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Abstract. Inspired by the remarkable achievements of Large Language
Models (LLMs), Large Vision-Language Models (LVLMs) have likewise
experienced significant advancements. However, the increased computa-
tional cost and token budget occupancy associated with lengthy visual
tokens pose significant challenge to the practical applications. Consider-
ing that not all visual tokens are essential to the final response, selectively
pruning redundant visual tokens can effectively alleviate this challenge.
In this paper, we present a novel Instruction-guided Visual Token Prun-
ing (IVTP) approach for LVLMs, which is designed to strike a better
balance between computational efficiency and the performance. Specif-
ically, a Group-wise Token Pruning (GTP) module based on attention
rollout is integrated into the grouped transformer layer to achieve intra-
group attention aggregation via residual connection, thereby improving
the assessment of visual token importance, especially for LVLMs with a
frozen visual encoder. We then extend the module to LLM in order to
further filter out visual tokens that are pertinent to the current textual
instructions, by introducing a semantically related pseudo CLS token
to serve as a reference for token pruning. This two-stage token pruning
mechanism permits a systematic and efficient reduction in the quantity
of visual tokens while preserving essential visual information. We apply
the proposed method to the most representative LVLM, i.e. LLaVA-1.5.
Experimental results demonstrate that when the number of visual tokens
is reduced by 88.9%, the computational complexity is decreased by over
46%, with only an average 1.0% accuracy drop across 12 benchmarks,
and remarkably surpasses the state-of-the-art token pruning methods.
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1 Introduction

Large Vision-Language Models (LVLMs) have garnered widespread interest from
both the academic and industrial communities due to their impressive ability in
handling cross-modality tasks [3,20,22,26,41]. Despite the remarkable progress of
LVLMs, they still face challenges of high computational costs caused by lengthy
⋆ Equal contribution.
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image tokens. As a result, considerable works have been devoted to optimizing
the trade-off between computational efficiency and model effectiveness in large
models. To reduce the number of image tokens fed into Large Language Models
(LLMs), some approaches [3,20,22] employ a trainable token compression mod-
ule placed after the visual encoder, as shown in Fig. 1(a). Though capable of
effectively pruning redundant visual tokens, the above methods are often tightly
coupled with the model architecture, and the effectiveness of these structures
often lacks comprehensive validation, which makes them difficult to transfer to
other model frameworks. Building on the advancements in token pruning for
traditional visual tasks [4,8,24,31,39], one direct approach is to adapt these ex-
isting vision-only pruning methods to LVLMs, where token pruning is performed
only in the visual encoder, as shown in Fig. 1(b). Although these methods are
transferable, the standard practice of freezing the visual encoder in LVLMs pre-
vents the pruning process from being optimized end-to-end with the training of
the LVLMs, consequently suffering from suboptimal stability.
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Fig. 1: Comparison of different token pruning
schemes for LVLMs.

In this work, we propose an
Instruction-guided Visual To-
ken Pruning (IVTP) method to
address the aforementioned is-
sues, achieving a balance be-
tween accuracy and computa-
tional efficiency while also offer-
ing improved transferability and
stability. As illustrated in Fig.
1(c), we divide the visual token
pruning into two stages. The
first stage is similar to vision-
only token pruning, where re-
dundant visual tokens with low informative content are eliminated in the ViT
based on the attention connections within tokens. The second stage occurs within
the LLM, it aims to remove visual tokens that exhibit a low correlation with the
current textual instructions. Specifically, we determine the significance of each
patch token by calculating its attentiveness in relation to the CLS token within
the visual encoder. In order to ensure that the importance assessment of vi-
sual tokens remains effective within a frozen ViT, a Group-wise Token Pruning
(GTP) module based on attention rollout [1] is proposed to integrate into the
grouped visual transformer layers to achieve hierarchical attention weight aggre-
gation. However, the continuous decrease in visual tokens results in less visual
information being conveyed to the LLM, hindering its ability to follow diverse
and variable visual instructions. To adaptively adjust the visual information con-
tained by visual patch tokens according to different instructions, we further inte-
grate the GTP into the LLM for instruction-guided visual token pruning. Since
decoder-only LLMs do not incorporate a CLS token to represent text semantics,
aggregating all textual tokens indiscriminately may introduce noise information
that is not referred to image. The text encoder branch of CLIP [30], aligned with
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the visual encoder of LVLMs, is introduced to filter out irrelevant textual tokens
by calculating the token-wise relevance with the visual CLS token. Text tokens
that match to the visual content are aggregated to form a textual pseudo CLS
token so that the GTP module can be extended to LLM.

Our main contributions are: (1) We present a novel two-stage visual token
pruning method for LVLMs, which can significantly reduce the visual tokens
while preserving essential visual information, leading to a substantial increase in
model computational efficiency with minimal loss of accuracy. (2) We propose
a module that can work compatibly both within the ViT and the LLM, named
Group-wise Token Pruning (GTP). Benefiting from the aggregation of attention
weights based on attention rollout within groups across layers, the importance
assessment of visual tokens is more robust and precise. Furthermore, a textual
pseudo CLS gathered from visual relevant textual tokens, is used in GTP to
introduce instruction preferences, thereby filtering out semantically irrelevant
visual patch tokens and further compressing the number of visual tokens. (3)
We introduce the IVTP to LLaVA-1.5 [25], the extensive experimentation on 12
standard benchmarks demonstrate that the proposed method achieves a superior
trade-off between accuracy and computational efficiency.

2 Related Work

Large Vision-Language Models. Inspired by the success of LLMs [2,29,34],
recent advancements in LVLMs have also demonstrated satisfying performance,
such as [3, 22, 26, 41]. These approaches typically combine a pre-trained visual
encoder with an LLM, enabling the LLM to handle multimodal data involving
images. Furthermore, to align the multimodal data, a projection layer is ap-
pended after the visual encoder, such as a Q-former, linear mapping, or cross
attention. BLIP2 [20] achieves stronger performance at a lower computation cost
by freezing the visual encoder and LLM and only updating the weights of Q-
former, which serves as the bridge for the modality gap. LLaVA [26] utilizes
multimodal language-image instruction-following data generated by GPT-4 [2]
for visual instruction tuning. Visual instruction tuning enables the LLaVA to
accommodate users’ diverse requests for instructions that involve visual content.
During the training phase, QWen-VL [3] enhances the performance of model by
updating the parameters of the visual encoder and utilizing higher-resolution
images. Although increasing the number of model parameters and the resolution
of input images can effectively improve the performance of LVLMs, the com-
putational cost that they bring cannot be ignored. Our proposed ITVP can be
directly integrated into a LVLM without training, reducing the computational
cost of the LVLM by pruning redundant image tokens.
Token Pruning. Token pruning aims to retain attentive tokens and prune
inattentive ones by designing importance evaluation strategies to create more
efficient transformers in both natural language processing (NLP) and Computer
Vision (CV). Benefiting from the success of BERT [7], many works [10,16,17,38]
in the NLP field have achieved text token pruning based on BERT, but these
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methods require training and are difficult to adapt to the current LLMs. In
the CV field, a classic method is DynamicViT [31], which inserts a trainable
prediction module into the transformer to predict the importance score of each
token. Subsequent works [8, 39] go further by sampling tokens with an input-
dependent number. To address the issue of information loss in token pruning,
[18, 24, 37] retain inattentive tokens by collapsing the pruned tokens into one
through token reorganization. The above methods perform token pruning based
on importance scores, but tokens that are close in the feature space will be
assigned similar scores, leading to the possibility that similar tokens may be
simultaneously retained or removed. Another classic approach is ToMe [4], which
achieves token pruning by calculating the similarity between different tokens and
merging tokens with high similarity. However, merging tokens can cause image
distortion, making it difficult for the model to capture fine-grained information.
Recent approaches [35, 36] attempt to mitigate the shortcomings of both types
by combining the two methods, but how to effectively combine them remains
an area for exploration. Based on [21], recent studies [12, 15] simultaneously
utilize the CLS token of the visual branch and the CLS token of the text branch
to implement image token pruning. The aforementioned methods of directly
incorporating all textual information to guide the selection of visual tokens may
introduce additional noise information, potentially causing instability in token
selection. In this paper, we utilize the text branch of the CLIP to facilitate a more
focused selection of visual tokens that are relevant to the provided instructions,
thereby ensuring a refined filtration process to align with the context of the
instructions.

3 Methodology

This research represents a preliminary effort to investigate the visual token prun-
ing for LVLMs that achieves an optimal balance among performance, speed, cost
and numbers of visual tokens. As shown in Fig. 2, our method is fundamentally
based on established LVLMs, such as LLaVA-1.5 [25], which are succinctly re-
viewed in Sec. 3.1. Sec. 3.2 delves into the details of group-wise token pruning
that leverages attention rollout to facilitate coarse-grained pruning within vi-
sual transformers. In Sec. 3.3, we further demonstrate the visual token pruning
in LLMs guided by textual instruction. Finally, details of the two-stage manner
applied to the ViT and LLM of LVLMs are presented in Sec. 3.4.

3.1 Revisit of Large Vision-Language Models

The mechanism of a LLM is complex and involves multiple layers of neural net-
works. Mathematically, a simplified conceptual representation could be expressed
through the following formula:

p(X) =

M∏
i=1

p(xL
i |xV

1 , . . . , x
V
F , x

L
1 , . . . , x

L
i−1;Θ), (1)
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Fig. 2: Overview of Instruction-guided Visual Token Pruning (IVTP) for large vision-
language models. The entire process is divided into two stages: The first stage takes
place within the visual encoder of the LVLM, where a Group-wise Token Pruning
(GTP) module is employed to discard redundant tokens with low informative content
based on the inherent visual CLS token in ViT. The second stage operates on the first
W layers of the LLM, in which we aggregate text instructions into a textual CLS token
by introducing a frozen CLIP text encoder, and once again integrate GTP to remove
visual tokens with low relevance to the current query.

where p(X) represents the joint probability distribution of the entire sequence,
and xi denotes the ith token in the sequence. However, unlike the uniform token
type in the standard LLMs, the input to the LLM in LVLMs consists of both
visual tokens xV and language tokens xL. It predicts the next language token
given the complete set of F visual tokens and the preceding i−1 language tokens.
Generally, the visual tokens of an image are derived from the flattened grid
features with a visual encoder, which are then mapped into the word embedding
space. An image with a resolution of 336px results in 576 tokens when using
ViT-L/14 as the visual transformer. Handling such a high number of tokens
becomes challenging under the standard LLM’s input limit of 2048 tokens. This
limitation not only results in increased training and inference time consumption
for LVLMs but also restricts the ability to process higher resolution or multiple
images within the limited token budget.

3.2 Group-wise Token Pruning

Similar to vision-only pruning approaches, we aim to evaluate the significance
of each patch token by examining their importance scores in LVLMs, which al-
lows us to selectively prune patch tokens with minimal influence. Existing token
pruning methods relied on importance scores are typically conducted in an in-
cremental layer-specific manner, in which each layer prunes a certain number of
tokens according to its importance scores, cumulatively achieving the overall to-
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ken reduction goal. However, assessing token significance solely based on impor-
tance score from individual layer introduces a considerable amount of instability.
It is essential to retrain the ViT to optimize the aggregation of patch informa-
tion, while this makes it challenging in LVLMs as the visual encoder is typically
kept frozen. To mitigate this, we employ an attention rollout mechanism [1] to
derive group-wise token importance metric based on the aggregated attention
weights across successive layers, which takes into account the inter-layer transfer
of attention information. Compared to the original single-layer attention, the
importance scores obtained from the attention with attention rollout exhibit a
higher correlation with contributions to the prediction output. In NLP predic-
tion tasks and visual visualization based on the transformer [1,6], the attention
derived from attention rollout has been proven to be more stable and effective.
Consequently, we intend to incorporate it into visual token pruning to enhance
token decision-making for the frozen ViT.

In the transformer architecture, the attention weight A in the self-attention
layer is calculated by the scaled dot product of the queries Q ∈ R(N+1)×d and
keys K ∈ R(N+1)×d:

A = Softmax(QKT /
√
d+Amask) ∈ R(N+1)×(N+1), (2)

where Amask is the attention mask, which is None in the visual encoder and
a causal matrix in the LLMs, N is the number of patch tokens and d is the
embedding dimension. As previously described, we perform the attention rollout
to better model the transfer of attention across layers by considering the residual
connections within the network, thereby rendering the attention-based token
importance assessment more reliable. Specifically, it adds an identity matrix to
the attention matrix and subsequently re-normalizing the weights. To integrate
the attention spanning from layer l1 to layer l2, a recursive multiplication is
applied to the attention weights across all the corresponding range of layers as:

Ãl =

{
Al1 , if l = l1,

(Al + I)Ãl−1, if l1 < l ≤ l2.
(3)

The re-normalize operation is omitted to simplify the formula. To preserve the
exceptional traits of hierarchical token pruning [4, 18, 31], we divide the entire
network into groups. Within each group, we perform attention rollout to aggre-
gate attention information from adjacent layers, and execute token pruning at
the topmost layer of each group. Similar to [8], the normalized values of patch
tokens V ∈ RN×d are weighted by their corresponding entries in the CLS row
of the attention matrix, taking into account both the positions and the corre-
sponding strength of activation. The final importance score of ith patch Si is
derived from the normalization as:

Si =
Ãcls,i × ∥Vi∥∑
j Ãcls,j × ∥Vj∥

∈ R1×N , (4)

where Ãcls represents the row from the attention weight matrix associated with
the CLS token, after excluding the CLS token itself. By ranking the patch tokens
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according to their corresponding importance scores, we can selectively discard
those low importance patch tokens within each group.

3.3 Instruction-guided Token Pruning in LLM

As the number of remaining patch tokens diminishes, the granularity of informa-
tion preserved by the visual patch tokens also decreases. This reduction is incon-
sequential for standard visual token pruning methods, which are predominantly
applied to classification tasks focused on extracting salient subject information.
Moreover, hierarchical pruning provides an opportunity for the CLS token to
aggregate information from patch tokens before they are dropped, thereby mit-
igating potential information loss. LVLMs are tasked with extracting pertinent
detailed information from visual patches in response to diverse linguistic instruc-
tions. Consequently, the correlation between the residual visual patches and the
instructions critically influences the performance in visual question answering.

A plausible strategy involves leveraging the instruction to guide the assess-
ment of visual token significance, with the aim of selectively retaining those
patch tokens that bear the most relevance to the text. Nonetheless, this ap-
proach encounters a significant challenge that the decoder-only LLM does not
incorporate a CLS token representative of the semantic information, and aggre-
gating all textual tokens in a crude manner also introduces the interference of
noise. Therefore, the text branch of the CLIP is utilized to facilitate a more
focused selection of visual tokens that are relevant to the provided instructions,
thereby ensuring a refined filtration process to align with the context of the
instructions. Specifically, given the text T , we can obtain its corresponding se-
quence of textual tokens {x̄L

1 , · · · , x̄L
S′} after being processed by the pre-trained

text encoder of CLIP as:

{x̄L
1 , · · · , x̄L

S′} = T (T ) ∈ RS′×d, (5)

where T is the text encoder of CLIP and S′ denotes the length of textual tokens.
Then, the visual relevance of textual tokens can be ascertained by computing
the cosine similarity between the sequence of CLIP text tokens and the visual
CLS tokens:

ci =
xV

clsx̄
L
i

∥xcls∥
∥∥x̄L

i

∥∥ , for i ∈ 1, · · · , S′. (6)

Given that both the CLIP text encoder and general LLMs utilize tokenization
derived from Byte Pair Encoding (BPE) [32], we can readily map the visual
relevance computed by CLIP to the textual tokens of the LLMs as:

Ci =
1

K + 1

j+K∑
k=j

ck,with TLLM(i) ⊆ {TCLIP(j), · · · , TCLIP(j +K)}, (7)

where TLLM(i) is the ith character string tokenized by LLM, and TCLIP(j) is
the j th character string tokenized by text encoder of CLIP. Considering that
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BPE may fragment a single word into multiple subword units, it is possible to
encounter the situation where one token in LLMs corresponds to several tokens
in the text encoder of CLIP. In such scenario, we take the average relevance of
these K + 1 tokens as the final mapping relevance. When K is zero, it means
that the character string tokenized by the LLMs constitutes a substring within
the text encoder of CLIP, and in this case, the current relevance can be used
directly. By using the calculated visual relevance and applying average pooling
with a predefined truncation threshold, we can pinpoint and extract the key
textual tokens from the instructions that are most relevant to the corresponding
image:

x̂T
cls =

{
xV

cls, if
∑

I{C≥τ} = 0,
1∑

I{C≥τ}

∑S
i=1 x

L
i I{Ci≥τ}, Otherwise,

(8)

where x̂T
cls is the textual pseudo CLS token of LLMs, S represents the length

of tokens tokenized by LLMs and I(·) is an indicator function. If the relevance
scores for the entire sequence of text tokens fall below the predefined threshold τ ,
it indicates that the current instructions do not specify particular visual details.
In such scenario, we directly use the visual CLS token as the pseudo CLS token.

Building upon the methodology in Sec. 3.2, we continue to reuse the GTP
module in the LLMs, and consider the attention weights corresponding to the
pseudo CLS token as the basis to calculate the importance scores of each visual
token. The calculated importance scores are then methodically used to inform
the process of token pruning. Given the nature of the causal mask within the
LLMs, we position the pseudo CLS token in between the sequence of visual tokens
and textual tokens during the attention weights computation. This placement
ensures that the pseudo CLS token can assess the entire sequence of visual tokens
without being affected by subsequent textual tokens. Note that the role of the
pseudo CLS token is confined to assisting in the token pruning process, and it
does not serve as an actual token during the model’s training and inference.

3.4 Two-stage Token Pruning Manner for LVLMs

Based on the above discussion, we divide the entire pruning process into two
stages. The first stage operates across the entire ViT, where the GTP module
is executed within the grouped visual transformer layers to eliminate tokens of
low informational content based on the association between patch tokens and
the visual CLS token. The second stage focuses on a subset of LLM layers,
selectively dropping visual tokens unrelated to the current instruction. This de-
cision is informed by the attention between the remaining visual tokens and the
textual pseudo CLS token, which aggregates from selected key tokens of the
instructions. By adopting this two-stage process, the proposed method can sig-
nificantly reduce the number of visual tokens while effectively retaining essential
visual information. Detailed information regarding the algorithm can be found
in the appendix.
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4 Experiments

4.1 Experimental Setup

In the following, we describe our experimental setup including datasets and
evaluation, implementation details, and specifics of the comparison.
Datasets and Evaluation. The datasets employed for both training and eval-
uation in our study strictly conform to the specifications of LLaVA-1.5 [25]. In
the pretraining phase, the 558K subset of the LAION-CC-SBU dataset with
BLIP [21] captions are utilized. For instruction tuning, a comprehensive dataset
with a diverse mix of 665K instruction-based examples are employed. We assess
the performance of methods across 12 evaluation benchmarks, with the mean ac-
curacy across these datasets as the principal metric for comparison. The scores of
MME dataset [9] are normalized against the theoretical maximum value to facil-
itate uniformity in the scale of measurement. In the LLaVA-1.5 [25] framework,
we primary experiment involved reducing visual tokens from 576 to 64.
Implementation Details. We perform token pruning every three layers, with
the final count of visual tokens determined by the number pruned in each time.
To balance model performance and efficiency, we employ all layers of the ViT
and the initial 12 layers of the LLM for token pruning. The relevance threshold
τ is empirically set to 0.2. The model training and inference configurations are
strictly aligned with the original settings of LLaVA-1.5 [25] for a fair comparison,
and all experiments are conducted on 8×A100 GPUs.
Comparison Details. We primarily compare three categories of token pruning
methods. The first includes straightforward token sampling or linear aggrega-
tion approaches, such as random sampling, topK based on patch token simi-
larity with the CLS token, subsampling predicated on spatial correlations. The
second category encompasses state-of-the-art methods in vision-only tasks, such
as EViT [24] and ToMe [4]. The third category features token pruning methods
that have recently emerged in LVLMs, including the abstractor structure from
Honeybee [5], context attention in LLaMA-ViD [22], and the visual adapter in
Qwen-VL [3]. For the sake of brevity, we directly use the model names to repre-
sent these structures. To eliminate the influence of factors such as model archi-
tecture, data, and training strategies, we reapply the aforementioned methods
within the LLaVA-1.5 [25] framework to conduct a fair and thorough comparison.
Specific details regarding the application can be found in the appendix.

4.2 Experimental Results

Main Results. Table 1 and 2 demonstrate the comparison of performance with
various methods as the number of visual tokens is reduced from 576 to 64 un-
der the LLaVA-1.5-7B and LLaVA-1.5-13B frameworks [25] respectively. Despite
some discrepancies between the replicated results and those reported in the
literature across different datasets, the overall average differences are negligi-
ble, with the replication showing a slight edge in performance. Consequently,
the replicated results is adopted as the baseline for comparison. The tables
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Table 1: The comparison of the visual token pruning methods with Vicuna-7B on 12
benchmarks. *The replicate results with same experimental setting. The TFLOPs is
measured with batch size of 1 as well as 512 text tokens.

Method VQAv2 [11] GQA [14] VisWiz [13] SQAI [28] VQAT [33] POPE [23] MME [9] MMB [27] MMBCN [27] SEED [19] LLaVAW [26] MM-Vet [40] Avg. ↑ TFLOPs ↓

LLaVA-1.5-7B [25] 78.5 62.0 50.0 66.8 58.2 85.9 75.5 64.3 58.3 58.6 63.4 30.5 62.7 15.4
LLaVA-1.5-7B* [25] 79.1 62.7 49.0 67.8 58.6 86.3 72.8 66.2 59.3 58.5 63.7 31.7 63.0 15.4

Random sampling 69.0 57.1 37.9 67.2 48.5 82.5 65.6 55.4 48.0 51.0 55.8 23.6 55.1 (-7.9) 8.0 (-48.1%)
TopK 72.4 58.1 47.0 66.9 52.5 83.8 67.1 63.3 55.2 54.5 59.2 26.5 58.9 (-4.1) 8.0 (-48.1%)

Spatial pooling 73.9 59.6 46.5 67.7 52.5 82.3 68.5 63.3 56.6 54.9 59.7 28.3 59.5 (-3.5) 8.1(-47.4%)
EViT [24] 74.1 59.4 47.0 67.7 54.7 82.8 69.2 63.5 57.8 55.4 60.0 27.3 59.9 (-3.1) 8.0 (-48.1%)
ToMe [4] 75.1 60.0 47.1 67.5 55.3 82.4 70.4 63.9 56.5 55.2 60.5 26.6 60.0 (-3.0) 8.0 (-48.1%)

Honeybee [5] 74.8 59.0 47.2 67.8 50.9 84.0 68.7 61.6 57.8 55.2 59.4 27.1 59.5 (-3.5) 8.1 (-47.4%)
LLaMA-VID [22] 74.3 59.2 46.8 67.9 51.4 83.1 69.7 63.5 57.0 55.4 58.9 29.7 59.7 (-3.3) 8.2 (-46.8%)

Qwen-VL [3] 74.9 58.9 47.3 68.1 54.4 83.4 69.4 63.2 57.4 55.0 59.2 27.2 59.9 (-3.1) 8.1 (-47.4%)
IVTP (Ours) 77.8 60.4 47.9 67.8 58.2 85.7 72.6 66.1 57.4 56.4 62.8 30.5 62.0 (-1.0) 8.2 (-46.8%)

Table 2: The comparison of the visual token pruning methods with Vicuna-13B on
12 benchmarks. *The replicate results with same experimental setting. The TFLOPs
is measured with batch size of 1 as well as 512 text tokens.

Method VQAv2 [11] GQA [14] VisWiz [13] SQAI [28] VQAT [33] POPE [23] MME [9] MMB [27] MMBCN [27] SEED [19] LLaVAW [26] MM-Vet [40] Avg. ↑ TFLOPs ↓

LLaVA-1.5-13B [25] 80.0 63.3 53.6 71.6 61.3 85.9 76.6 67.7 63.6 61.6 70.7 35.4 65.9 29.4
LLaVA-1.5-13B* [25] 80.0 63.4 54.5 70.4 60.0 86.4 78.4 68.3 63.1 60.8 69.4 36.8 66.0 29.4

Random sampling 72.3 56.7 46.6 68.0 51.5 83.3 64.9 58.0 54.8 53.0 58.8 24.6 57.7 (-8.3) 15.4 (47.5%)
TopK 74.7 58.5 50.8 69.3 54.2 85.4 68.0 64.5 59.6 54.5 62.8 26.6 60.7 (-5.3) 15.4 (47.5%)

Spatial pooling 75.1 59.7 51.1 69.9 55.0 84.8 71.6 64.2 60.2 54.9 63.3 27.4 61.4 (-4.6) 15.6 (46.9%)
EViT [24] 77.2 60.2 53.4 70.1 57.9 84.6 73.6 65.3 60.1 55.4 64.9 28.6 62.6 (-3.4) 15.4 (47.5%)
ToMe [4] 76.9 61.4 53.9 70.1 57.6 85.5 73.1 65.0 61.2 56.0 65.9 32.6 63.3 (-2.7) 15.4 (47.5%)

Honeybee [5] 76.2 61.2 52.1 70.5 59.7 83.6 73.5 63.2 61.2 55.7 66.5 32.0 63.0 (-3.0) 15.4 (47.5%)
LLaMA-VID [22] 76.5 61.7 52.9 70.4 57.2 83.3 74.4 64.2 60.5 55.2 66.0 32.7 62.9 (-3.1) 15.5 (47.3%)

Qwen-VL [3] 77.3 61.1 52.1 70.8 56.4 84.0 71.7 65.8 61.7 56.3 66.7 31.5 63.0 (-3.0) 15.4 (47.5%)
IVTP (Ours) 78.4 62.3 54.1 70.1 60.0 85.4 77.1 67.7 63.3 59.3 68.6 35.5 65.2 (-0.8) 15.6 (46.9%)

show that despite reducing visual tokens by approximately 88.9%, the proposed
method incurs an average performance decline of only about 1% across 12 evalu-
ation datasets, coupled with over 46% reduction in computational demand. Our
method exceeds the performance of other token pruning methods by over 2%,
despite incurring a slightly higher TFLOPs due to hierarchical token pruning
in the LLM. Table 3 further illustrates the change in TFLOPs corresponding to
an increase in text tokens from 128 to 1024. It is clear that as the number of
text tokens reduced, the proportion of visual tokens becomes more significant,
thereby intensifying their influence on the computational demands of the model.
As a result, the effectiveness of visual token pruning in reducing computational
demand becomes more evident.
Inference-only Results. Since the proposed method does not need any extra
modules that require parameter optimization, it can be seamlessly integrated
with pre-trained models. This eliminates the need for retraining and simulta-
neously enhances computational efficiency during inference. Fig. 3 presents a
performance comparison of various methods in a pure inference scenario when
reducing the number of visual tokens from 16 to 512. As the number of tar-
get tokens decreases, the advantages of our proposed method become more pro-
nounced. Notably, when the number of visual tokens is reduced to 16, our method
surpasses other approaches by approximately 5%. The proposed method guided
by instruction semantics can more effectively maintain the task relevant visual
information, thereby achieving better results.
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Table 3: Comparison results of TFLOPs
across different methods as text token count
varies from 128 to 1024.
Methods 128 256 512 1024

LLaVA-1.5-7B [25] 9.9 11.7 15.4 22.9

TopK 2.7 (-72.7%) 4.5 (-61.5%) 8.0 (-48.1%) 15.2 (-33.6%)

ToMe [4] 2.7 (-72.7%) 4.5 (-61.5%) 8.0 (-48.1%) 15.2 (-33.6%)

Honeybee [5] 2.9 (-70.7%) 4.6 (-60.7%) 8.1 (-47.4%) 15.4 (-32.8%)

Qwen-VL [3] 2.9 (-70.7%) 4.6 (-60.7%) 8.1 (-47.4%) 15.3 (-33.2%)

IVTP (Ours) 3.0 (-69.7%) 4.7 (-59.8%) 8.2 (-46.8%) 15.5 (-32.3%)

42

47

52

57

62

7.4 9.4 11.4 13.4 15.4

A
v

er
ag

e 
A

C
C

 (
%

)

TFLOPs

IVTP (Ours)

ToMe

EViT

TopK

Spatial pooling

Random

LLaVA-1.5-7B

42

47

52

57

62

7.4 9.4 11.4 13.4 15.4

A
v

er
ag

e 
A

C
C

 (
%

)

TFLOPs

IVTP (Ours)

ToMe

EViT

TopK

Spatial pooling

Random

LLaVA-1.5-7B

Fig. 3: Comparison of model perfor-
mance with pure inference setting.

4.3 Ablation and Analysis

To analyze different setups of our IVTP, we perform extensive ablation studies.
All the experiments are conducted with LLaVA-1.5-7B [25] as the backbone, and
report the average accuracy across the aforementioned 12 evaluation datasets in
both retraining mode and pure inference mode (PI).
Attention Rollout. As outlined in Sec. 3.2, we organize several contiguous
layers into a group and apply attention rollout through the residual aggregation
of intra-group attention weights. This process is intended to simulate the flow
of information through hidden layer features, thereby yielding more reliable and
effective attention weights for assessing the significance of visual patch tokens.
Table 4 shows that substituting the group-wise attention rollout with a variant
that uses only the CLS token’s attention weight of current layer results in a per-
formance decrease of 4.5% in pure inference mode and 3.9% in retraining mode.
When switching from group-wise to layer-wise, the performance is improved,
yet there is still a noticeable gap compared to the method using group-wise
attention rollout. Although the proposed method requires to prune a greater
number of tokens each time compared to layer-wise, it achieves better results
with similar TFLOPs. This improvement is due to the more stable and efficient
aggregation of attention, where the attention scores can more accurately reflect
the contribution of patch tokens. Table 5 delves deeper into the impact of differ-
ent attention information aggregation strategies. We evaluate several approaches
for aggregating attention weights produced by different layers within a group,
such as averaging, selecting the maximum, and implementing element-wise mul-
tiplication. The finding demonstrates that the residual method employed in our
approach yields superior performance, owing to its improved alignment with the
forward propagation of visual tokens.
Instruction Guided Selection. Another fundamental component of the pro-
posed approach is the further selection of visual tokens guided by textual in-
structions, as elaborated in Sec. 3.3. To validate the effectiveness of this mod-
ule, we also perform a series of ablation studies, which are presented in Table
6. As shown in the first row of the table, the attention weights of the visual
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Table 4: Ablation study of the weights of atten-
tion rollout and vanilla attention. The metrics for
comparison with the original LLaVA-1.5-7B are
indicated in parentheses.

Model Avg. Acc (PI) Avg. Acc TFLOPs

Group-wise 55.1 (-7.9) 58.1 (-4.9) 8.2 (-46.8%)

Layer-wise 56.2 (-6.8) 59.5 (-3.5) 8.2 (-46.8%)

Rollout 59.6 (-3.4) 62.0 (-1.0) 8.2 (-46.8%)

Table 5: Comparison with differ-
ent attention weights aggregation
strategies.

Model Avg. Acc (PI) Avg. Acc

mean 56.1 (-6.9) 60.1 (-2.9)

max 55.9 (-7.1) 60.7 (-2.3)

multiply 56.7 (-6.3) 60.5 (-2.5)

Residual 59.6 (-3.4) 62.0 (-1.0)

Table 6: Ablation study of instruction guided
selection. ‘OTT’, ‘TE’, and ‘RT’ refer to orig-
inal textual tokens, CLIP text encoder, and
relevenance threshold, respectively.

OTT TE RT Avg. Acc (PI) Avg. ACC

56.7 (-6.3) 59.2 (-3.8)

✓ 58.3 (-4.7) 60.2 (-2.8)

✓ ✓ 57.3 (-5.7) 59.9 (-3.1)

✓ ✓ ✓ 59.6 (-3.4) 62.0 (-1.0)

Table 7: +Extending token pruning
to LLM with other methods.

Model Avg. Acc (PI) Avg. Acc

TopK 54.1 (-8.9) 58.9 (-4.1)

TopK+ 54.9 (-8.1) 58.7 (-4.3)

ToMe [4] 57.5 (-5.5) 60.0 (-3.0)

ToMe+ 57.7 (-5.3) 60.1 (-2.9)

IVTP-V 58.5 (-4.5) 60.8 (-2.2)

IVTP 59.6 (-3.4) 62.0 (-1.0)

CLS token are used as the foundation for token selection within the LLM, es-
tablishing the baseline for these experiments. We then aggregate the original
textual instruction tokens into a pseudo CLS token via average pooling to steer
the token selection process. This approach yield a significant improvement over
the baseline, demonstrating that guiding the pruning of visual tokens with tex-
tual instructions effectively isolates instruction-relevant visual patches through
cross-modal associations, thus further reducing the number of required visual
tokens. To minimize the influence of irrelevant noise in the textual instructions,
we introduced a relevance threshold to selectively extracts key textual tokens.
However, due to the lack of associative contrastive training between the visual
CLS token and the original textual tokens of LLM, directly calculating vector
correlation and applying a threshold for filtration is insufficient for isolating key
textual tokens. The last row of the table demonstrates that integrating the CLIP
text encoder, which naturally excels in image-text alignment, enables the precise
identification of relevant sections within the textual tokens.
Pruning in LLM. We also extend our two-stage visual token pruning to TopK
and ToMe [4], denoted as TopK+ and ToMe+ in Table 7, respectively. For a
direct comparison, we apply the proposed method solely to the visual encoder,
indicated as IVTP-V in the table. It calculation that extending the purely vi-
sual methods to LLM does not yield significant improvements. This is because
performing token pruning solely within visual patches through representational
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Table 8: Comparison with the num-
bers of layers in token pruning groups.

Layers Avg. Acc (PI) Avg. Acc

ALL 56.7 (-6.3) 58.2 (-4.8)

2 58.8 (-4.2) 60.1 (-2.9)

3 59.6 (-3.4) 62.0 (-1.0)

4 59.1 (-3.9) 61.5 (-1.5)

6 58.6 (-4.4) 59.9 (-3.1)

Table 9: Computational complexity
with different methods (TFLOPs).

Methods ViT LLM extra Total

LLaVA-1.5-7B [25] 0.361 15.003 - 15.364

TopK 0.190 7.772 - 7.962

ToMe [4] 0.190 7.772 - 7.962

Qwen-VL [3] 0.360 7.772 0.003 8.135

IVTP (our) 0.202 7.946 0.080 8.228
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Fig. 4: Performance comparison with token
pruning scaling. We show the average accu-
racy over all 12 benchmarks with the target
number of visual tokens varying from 16 to
512 under comparable TFLOPs.

similarity fails to address the scenario with sparse target tokens. Rather than
applying the token pruning from the visual encoder to the LLM directly, we
select relevant visual tokens based on the diverse instructions.
Scaling the Token Pruning. Figure 4 illustrates the trade-off between TFLOPs
and average accuracy by adjusting the final count of visual tokens from 576 down
to a range between 16 and 512. The trend shown in the figure indicates that when
the final number of visual tokens is reduced to between 256 and 512, the perfor-
mance of most methods are nearly identical to those of the original model. The
proposed method even slightly exceed the original model while achieving a 10%
to 30% reduction in TFLOPs. This suggests that reducing the number of visual
tokens to an optimal level can not only preserves essential visual information
but also minimizes interference from irrelevant visual tokens. As the number
of visual tokens is further reduced, relying solely on the relevance and unique-
ness of patch tokens becomes inadequate for preserving visual information. To
overcome this limitation, the proposed method introduces an instruction-guided
mechanism that adaptively selects visual tokens highly relevant to the specific
given prompt, thereby completing VQA tasks with fewer visual tokens.
Group Layers. We vary the number of layers in each token pruning group, with
a specific focus on the scenario in which all layers of the ViT and all the first
12 layers of the LLM are employed. Table 8 shows the optimal performance is
achieved with each group consists of three layers. Groups comprising fewer layers
yield less effective attention rollout aggregation, whereas groups with more layers
require pruning more tokens, hindering the layer-wise interaction within tokens.
Computational complexity. Table 9 shows the comparison of computational
complexity among different models. We itemize the computational costs of the
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Fig. 5: Visualization of the visual token pruning results. Each sample, viewed from
left to right, consists of the raw image, the token pruning by the TopK, and the token
pruning by the proposed method, respectively.

visual encoder, LLM and extra structures separately to provide a detailed break-
down. It is clear that the LLM contributes the most to the overall computational
complexity of the LVLM, due to its significantly higher number of parameters
compared to the ViT and other supplementary structures. Consequently, the
disparities in TFLOPs observed with purely visual methods are not discernible
when these methods are incorporated into the LVLMs. Although our method
inputs more visual tokens into the LLM compared to other pruning methods,
by limiting pruning to the initial 12 layers of the LLM, we manage to keep the
computational complexity within 2% of that achieved by single-stage approaches.
Visualizations. We further visualize the results of token pruning for a more
intuitive understanding in Fig. 5. key textual tokens are highlighted in the in-
struction text and discarded visual tokens are masked in the input image. Our
observations indicate that the proposed method excels at precisely identifying
essential textual tokens related to visual content and adeptly preserving the most
relevant visual tokens aligned with the semantics of diverse instructions.

5 Conclusion

This paper presents a visual token pruning technique for Large Vision-Language
Models (LVLMs). It introduces a group-wise token pruning (GTP) module aimed
at improving the stability and robustness of patch token importance assessment
within a frozen visual encoder of LVLMs. The proposed method extends the de-
signed GTP module to LLM with incorporating instruction semantics as guid-
ance, thereby discarding irrelevant visual tokens based on instructional prefer-
ences. Comprehensive experiments and in-depth ablation studies show that the
proposed method can prune more visual tokens with minimal loss of accuracy, as
well as accelerate the training and inference of LVLMs. The reduction of visual
tokens can also be transferred to multi-image or video tasks in LVLMs to boost
their performance, which will be a key focus of our future work.
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