Methods 128 256 512 1024
LLaVA-1.5-13B [7] 19.4 22.4 29.4 39.5
TopK 5.2 (-73.2%) 8.6 (-61.6%) 15.4 (-47.6%) 29.6 (-33.6%)
ToMe [2] 5.2 (-73.2%) 8.6 (-61.6%) 15.4 (-47.6%) 29.6 (-33.6%)
Honeybee [3] 5.4 (-72.2%) 8.7 (-61.2%) 15.4 (-47.6%) 29.6 (-33.6%)
Qwen-VL [1] 5.3 (-72.7%) 8.7 (-61.2%) 15.4 (-47.6%) 29.6 (-33.6%)
IVTP (Ours) 5.5 (-71.6%) 8.8 (-60.7%) 15.6 (-46.9%) 29.6 (-33.6%)

IGVTP-16

IGVTP-32

IGVTP-64
IGVTP-128

IGVTP-256 IGVTP-512

ToMe-16

ToMe-32

ToMe-64

ToMe-128

ToMe-256
ToMe-512

TopK-16

TopK-32

TopK-64

TopK-128

TopK-256

TopK-512

52

54

56

58

60

62

64

6.5 8.5 10.5 12.5 14.5 16.5
A

v
e
ra

g
e
 A

C
C

 (
%

)
TFLOPs

IGVTP (Ours)

ToMe

TopK sampling

42

47

52

57

62

67

13.5 18.5 23.5 28.5

A
v
er

ag
e 

A
C

C
 (

%
)

TFLOPs

IVTP (Ours)

ToMe

EViT

TopK

Spatial pooling

Random

LLaVA-1.5-13B

Fig. 1: Comparison of model perfor-
mance with pure inference setting.

Table 2: Training and inference costs of LLaVA-1.5-7B with different visual token
pruning methods.

Methods MiniGPT-v2 (7B) CogVLM (17B)

OKVQA VizWiz GQA IconVQA OKVQA VizWiz GQA VQAv2 TextVQA

Original 57.8 60.1 53.6 51.5 64.7 76.4 65.2 84.7 69.7
TopK 50.2 52.6 43.8 47.5 57.0 68.8 56.6 78.9 63.5
ToMe 52.7 53.5 47.3 47.9 59.4 71.9 58.7 79.5 64.8
Ours 54.4 56.0 49.5 49.2 62.7 73.2 61.8 81.1 66.2

Table 3: Training and inference costs of LLaVA-1.5-7B with different visual token
pruning methods.

Model Pretraining SFT Inference TimeGPU Memory Time GPU Memory Time

LLaVA-1.5-7B [7] 32.8G 3.47h 42.6G 11.21h 2.54h

Random sampling 17.7G 0.61h 37.4G 7.63h 1.74h
TopK 17.7G 0.66h 37.5G 7.59h 1.71h
Spatial pooling 17.7G 0.66h 37.5G 7.63h 1.75h
EViT [6] 17.7G 0.65h 37.5G 7.66h 1.77h
ToMe [2] 17.8G 0.66h 37.4G 7.64h 1.75h
Honeybee [3] 18.2G 0.68h 37.9G 7.68h 1.78h
LLaMA-VID [5] 19.5G 0.68h 38.8G 7.70h 1.82h
Qwen-VL [1] 17.8G 0.67h 37.3G 7.64h 1.74h
IVTP (Ours) 18.3G 0.71h 37.9G 7.96h 1.85h

drops from 576 to 256 in prue inference setting, there is only a 0.4% decrease in
the average accuracy, demonstrating superior performance.
Extending to other LVLMs. Table 2 shows the comparative effects of the pro-
posed method under pure inference mode when applied to other similar LVLMs.
The vast majority of existing LVLMs follow a similar architecture, typically com-
prising a ViT-based visual encoder for visual tokenization, followed by feeding it
along with language tokens into an LLM for multimodal understanding and gen-



IVTP 5

Table 4: Comparative results with vary-
ing numbers of layers involved in visual
token pruning within the LLM.
Layers Avg. Acc (PI) Avg. Acc TFLOPs

3 57.0 60.3 8.0
6 59.2 61.2 8.1
12 60.4 62.0 8.2
18 60.7 62.2 8.4
24 60.6 62.2 8.7
30 60.7 62.3 8.9

Table 5: Comparative results with dif-
ferent numbers of visual tokens inputted
into the LLM.

Layers Avg. Acc (PI) Avg. Acc TFLOPs

320 60.6 62.4 9.2
256 60.7 62.4 9.0
192 60.6 62.1 8.7
160 60.3 61.9 8.4
128 60.4 62.0 8.2
96 59.3 61.2 8.2
80 58.6 60.4 8.1

eration. From the table, it can be seen that the proposed method still achieves
similar advantages, further demonstrating its generalization capability.
Comparison of training and inference efficiency. Table 3 displays the
memory consumption and time expenditure of different methods during the pre-
training, SFT, and inference phase. It can be observed that visual token pruning
is most effective during the pretraining phase of the VLM. Taking our proposed
method as an example, memory consumption can be reduced by 44% and the
actual time expenditure decreases by 80%. Due to the greater proportion of text
tokens, and the need to fine-tune the LLM with its substantial share of training
parameters, the reduction effect is less pronounced in the SFT phase, resulting in
an approximate 29% decrease in actual time expenditure. During the inference
process, since it involves single-instance batches, the proportion of the model’s
forward computation within the entire inference is affected. Despite this, there
is still an approximate time saving of about 27% achieved compared with the
original inference.
Number of token pruning layers in LLM. Considering the computational
complexity of the model, we only perform visual token pruning on the first
several layers of the LLM, with the default selection being the first 12 layers.
Tables 4 explore the impact of using different numbers of layers for token pruning
in the LLM. It can be seen that when fewer layers are used, the computational
efficiency of the model also increases. Although this allows the visual tokens
to quickly reach to the target number, the lack of hierarchical selection and
information exchange between each tokens lead to a more noticeable gap in
model accuracy. When more layers are used for token pruning, the improvement
in model accuracy is quite limited, but the increase in computational complexity
is more significant.
Intensity of token pruning at different stages. We further investigate the
impact of different intensities of two-stage token pruning on the final model
performance. Since the number of tokens reduced in each pruning operation
within the ViT and LLM is fixed, we adjust the intensity of token pruning
performed in the ViT and LLM by controlling the number of visual tokens
input to the LLM. Taking the reduction of visual tokens from 576 to 64 as
an example, when adopting a global average token pruning strategy, the number



6 K. Huang et al.

Table 6: Experimental results with dif-
ferent relevance threshold values.
Threshold Pretraining Acc Avg. Acc (PI) Avg. Acc

0.1 72.6 58.9 60.6
0.2 95.5 60.4 62.0
0.3 98.1 59.2 61.2
0.4 99.3 58.2 60.0

Table 7: Ablation experiments on tex-
tual pseudo CLS token.
Methods Avg. Acc (PI) Avg. Acc

IVTP 60.4 62.0

LLM agg. → CLIP agg. 57.3 59.5
hybrid → visual & textul 59.6 61.3
w/ pseudo CLS 60.3 62.1

of visual tokens input to the LLM is approximately 250, whereas with a 2n
strategy it would be 128. Table 5 shows the comparison of model performance
when the number of visual tokens input to the LLM varies from 80 to 320.
It can be observed that although the first strategy offers a slight increase in
average accuracy of about 0.4% compared to the second strategy, there is also
an increase of 0.8 TFLOPs in computational complexity. This reflects that the
second strategy has a better cost-performance ratio.
The impact of relevance threshold. We empirically set the relevance thresh-
old τ used for filtering irrelevant text tokens at 0.2, which is referenced from the
noise data filtering of image-text pairs based on CLIP similarity. Typically, a low
τ could result in the generated textual pseudo CLS token carrying more noise,
while increasing τ may lead to the omission of visually relevant text tokens.
Table 6 lists the impact of using different relevance thresholds on model perfor-
mance. Since the datasets used in the pretraining phase are caption datasets,
the majority of the corresponding instructions do not have specific referents.
Therefore, we label the samples filtered out by the threshold as 1 and those
not filtered as 0, and we calculate the filtering accuracy during pretraining. The
comparative experimental results shown in the table are essentially consistent
with the above analysis. A lower threshold introduces more noise, leading to a
decline in model accuracy. Conversely, a higher threshold results in the omission
of textual semantic information, which also leads to suboptimal effects.
Additional studies on textual pseudo CLS. Table 7 presents additional
investigations into the generation and utilization of textual pseudo CLS tokens.
Given that the text tokens corresponding to instructions obtained from the CLIP
text encoder inherently possess semantic coherence with visual features, we at-
tempt to use pseudo CLS tokens aggregated from CLIP’s text tokens instead of
those from LLM. The results in the first row of the table indicate that such a
substitution has a significant negative impact on the model. In contrast, aggre-
gating pseudo CLS tokens through LLM allows for end-to-end optimization of
the model with its text token hidden states. The pseudo CLS token obtained
from CLIP remains fixed throughout and are difficult to adapt to the complex
and variable visual language tasks. The second row of the table shows that we
fuse the visual CLS token with the textual pseudo CLS token in a weighted
manner to guide the token pruning in LLM using the hybrid CLS token. It
is observed that there is a slight decline in model performance. This suggests
that when the instructions involve more explicit visual objects, directly using



IVTP 7

the generated textual pseudo CLS can better maintain the corresponding visual
information. We also attempt to involve the aggregated pseudo CLS token as
an actual token in the model training and inference. The results presented in
the last row of the table indicate that this single token by itself did not have a
significant impact on the model’s performance.

5 Additional Visualizations

Figure 2 offers additional visualization examples, demonstrating the process of
identifying attentive tokens. The images used for this illustration were randomly
chosen from the benchmark datasets. These examples confirm that our IVTP
can effectively handles a diverse range of instructions.



8 K. Huang et al.

Fig. 2: Visualization of the visual token pruning results. Each sample, viewed from
left to right, consists of the raw image, the token pruning by the TopK, and the token
pruning with different questions by the proposed method, respectively.



IVTP 9

References

1. Bai, J., Bai, S., Yang, S., Wang, S., Tan, S., Wang, P., Lin, J., Zhou, C., Zhou,
J.: Qwen-vl: A frontier large vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966 (2023) 2, 4

2. Bolya, D., Fu, C.Y., Dai, X., Zhang, P., Feichtenhofer, C., Hoffman, J.: Token merg-
ing: Your vit but faster. In: The Eleventh International Conference on Learning
Representations (2022) 2, 4

3. Cha, J., Kang, W., Mun, J., Roh, B.: Honeybee: Locality-enhanced projector for
multimodal llm. arXiv preprint arXiv:2312.06742 (2023) 2, 4

4. Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597 (2023) 2

5. Li, Y., Wang, C., Jia, J.: Llama-vid: An image is worth 2 tokens in large language
models. arXiv preprint arXiv:2311.17043 (2023) 2, 4

6. Liang, Y., Chongjian, G., Tong, Z., Song, Y., Wang, J., Xie, P.: Evit: Expedit-
ing vision transformers via token reorganizations. In: International Conference on
Learning Representations (2021) 2, 4

7. Liu, H., Li, C., Li, Y., Lee, Y.J.: Improved baselines with visual instruction tuning.
arXiv preprint arXiv:2310.03744 (2023) 4


	Supplementary Materials for IVTP: Instruction-guided Visual Token Pruning for Large Vision-Language Models

